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Abstract: The problem of discovering an effective Deviance Detection Model (DDM) out of log data, has been attracting
increasing attention in recent years in the very active research areas ofBusiness Process Intelligence(BPI) and
of Process Mining. Such a model can be used to assess whether novel instances of the business process are
deviant or not, which is a hot topic in many application scenarios such as cybersecurity and fraud detection.
This paper extends a previous proposal where an innovative ensemble-learning framework for mining business
process deviances was introduced, hinging on multi-view learning scheme. Specifically, we introduce here an
alternative meta-learning method for probabilistically combining the predictions of different base DDMs. The
entire learning method is embedded into a conceptual system architecture that is meant to support the detection
and analysis of deviances in a Business Process Management scenario. We also discuss a wide and compre-
hensive experimental analysis of the proposed approach and of a state-of-the-art DDM discovery solution. The
experimental findings confirm the flexibility, reliability and effectiveness of the proposed deviance detection
approach, and the improvement gained over its previous version.

1 INTRODUCTION

Business Process Intelligence(BPI) and Process Min-
ing are active areas of research, which enjoy many
relevant real-life applications.

A recent thread of research in this area concerns
the problem of detecting deviant instances of a busi-
ness process (a.k.a. “deviance mining”), i.e. in-
stances thatdeviatefrom normal outcomes (Suriadi
et al., 2013; Bose and van der Aalst, 2013; Nguyen
et al., 2014; Lo et al., 2009; Cuzzocrea et al., 2015).
This problem is relevant in many application scenar-
ios such as cybersecurity and fraud detection, and so
forth. Essentially, the problem has been rephrased in
the literature as a binary classification problem, where
the class of all deviant process instances is to be dis-
criminated from the one gathering all the other (nor-
mal) instances of the process under analysis. This
problem has been faced by inducing a suitable clas-
sification model (named hereinafterDeviance Detec-
tion Model, orDDM for short), out of some flat repre-
sentation of a historical log of process traces (labelled
each as either deviant or normal). Such a model can

be then applied to any new instance of the process to
estimate whether it is a deviance or not.

In our opinion, the current literature in the field
has not fully addressed a series of issues that are likely
to arise in many real application scenarios. We dis-
cuss them in the following.

I1 First of all, most of the deviance mining ap-
proaches (including, in particular, (Bose and
van der Aalst, 2013; Swinnen et al., 2011; Nguyen
et al., 2014)) rely on training a single DDM from
a propositional view of the given log, where each
trace is encoded into a fixed-length form by pro-
jecting the associated sequence of log events onto
some given set of behavioral patterns (such as
the individual activities, maximal repeats, or tan-
dem repeatsused in (Bose and van der Aalst,
2013; Nguyen et al., 2014) and the experiments
discussed in Section 5). As shown in (Nguyen
et al., 2014) using multiple heterogenous kinds
of pattern can lead to higher classification accu-
racy. However, mixing all heterogeneous patterns
into a single view is likely to produce a high-
dimensional, sparse and redundant representation
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Figure 1: Conceptual data-processing flow of the proposed approach: original data, transformed data and discovered DDMs.

of the training instances. This calls for adopting
some multi-view learning strategy (like the one
proposed in (Cuzzocrea et al., 2015)), capable of
exploiting different complementary views of the
given traces.

I2 In many real-life applications, analyzing a pre-
sumably deviant case is an expensive task. If
equipping the detected deviant instances with a
deviance probability score, this task could be fo-
cused on more suspicious instances. This capa-
bility could allow to use deviance prediction tools
more flexibly and more effectively in real BPM
systems.

I3 Deviance mining analyses must be often car-
ried out in situations where the deviant in-
stances are far less than normal ones. This
is a case of “class imbalance” (Japkowicz and
Stephen, 1997), which constitutes a challenge for
most classifier induction approaches, conceived
to maximize the overall accuracy without paying
special attention to the minority (i.e. deviant, in
our case) instances.

