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Abstract: This position paper is concerned with aspects of an interactive state transition system (based on abstract state
machine) by means of the state monitoring in action logic (as multi-modal logic), towards a step to the design
for complex systems. Logical models are here presented as theories for implementation design on iDevice,
with respect to the algebraic structure caused by state transitions. As a simpler design of complex AI, the envi-
ronmental constraint is captured as a state, where the function applications are available at each state with the
transition to the next states. For communication to the state, and function applications at the state, multi-modal
logic model may be of use, where the formula or the condition monitors the state. Then interaction availability
is significant, expressed in some algebra on the basis of the meaning definitions for formulas (conditions). By
the state transition system, URL searching operations are now formally considered as in algebraic structure.
The application of predicates to the states is regarded as applications of functions (transforming conditions)
such that its algebraic structure may be given.

1 INTRODUCTION

As methods of monitorng and analysis for systems,
this positioning is concerned with the following con-
cepts, for extensions of action logic (as multi-modal
logic): (i) interaction modeling for abstract state ma-
chine as a state transition system, (ii) monitoring
states in action logic with modal operators, (iii) logic
of action, with respect to multi-modal logic and appli-
cations of functions, and (iv) denotational semantics
for action logic.

Abstract state machine (by Y. Gurevich) can be
a basis for the framework of state-transition systems
applicable to complex AI systems. Containing state-
transitions, action logic is needed for design meth-
ods even on iDevice, as in the paper (Yamasaki and
Sasakura, 2015).

For the required design methods, interactive stage
would be here formulated as being monitored, to re-
flect behaviours on popular iDevices (for interactive
AI-tools), with relevance to usage of ideas in func-
tional programming (Thompson, 1991) or process al-
gebra (Cardelli and Gordon, 2000; Milner, 1999) to
AI-tools. Combined with abstract state machine, the
function applications can be made with state transi-
tions. However, the state can be nowadays realized
by a panel display to be touched on iDevices. The
iDevice is, on one hand, to present the state transi-
tion where the function may be applied. On the other

hand, it is interpreted to support an interactive pro-
cess, in which function applications are executed in
a programming system so that the evaluation may be
obtained.

The state transition system is involved in action
logic (Hennessy and Milner, 1985; Kucera and Es-
parza, 2003) and modal logic (Venema, 2008). Based
on the new aspect of the meaning definition for for-
mulas (or conditions), an interaction state (where in-
teractive actions like communications and/or function
applications are available) can be presented.

As regards knowledge-based systems, URL
searching forward and backward would be exam-
ined with respect to the operations (composition –
multiplication– and alternation – addition –) of func-
tion applications in a state transition system. The
view on the operations is closely related to automata
theory as in the book (Droste et al., 2009) where al-
gebraic structures like semiring are compiled. In this
positioning, a new technique on the reduction of mul-
tiplicative inverse is to be presented, after the URL
searching is well organized as an algebraic structure,
caused by a state-constraint system. For knowledge-
based systems (which involve technologies in state
transition systems as well as in action logic), actions
by predicates or logical formulas may be regarded as
function applications.

The position paper is organized as follows. In Sec-
tion 2 we observe Yale Shooting Problem as an intro-
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ductory motivation to this positioning. It is in Section
3 followed by a revised formulation of multi-modal
mu-calculus to monitor the state transition system. In
Sections 4 and 5, some function applications of state
transition systems are discussed from algebraic views.
A concluding remark, with related topics, is briefly
given, as well.

2 A KNOWLEDGE-BASED
SYSTEM FOR ACTIONS

Solution Display of Yale Shooting Problem
The solution of the AI problem is often expressed

by a sequence of state-transitions. The state is tempo-
rally prepared for and the operation is equipped with,
where the formula or condition is attached to the state.
AI solution and display can thus be made in terms of
(interactive) state-constraint system. Let us have an
outlook on the display of solutions in the Yale Shoot-
ing Problem (Hanks and McDermott, 1987).

The Yale Shooting Problem is a scenario in logic:
(i) A turkey is initially alive and a gun is initially un-

loaded.
(ii) Loading the gun, the shooter waits for a moment.