Some of these issues have been faced in a pre-
vious work of ours (Cuzzocrea et al., 2015), where
an ensemble-learning approach was proposed that ex-
ploits multi-view learning to solve the deviance min-
ing problem. This approach is summarized pictorially
in Figure 1. Basically, a number, sayn, of comple-
mentary feature-based views of the given logL are
produced, which provide each a vector-space encod-
ing of both context properties and behavioral patterns

of the traces inL. Two layers of deviation-detection
models are induced from these views:(i) a collec-
tion of base models (learnt by applyingk different
classifier-induction methods to one of then views
above), and(ii) a meta model, which integrates the
predictions of the base models into a “high-order” de-
viance forecast. As explained in (Cuzzocrea et al.,
2015), the latter model deals with heterogeneous be-
havioral patterns at a higher level of abstraction, so
effectively addressing the issueI1.

In order to deal with situations where deviant in-
stances are far less than normal ones (issueI3), the
learning procedure can be made integrate a resam-
pling mechanism, in order to reduce the level of class
imbalance.

In this paper, we provide three novel and sig-
nificant contributions over (Cuzzocrea et al., 2015),
namely:

• two alternative Bayesian meta-learning methods
for probabilistically combining the predictions of
different base DDMs;

• a conceptual system architecture supporting the
detection and analysis of deviances in a Business
Process Management scenario; and

• a wide and comprehensive experimental analysis
of algorithmHO-DDM-mine and of a state-of-the-
art method (Nguyen et al., 2014).

More specifically, in our current approach the
meta-learning task can take advantage of (a cus-
tomized version of) one of the following meth-
ods for the induction of probabilistic classifiers:
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AODE (Webb et al., 2005) orHNB (Zhang et al.,
2005). Notably, both these methods relax the as-
sumption of attribute independence that underlies
Naı̈ve Bayes models —this assumption hardly holds,
indeed, in our DDM learning setting, where sev-
eral activities/patterns are likely to be correlated one
another— with negligible additional costs in terms of
computation time. This allows to associate any new
process instance with a reliable estimate of the prob-
ability that it is deviant, thus addressing the delicate
issueI2.

The results of our empirical analysis confirmed
the flexibility, reliability and effectiveness of the pro-
posed deviance detection approach, and the improve-
ment gained over its previous version.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some basic concepts and notation on
the specific kinds of Bayesian classifiers that are used
in our approach to accomplish the meta-learning sub-
task. The specific kind of overall DDM (namedHigh-
Order Deviance Detection Model, shortHO-DDM) that
is eventually returned by our approach is illustrated in
Section 3. Section 4 then presents a conceptual sys-
tem architecture for the detection and analysis of de-
viant process instances, in a BPM scenario, summa-
rizes the induction algorithm for extracting aHO-DDM
out a given set of historical log traces. After dis-
cussing, in Section 5, the results of the experimental
activities that we have conducted on a real case study,
we draw a few concluding remarks in Section 6.

2 PRELIMINARIES: BAYESIAN
MODELS

As explained before, we want to probabilistically
classify a process trace as either deviant or not, in or-
der to equip the trace with a measure of confidence in
the fact that it is really a deviance. In order to do this
in a scalable way, we resort to two extensions of the
popular Naı̈ve Bayes method. Before presenting these
methods in details, let us introduce some basic con-
cepts and notation concerning Bayesian classifiers, in
general, and Naı̈ve Bayes models, in particular.

In general,Bayesian classifierscombine a priori
knowledge of the classes with new evidence gath-
ered from data. Let us consider an instance space
with m+1 nominal attributesX1, . . . ,Xm,Y, such that
m ∈ N, and a class attributeY encoding the class
label (if known) of any instance. For any attribute
Z ∈ {X1, . . . ,Xm,Y}, let dom(Z) be the associated do-
main, and letdom(Y) = {c1, . . . ,ck}. Given an in-
stancex = 〈x1, . . . ,xm〉, wherexi is the value observed
for attributeXi , the classification problem amounts to

estimating the class labely ∈ dom(Y) for x, based
on some suitable classification model, previously ex-
tracted from (already classified) training instances.

In a hard classification setting, a Bayesian
classifier computes P(y|x) for each class
y ∈ dom(Y), and assignsx to the class associ-
ated with the with the highest probability, i.e.,
y∗ = argmaxy∈dom(Y) (P(y|x)). Clearly, P(y|x) =
P(y,x)/P(x) and argmaxy∈dom(Y) (P(y|x)) =
argmaxy∈dom(Y)P(y,x). As P(y,x) = P(y) · P(x|y),
this hard classification task amounts to finding
y∗ ∈ dom(Y) such that:y∗ = argmaxy∈dom(Y) (P(y) ·
P(x|y)).

For a fully probabilistic classification, every class
membership probability can be estimated as:

P(y|x)≈ P(y,x)

∑y′∈dom(Y)P(y′,x)

=
P(y,x)

∑y′∈dom(Y)P(y′) ·P(x|y′) (1)

While the prior probabilityP(y) can be derived
from the sample frequencies in the training set, one
should estimate the conditional probabilityP(x|y). In
Naı̈ve Bayes (NB) classifiers the latter task is accom-
plished by assuming that all the attributes are condi-
tionally independent of one another, given the class
labely. Under this hypothesis, for eachy∈ dom(Y),
it is P(y,x) = P(y) ·∏m

i=1P(xi |y). Thus, the instance
x is assigned to the classy∗ ∈ dom(Y) such that
y∗ =argmaxy∈dom(Y) (P(y) ·∏m

i=1P(xi |y)). Any “soft”
class membership probabilityP(y|x) can be computed
in a similar way.

NB classifiers work well in a wide range of ap-
plications (Langley et al., 1992). However, in cer-
tain settings (like the one considered in this work),
the attribute independence assumption is inappropri-
ate. Many efforts have been made in the literature to
relax such an assumption, without making the proba-
bility distribution too complex and hard to induce. We
next briefly illustrate two popular extensions of NB
classifiers, namely AODE and HNB, which are both
used in the current implementation of our approach.

2.1 AODE

One-dependence estimators(ODEs) (Sahami, 1996)
generalize NBs by allowing each attribute to depend
on one other attribute besides the class. A subclass of
ODEs are SPODEs (Keogh and Pazzani, 2002; Ying
et al., 2007), where all the attributes can only depend
on a single common one, thesuper-parent(in addition
to the class). For example, for a SPODE with super-
parentXp, P(y,x) is computed as follows:
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P(y,x) =P(y,xp) ·P(x|y,xp) =

P(y,xp) ·
m

∏
i=1

P(xi |y,xp)

SPODEs are typically combined into a sort of
ensemble, in order to reduce the classification vari-
ance and ensure higher accuracy (Webb et al., 2005).
Clearly, if the data instances featurem attributes, at
mostm different SPODEs can be combined. The dif-
ferent SPODE models in such an ensemble are usu-
ally merged by computing an overall probability esti-
mate forP(y,x) as a linear combination of the prob-
ability estimates returned by all of these “base” mod-
els:

P(y,x) =
m

∑
j=1

wj ·Pj(y,x) =

m

∑
j=1

wj ·P(y,x j) ·
m

∏
i=1

P(xi |y,x j) (2)

wherePj(y,x) is the estimate ofj-th SPODE forx,
andwj is the weight given to the same SPODE.

The Averaged One-Dependence Estimators
(AODE) (Webb et al., 2005) method adopts a simple
combination strategy, which only considers the
super-parents that appear in the training dataset
more than a minimum support thresholdh ∈ N, and
assigns uniform weights to all of their corresponding
SPODEs. Hereinafter, we simply keep fixexh = 1
—notice that the same choice has been made in the
experiments described in Section 5. According to this
strategy,P(y,x) is eventually estimated as follows:

P(y,x) =
∑ j∈S P(y,x j) ·∏m

i=1P(xi |y,x j )

|S | (3)

whereS is the subset of valuesx j that occur at leasth
times in the training set (andwj is fixed to 1/|S | for
all x j in S ).