(iii) Then shooting at the turkey is expected to kill it.
The scenario is captured with the condition chang-

ing truth values over time, like alive and loaded. As-
suming four time points 0, 1, 2, and 3, alive(t) and
loaded(t) supposedly denote the conditions alive and
loaded to be true (i.e. to hold) at time t, respectively.
Then the scenario must satisfy:

alive(0)
¬loaded(0)
true→ loaded(1)
loaded(2)→¬alive(3)

where “¬” stands for the (classical) negation and “→”
does for the entailment. As an implicit assumption
that alive(0)≡ alive(1), loading the gun only changes
the value of “loaded”: The conditions do not change
unless an action changes them (which is the frame
problem).

By the concept of fluent (which is a condition to
change truth values) (Hanks and McDermott, 1987),
we can have one evaluation of the conditions whose
changes are minimized:

alive(0),alive(1),alive(2),¬alive(3);
¬loaded(0), loaded(1), loaded(2), loaded(3)

where another evaluation is not satisfactory, though
the changes of the conditions are minimized:

alive(0),alive(1),alive(2),¬alive(3);
¬loaded(0), loaded(1),¬loaded(2),¬loaded(3)

The former sequence of evaluations can be repre-
sented in a state-constraint system as follows, where
Fn is a function, and C1, C2 are conditions:

state 0 1 2 3
Fn gun-load null shooting null
C1 alive alive alive ¬alive
C2 ¬loaded loaded loaded loaded

The solution with the state transitions suggests a
basic structure of:

state s Fn1 state s1
Fn2 state s2
. . . . . .
. . . . . .
Fnk state sk

where: (i) Fn1, Fn2, . . . , Fnk are terms or functions
applicable (with or without conditions), at the state s
(conditioned or monitored by some logical formula).
(ii) The states s1, s2, . . . , sk are regarded as the con-
straints, respectively, transited from the state s after
the application of each of those functions.

3 COMMUNICATION AND
FUNCTION APPLICATION

Hennessy-Milner Logic (HML, for short) is concep-
tually relevant to the state-constraint system. With an
action (or a communication) 〈c〉 as below, formulae
as in Hennessy-Milner Logic (HML) are described by
the form:

ϕ ::= tt | ϕ∨ϕ | ¬ϕ | 〈c〉ϕ.

Following the denotations of formulas, we have
extended Hennessy-Milner logic to a multi-modal
logic version, based on the papers (Cardelli and Gor-
don, 2000; Merro and Nardelli, 2005; Hennessy and
Milner, 1985; Milner, 1999), for modeling of states
monitored in implementation. Possibly with moni-
torable states as meaning for each formula, we now
have the set Φ of formulas, modified from the first
version (Yamasaki and Sasakura, 2015):

ϕ ::= tt | p | ¬ϕ | ∼ϕ | ϕ∨ϕ | 〈c〉ϕ | µ.ϕ | ϕ〉t〉
We here have a prefix modality 〈c〉 (for communica-
tion), a postfix one 〉t〉 (for function application), a
negation (sign)∼ for incapability of interaction, stan-
dard propositions p, the logical negation ¬ and a least
fixed operator µ.

The semantics for formulas are definable on the
basis of a transition system. The transition system
(for semantics of logic) is

S = (S,C,Ac,Re,Rel,Vpos,Vneg,Vinter),
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where:
(i) S is a set of states.

(ii) C is a set of labels for communications.

(iii) Ac is a set of actions.

(iv) Re maps to each c ∈C a relation Re(c) on S.

(v) Rel maps to each t ∈ A a relation Rel(t) on S.

(vi) Vpos,Vneg,Vinter : Prop → 2S, map to each
proposition (variable) a set of states, respec-
tively.

The reason why 3 assignments of Vpos, Vneg and Vinter
are adopted comes from introduction to monitoring
interaction. Given a transition system S , the func-
tions [[ ]]pos, [[ ]]neg, [[ ]]inter: Φ→ 2S are defined such
that

(i) [[ϕ]]pos ∪ [[ϕ]]neg ∪ [[ϕ]]inter = S, and

(ii) [[ϕ]]pos, [[ϕ]]neg and [[ϕ]]inter are mutually disjoint,

for ϕ ∈Φ.