In order to estimate, for each tuplex ∈ X and
each possible class labely ∈ dom(Y), the probabil-
ity P(y|x), one can simply normalize the numerator
in Eq. 3 over all the classes as follows:

P(y|x) = P(y,x)

∑y′∈Y P(y′,x)
=

∑ j∈S P(y,x j) ·∏m
i=1P(xi |y,x j)

∑y′∈dom(Y) ∑ j∈S P(y′,x j) ·∏m
i=1P(xi |y′,x j)

(4)

2.2 Hidden Näıve Bayes

The basic assumption underlying a SPODE is that
each attribute can only depend on another one (i.e.
the super-parent), even though several other attributes
might actually influence the former. This assump-
tion is mitigated by averaging different SPODEs. By
contrast, in theHidden Näıve Bayes(HNB for short)
model, each attributexi is assumed to be possibly in-
fluenced by a artificial “hidden” parent attribute, cap-
turing the influence that all other attributes may have
on xi . In other words, each attributexi is allowed to
depend on a hidden parentxh

i (∀i = 1, . . . ,m), in addi-
tion to the classy. Therefore, the probabilityP(y,x)
computed by an HNB can be written as:

P(y,x) = P(y) ·
m

∏
i=1

P(xi |y,xh
i ) =

P(y) ·
m

∏
i=1

(
m

∑
j=1, j 6=i

wi j ·P(xi|y,x j )

)
(5)

where∑m
j=1wi, j = 1.

Clearly, the hidden parentxh
i for xi is defined as

a mixture of the weighted influences from all other
attributes.

A key point in the construction of an HNB is
the definition of the weightswi, j (for any i, j in
{1, . . . ,m}). In the approach proposed in (Zhang
et al., 2005), any weightwi, j is computed on the ba-
sis of theConditional Mutual Information IP(xi ,x j |y)
betweenxi andx j , which is defined as follows:

Ip(xi ,x j |y) = ∑
xi ,xj ,y

P(xi ,x j ,y) · log
P(xi ,x j |y)

P(xi |y)P(x j |y)
(6)

More specifically, for anyi, j ∈ {1, . . . ,m}, it is:

wi, j =
Ip(xi ,x j |y)

∑ j=1, j 6=i IP(xi ,x j |y)
(7)

The posterior class-membership probability
P(y|x), for each tuplex ∈ X and each possible class
y∈ dom(Y), can be simply obtained as follows:

P(y|x) = P(y,x)
P(x)

=
P(y,x)

∑y′∈dom(Y) P(y′,x)
=

P(y) ·∏m
i=1

(
∑m

j=1, j 6=i(wi j ·P(xi |y,x j)
)

∑y′∈dom(Y)

(
P(y′) ·∏m

i=1

(
∑m

j=1, j 6=i(wi j ·P(xi |y′,x j )
))

(8)
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3 HIGH-ORDER DEVIANCE
DETECTION MODELS

Our approach to the discovery of anHO-DDM relies on
training multiple base learners on different feature-
based views of a given logL. According to the
processing flow depicted in Figure 1, the approach
founds on training multiple base learners onn differ-
ent feature-based views ofL, produced each accord-
ing to a different list of behavioral patterns (like those
used in (Bose and van der Aalst, 2013; Nguyen et al.,
2014; Cuzzocrea et al., 2015), and in our experimen-
tation).

Let P1, . . . ,Pn these pattern lists andf -
View(L,P1),. . ., f -View(L,Pn) be the feature-based
views ofL that are obtained by encoding the traces in
L according to the patterns inP1, . . . ,Pn, respectively.
More precisely, for eachPi and eachτ ∈ L, the view
f -View(L,Pi) contains a tuple f -View(τ,Pi) that
encodes all the context data ofτ and the projection of
τ onto the patterns ofPi . In particular, the correlation
betweenτ and each patternp j ∈ Pi is computed as the
number of times thatp j occurs inτ. Further details
can be found in (Cuzzocrea et al., 2015)

By applyingk different learning algorithms to all
of these views, a listCL of r = n×k “base” DDMs is
obtained. These multi-view base classifiers are made
undergo a stacking-oriented meta-learning scheme, in
order to integrate all of them into a single higher-level
probabilistic DDM.

For the sake of notation, letPL be a list, of the
same length asCL, of pattern lists such thatPL[q] is
the specific list of patterns that was used to train the
modelCL[q], for anyq∈ {1, . . . , r}.1

Then the meta-learning task is performed on a
meta-views-View(L,CL,PL) of log L that stores, for
each traceτ ∈ L, a tuples-View(τ,CL,PL) having
the same class label asτ, and featuring (as input
attributes) both the predictions of all the DDMs in
CL and the case/context attributes ofτ. From s-
View(L,CL,PL) a probabilistic meta-classifier (one
amongHNB (Zhang et al., 2005) andAODE (Webb
et al., 2005)) is eventually induced, which can com-
bine the predictions of all of the base DDMs inCL.