The Meaning is concerned with two modalities
〈c〉, 〉t〉:
(1) [[tt]]pos = S, [[tt]]neg = /0, and [[tt]]inter = /0.

(2) [[p]]pos = Vpos(p), [[p]]neg = Vneg(p), and
[[p]]inter = S\ ([[p]]pos ∪ [[p]]neg) = Vinter(p).

(3) [[¬ϕ]]pos = [[ϕ]]neg, [[¬ϕ]]neg = [[ϕ]]pos,
and [[¬ϕ]]inter = [[ϕ]]inter.

(4) [[∼ϕ]]pos = [[ϕ]]neg, [[∼ϕ]]neg = [[ϕ]]pos ∪ [[ϕ]]inter,
and [[∼ϕ]]inter = /0.

(5) [[ϕ1∨ϕ2]]pos = [[ϕ1]]pos ∪ [[ϕ2]]pos,
[[ϕ1∨ϕ2]]neg = [[ϕ1]]neg ∩ [[ϕ2]]neg, and
[[ϕ1∨ϕ2]]inter
= S \ ([[ϕ1∨ϕ2]]pos ∪ [[ϕ1∨ϕ2]]neg).

(6) [[〈c〉ϕ]]pos
= {s ∈ S | ∃s′. s Re(c) s′ and s′ ∈ [[ϕ]]pos},
[[〈c〉ϕ]]neg
= {s ∈ S | ∀s′. s Re(c) s′ entails s′ ∈ [[ϕ]]neg},
and [[〈c〉ϕ]]inter = S \ ([[〈c〉ϕ]]pos∪ [[〈c〉ϕ]]neg).

(7) ([[µx.ϕ]]pos, [[µx.ϕ]]neg)

=
⋂{(Tpos,Tneg)⊆ S×S |
([[ϕ]]pos [x:=Tpos]

, [[ϕ]]neg [x:=Tneg]
)⊆ (Tpos,Tneg)},

and [[µx.ϕ]]inter = S \ ([[µx.ϕ]]pos∪ [[µx.ϕ]]neg),
where every free occurrence of x in ϕ is positive,
and both the intersection “∩” and the subset “⊆”
are componentwise, with assignments of Tpos and
Tneg to x.

(8) [[ϕ〉t〉]]pos
= {s′ ∈ S | ∀s. s Rel(t)s′ entails s ∈ [[ϕ]]pos},
[[ϕ〉t〉]]neg

= {s′ ∈ S | ∀s. s Rel(t) s′ entails s ∈ [[ϕ]]neg},
[[ϕ〉t〉]]inter = S\ ([[ϕ〉t〉]]pos∪ [[ϕ〉t〉]]neg).

Modality 〈c〉 is from communication labelled by c,
Modality 〉t〉 possibly comes from function applica-
tions. When the latter modality is applied to a state s,
it may hold a relation Rel(t). It follows that:

[[ϕ〉t〉]]inter = {s′ ∈ S|∃s. sRel(t)s′,s ∈ [[ϕ]]inter}.

4 FUNCTIONS REGARDING URL
SEARCHING

ϕ〉t〉 with a function t is interpreted as monitoring the
state at which the function (a kind of term) is (in in-
teraction mode) applied and possibly transited to the
next state.

Upon URL searching, the operations contain un-
folding to refine the next references included in the
present reference, and folding to return back to the
former reference. In this context, we here have some
algebraic structure, as a state-constraint system be-
haviour.

Assume a simple structure of references in URL:

(Home page name) A
(Contents) (Reference names) B1

B2
. . .
. . .
Bk

We then examine two functions of:
(i) unfolding to open the HP (home page) named A to
see reference names B1, . . . , and Bk, and (ii) folding
to close reference names B1, . . . , and Bk to have the
(HP) name A, as illustrated below.

(Home page name) A →un f olding; ← f olding

(Contents) (Reference names) B1
B2
. . .
. . .
Bk

The sequence of operations by folding and unfold-
ing can be described in an algebraic structure. To see
it, let X be a set of reference (including HP) names,
where its power set 2X contains all the subsets of X ,
including the emptyset /0 and X .

For a function (like unfolding) f : X → 2X , we
have f̂ (x) = ∪x∈X f (x), such that the function f is
extended to the function f̂ : 2X → 2X . For a function
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(like folding) g : 2X → X , we have ĝ(Y ) = {g(Y )},
such that the function g is extended to the function
ĝ : 2X → 2X .

We therefore assume the set Ψ of functions of the
power set 2X to the power set 2X , that is, 2X → 2X ,
where each function should supposedly assign the
emptyset ( /0 ∈ 2X ) to the emptyset. The set includes
the identity Id : 2X → 2X , Id(Y ) = Y . The function
φ is assumed to assign the empty set ( /0 ∈ 2X ) to any
Y ∈ 2X .

The composition (G◦F) of the functions F,G∈Ψ
is defined to be

(G◦F)(Y ) = G(F(Y )) for Y ∈ 2X ,

where (G ◦F) may be represented by G ◦F . The al-
ternation (F +G) : 2X → 2X of F,G ∈Ψ is defined to
be

(F +G)(Y ) = F(Y )∪G(Y ),

where (F +G) may be represented by F +G.
The relation ≡ on the set Ψ is defined:

F ≡ G iff F(Y ) = G(Y ) for any Y ∈ 2X

It follows that the relation ≡ is an equivalence rela-
tion.

We can see the following properties, which show
that (Ψ,+,◦,φ, Id) is a semiring:

Proposition 1.
(i) F +G≡ G+F.

(ii) F +(G+H)≡ (F +G)+H.
(iii) F +φ≡ φ+F ≡ F.
(iv) F ◦ (G◦H)≡ (F ◦G)◦H.
(v) F ◦ Id ≡ Id ◦F ≡ F.

(vi) F ◦ (G+H)≡ (F ◦G)+(F ◦H).
(vii) (F +G)◦H ≡ (F ◦H)+(G◦H).

(viii) F ◦φ≡ φ◦F ≡ φ.

Proof. (i) (F+G)(Y ) = F(Y )∪G(Y ) = G(Y )∪F(Y )
= (G+F)(Y ) for any Y ∈ 2X . Thus it holds.
(ii) It can be seen for the same reason as in (i), owing
to the associative law in taking the union ∪.
(iii) Because φ(Y ) = /0 by the definition, it holds.
(iv) (F ◦ (G ◦ H))(Y ) = F(G(H(Y ))) = (F ◦
G)(H(Y )) = ((F ◦G)◦H)(Y ) for any F ∈ 2X , as the
associative law of function compositions. It therefore
hold.
(v) Because Id is an identity function on composition,
it holds.
(vi) (F ◦(G+H))(Y ) = F(G(Y )∪H(Y )) = F(G(Y ))
∪ F(H(Y )) = ((F ◦G)+(F ◦H))(Y ). It so holds.
(vii) It is seen by the similar reason of (vi) for this dis-
tributive law to hold.
(viii) Because φ(Y ) = /0 and F( /0) is defined to be /0,
this annihilation holds.

That is, the properties (i), (ii) and (iii) show that
(Ψ,+,φ) is a commutative monoid (a commutative
semigroup with the identity φ for +). The properties
(iv) and (v) show that (Ψ,◦, Id) is a monoid (a semi-
group with the identity for ◦). (vi) and (vii) are dis-
tributive laws, while (viii) is annihilation (in a semir-
ing).

For F ∈Ψ, let F∗ = ∪n∈ω Fn, where:

Fn =

{
Id (n = 0)
Fn−1 ◦F (n > 0)

It follows that F∗ ∈Ψ such that:

F∗ = Id +F ◦F∗ ≡ Id +F∗ ◦F ,

that is, (Ψ,+,◦,φ, Id) is a star semiring.

Semiring with Multiplicative Inverse
The structure may contain the case that

∀F ∈Ψ,∃F ′ ∈Ψ. F ◦F ′ = F ′ ◦F = Id

(where F ′ is a multiplicative inverse represented by
F−1).
(Note) We may take the reduction to have the identity
Id from G◦G−1 or G−1 ◦G, until no more reduction
could be made, to have an equivalent expression (with
respect to “≡”) for a given expression.