The final result of this learning procedure is a
multi-view deviance detection model, namedHigh-
Order Deviation Detection Model(HO-DDM), which is
formally defined below.

Definition 1 (HO-DDM) Let L be a log over some
proper trace universeT , andPROP(T ) be the space

1With regard to the the labelling scheme of Figure 1 (and
assuming that the base DDMs appear inCL in the same left-
to-right order as in the figure), it isCL[q] = ci, j iff q= (i −
1)×k+ j andPL[q] = Pi iff i = ⌊(q−1)/k⌋+1.

of all the data attributes that are associated with the
traces ofT . Then, aHigh-Order Deviance Detec-
tion Model (HO-DDM) for L is a triple of the form
H = 〈CL,PL, ĉ〉, where: (i) PL is a list of r pat-
tern lists, for somer ∈ N; (ii) CL is a list of r
(base) DDMs such that, for eachi ∈ {1, . . . , r}, CL[i]
is a DDM, learnt by usingf-View(L,PL[i]) as train-
ing set, encoding a function of the formCL[i] :
PROP(T )×R|Pi | → {0,1}, which maps the proposi-
tional representationf-View(τ,PL[i]) of any traceτ ∈
T to a class label in{0,1}; and(iii) ĉ : PROP(T )×
{0,1}r → [0,1] is a (meta) classifier providing an es-
timate for the probability that any traceτ in T is de-
viant, based on its (“stacking-oriented”) representa-
tion s-View(τ,CL,PL). �
In the current implementation of our approach, the
predictions of all the discovered base DDMs inCL
are combined using a probabilistic classifier ˆc, com-
puted by applying one of the two Bayesian learning
methods described in the previous section. When a
novel traceτ is to be classified, each base modelCL[i]
in the ensemble is applied to the vector-space repre-
sentationf-View(τ,PL[i]) of τ (produced according to
the same listPL[i] of patterns that was used to induce
CL[i]). The predictions made of the models inCL are
then combined into a single prediction by ˆc. Specif-
ically, by providing the latter model with a proposi-
tional view ofτ mixing the original data properties of
τ (stored inprop(τ)) and the predictions assigned to
τ by the base models, the deviance probability score
ĉ(τ) is eventually returned as output. A simple way
to classifyτ as deviant is to check whether ˆc(τ)> 0.5
—in this case toτ is assigned the label “1”. For the
sake of flexibility, we allow for fixing a lower de-
viance probability thresholdγ ∈ (0,1), so that anyτ
is deemed as deviant if and only if ˆc(τ)> γ.

4 DEVIANCE MINING AND
ANALYSIS FRAMEWORK:
ARCHITECTURE AND
IMPLEMENTATION

Figure 2 illustrates a conceptual system architecture
supporting the detection and analysis of deviant pro-
cess instances. Such a system, following a multi-
layer structure, is meant to handle the whole flow of
log-based process analysis, from the discovery of an
HO-DDM out of historical (labeled) log data, to the de-
tection of new deviant process instance, and the in-
spection and analysis of both the discovered mod-
els and detected deviances. The system is composed
of four different layers:Data/Model Repository, De-
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Figure 2: System Architecture forHO-DDM-mine.

viance Mining, Model/Deviance Analysis, andUser
Interface.

Essentially, the bottommost layer is responsible
for storing both historical process logs and differ-
ent kinds of views (namely f-Views and s-Views) ex-
tracted from them, as well as the different kinds of
models that compose ourHO-DDMs. All the process
mining and preprocessing methods implemented in
the Deviance Mining layer are meant to support the
induction of an HO-DDM out of historical log traces,
annotated each with a boolean deviance flag. The dis-
covery of aHO-DDM from a given logL can be accom-
plished with the algorithmHO-DDM-mine proposed in
(Cuzzocrea et al., 2015), which is summarized in the
following. Basically, the algorithm follows a two-
phase computation strategy. In the first phase, a num-
ber of base classifiers are discovered by applying a
given set of inductive learning methods to different
views ofL, obtained each by projecting the traces in
L onto a different space of features. In the second
phase, all of these base classifiers are combined into
a single DDM, based on a meta-learning (stacking)
procedure.