Proposition 2. Given an expression with the opera-
tions +, ◦ and ∗, there is a procedure to reduce it to
the equivalent expression (with respect to “≡”) until
no more reduction of right or left inverse can be made.

Proof. We can have a mapping h : EXP→ EXP re-
cursively defined as follows, where for an expression
Ex ∈ EXP (the set of expressions with the operations
+, ◦ and ∗) to denote a member in the set Ψ:

h(Ex) =



φ (Ex = φ)
Id (Ex = Id)
F (Ex = F)
F−1 (Ex = F−1)
h(Ex1)+h(Ex2) (Ex = Ex1 +Ex2)

+〈Gi, G−1
i 〉

h(Ex1/Gi)◦h(G−1
i \Ex2)

++〈H−1
j , H j〉 h(Ex1/H−1

j )◦h(H j\Ex2)

+h(Ex1)◦h(Ex2) (E = Ex1 ◦Ex2)

+〈Gi, G−1
i 〉

h(Ex∗0/Gi)◦h(G−1
i \Ex0)

++〈H−1
j , H j〉 h(Ex∗0/H−1

j )◦h(H j\Ex0)

+Id +h(Ex∗0)◦h(Ex0) (Ex = Ex∗0)

with the expressions:

(1) Ex1/Gi and G−1
i \Ex2 are the right residual

and the left residual, respectively.
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(2) Ex1/H−1
j and H j\Ex2 denote the right residual

and the left residual, respectively.

Note that h(E∗0/Gi), and h(E∗0/H−1
j ) are included

in h(E∗0 ), such that:

h(E∗0/Gi) =

+〈Gk, G−1
k 〉

h(Ex∗0/Gk)◦h(G−1
k \Ex0/Gi)

++〈H−1
l , Hl〉 h(Ex∗0/H−1

l )◦h(Hl\Ex0/Gi)

+h(Ex∗0)◦h(Ex0/Gi), and

h(E∗0/H−1
j ) =

+〈Gk, G−1
k 〉

h(Ex∗0/Gk)◦h(G−1
k \Ex0/H−1

j )

++〈H−1
l , Hl〉 h(Ex∗0/H−1

l )◦h(Hl\Ex0/H−1
j )

+h(Ex∗0) ·h(Ex0/H−1
j ).

A well-known fixed point technique (following
S.C. Kleene) is available, for the expression Ex as be-
low to be defined:

Ex = Ex1 +Ex◦Ex2 ⇒ Ex = Ex1 ◦Ex∗2

such that h(Ex) may be the required expression.

5 PREDICATES AS APPLIED
FUNCTIONS

Bothe positive and negative predicates are thought of
as function applications, with reference to formula
conditions monitoring states. They may induce re-
lations between states, where the relations are con-
cerned with the operations, union ∪ and composition
◦. As in interaction mode, we here formulate a postfix
modality consisting of the pair as below:

With an assumed predicate set P-Set, a par of

(i) a set of sequences of predicates for a collection of
sequences of positive conditions, and

(ii) a set of predicates for negative conditions

is to be considered.

Definition 3. Given a set P-Set, P-Set∗ is the set of
all finite sequences of elements from P-Set, including
the empty sequence ε such that εl = lε = l for any
l ∈ P-Set∗.

Then a postfix modality 〉t〉, where t takes the form
(pseq,neg) for pseq ⊆ P-Set∗ and neg ⊆ P-Set, can
be built into the formulas of this paper. Then a rela-
tion Rel(pseq,neg) may be defined in the transition
system S .

With correspondences and modifications of addi-
tion + to union ∪ for the relation Rel(pseq,neg) and
of multiplication • to concatenation ◦ for the relation

Rel(pseq,neg), an algebraic structure of some set of
pairs (pseq,neg) is below discussed.

For a “consistent” pair of the form (pseq,neg), we
make use of:
Definition 4. l ∈ pseq is consis to the set neg if any
element of l is not in neg. The pair (pseq,neg) is Con-
sis if any l in pseq is consis to neg.

We now have the algebraic structure: For Pred2
= {(pseq,neg) | pseq ⊆ P-Set∗ and neg ⊆ P-Set,
(pseq,neg) is Consis }, the structure

〈Pred2,+,•〉
is to be a semiring, where the operations + as addition
and • as multiplication are defined, as well as the star:
(a) (pseq1,neg1)+(pseq2,neg2)

=de f (pseq1∪ pseq2,neg1∩neg2).
(b)

(pseq1,neg1)• (pseq2,neg2)
=de f (pseq1 · pseq2
−{l ∈ pseq1|l is not consis to neg2} · pseq2
− pseq1 · {l ∈ pseq2|l is not consis to neg1},
neg1∪neg2),

where “·” means a concatenation of two (se-
quence) sets, which provides a new set of se-
quences obtained by arranging two sequences
taken from the two given sets in order.

(c) (pseq,neg)? =de f (pseq∗, /0) for a star “?”, where
pseq∗ = ∪n∈ω pseqn (for pseq0 = {ε} and
pseqn = pseqn−1 · pseq, n > 0, with “·” as con-
catenation of two sets of sequences).
It can be easily observed that:

(i) 〈Pred2,+,( /0,P-Set)〉 is a commutative semi-
group with the identity ( /0,P-Set), that is , a com-
mutative monoid.

(ii) 〈Pred2,•,({ε}, /0)〉 is a semigroup with the iden-
tity ({ε}, /0), that is , a monoid.

The we have:
Proposition 5. The algebraic structure 〈Pred2,+,•〉
is a (star) semiring.

Proof. (Outline) With observations of two monoids
〈Pred2,+〉 (+: commutative addition) and 〈Pred2,•〉
(•: multiplication), we can see that the multiplication
distributes over addition from the left and from the
right. Then we have the annihilation that ( /0,P-Set) •
(pseq,neg) = (pseq,neg) • ( /0,P-Set) = ( /0,P-Set). It
is finally seen for the star operation that:

(pseq,neg)?

= ({ε}, /0)+(pseq,neg)? • (pseq,neg)
= ({ε}, /0)+(pseq,neg)• (pseq,neg)?

= (pseq∗, /0).
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6 CONCLUDING REMARKS

As a conclusion of this positioning, the interactive,
functional applications (as in complex AI) may be
settled with state transition system concepts, which
is also viewed by multi-modal logic with meanings
of formulas (conditions). This view has been from
a display of AI system solution like Yale Shoot-
ing Problem. Then (1) URL searching structures in
knowledge-based systems and (2) predicates applica-
ble at states can have been interpreted in algebraic
structures. As theories, the view may be relevant to
the algebraic informatics as in the classical category
theory. The view may be practical in an interactive
design for origami (Yamasaki and Sasakura, 2015).

As related topics on abstract state machine or
state transition system, we have already principles
and backgrounds as follows, such that this position-
ing may be regarded as a refined and original work.
(i) Communication models are well established in
relation to action logic with reference to algebraic
aspects (Cardelli and Gordon, 2000; Merro and
Nardelli, 2005; Milner, 1999) where behavioural se-
quences may be considered as essential. The modal
operator of this positioning may be regarded as rele-
vant to such backgrounds.
(ii) As regards functional programming and actions,
semantics are examined (Bertolissi et al., 2006;
Mosses, 1992; Reiter, 2001) from operational and
declarative methods. This positioning follows an al-
gebraic way different from these semantic views.
(iii) The state-constraint system is relevant to coalge-
bra (Rutten, 2001; Venema, 2006; Winter et al., 2013;
Winter et al., 2015). As regards pushdown store man-
agements, weighted automaton concept (Reps et al.,
2005) is known, which is related to a semiring struc-
ture with multiplicative (right) inverse of this paper.
(iv) The problem solving methods (Genesereth and
Nilsson, 1987; Osorio et al., 2004) are established
such that it may have conceived the step by step man-
agements even for action logic (Giordano et al., 2000;
van der Hoek et al., 2005). This positioning might
present refinements in those directions.
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