In more detail, the algorithm iterates over the fol-
lowing main steps:

1. Preliminary to the extraction of the patterns, in
case logL is imbalanced, it can be made undergo
an oversampling procedure, where each deviant
trace inL is simply duplicated a certain number
of times.

2. For each pattern family specified by the ana-
lyst (e.g., individual activities, tandem repeats,
maximal repeats(Bose and van der Aalst, 2013;

Nguyen et al., 2014; Cuzzocrea et al., 2015)),
a list of relevant patterns of that family are ex-
tracted fromL. The patterns that can be gener-
ated for each family are selected according to a
frequency-based strategy, where the patterns with
a high enough frequency in the log (or theq top
frequent ones) are kept.

3. For each pattern listP of those that have been
extracted in the previous step, the feature-based
view f-View(L,P) is materialized, and used as
training set for discovering different base DDMs
(using a different base learning algorithm for in-
ducing each of the latter). As a result, a listCL of
base DDMs is obtained, and an associated listPL
of pattern lists (such thatPL[i] is the pattern list
used to trainCL[i], for any positioni in CL).

4. The discovered DDMs inCL are then com-
bined into a single overall meta-classifier using
a stacking strategy. To this end, the “stacked”
view s-View(L,CL,PL) is computed, and a meta-
classifier ˆc is induced from it, by applying one
of the two alternative probabilistic learning meth-
ods (e.g., our customized versions of the methods
AODE or HNB described in Section 2). The dis-
covered combiner must be able to compute, for
any “stacked” tuplex ∈ X, an estimate ˆc(x) of x’s
deviance probability (i.e. ˆc(x) ≈ P(Y = 1|x)) ac-
cording to Eq. 4 or 8 This can be done efficiently
by pre-computing a number of sufficient statistics,
as described later on in this section.

All the discovered DDMs (be them base mod-
els or HO-DDMs) are made available to the
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Model/Deviance Analysis Layer, which can produce
a series of evaluation measures, like those used in
our experimentations to quantitatively assess the va-
lidity of our approach. TheAdvanced Monitoring
module offers deviance-oriented runtime-support ser-
vices, which mainly consist in the notification of alert
messages and in the suggestion of possible counter-
measures to be possibly undertaken when a deviant
process instance is detected. Finally, theDeviance In-
spectionmodule is meant to allow the analyst to in-
spect and study single process instances detected as
(mostly) deviant, and try to understand the causes of
their abnormal behavior.

Details on the discovery of aHO-DDM: statistics
underlying the Bayesian combiners. As explained
previously, the Bayesian combiner ˆc in any HO-DDM
(cf. Def. 1) must return, for each “stacked” tuple
x ∈ X, an estimate ˆc(x) of x’s deviance probability
(i.e. ĉ(x) ≈ P(Y = 1|x)) according to Eq. 4 or 8.
Such an estimate is computed on the basis of the
following (precomputed) statistics, which are all de-
rived froms-View(L,CL,PL) for all i, j ∈ {1, . . . ,m},
xi ∈ dom(Xi), andx j ∈ dom(Xj), and constitute the
backbone of the combiner model ˆc:

• ni is the number of values for attributeXi ;

• D (resp. N) is the number of deviant (resp. nor-
mal) tuples ins-View(L,CL,PL);

• D j (resp.Nj ) is the number of deviant (resp. nor-
mal) tuples ins-View(L,CL,PL) that feature the
valuex j ,

• D ji (resp.Nji ) is the number of deviant (resp. nor-
mal) tuples ins-View(L,CL,PL) that feature both
valuesx j andxi ,

• K is the number of tuples ins-View(L,CL,PL) (all
having a known value of the deviance label),

• K j is the number of tuples ins-View(L,CL,PL) for
which the value of attributeXj is known,

• K ji is the number of tuples ins-View(L,CL,PL)
for which the values of both attributesXi andXj
are known. �
Notice that the counters above are sufficient to

estimate every base probability of the formP(y),
P(y,x j) and P(y,x j ,xi). The latter, in turn, can be
exploited to estimate every probability of the form
P(xi |y) and P(xi |y,x j ) —for each valuesx j and xi
of the attributesXj and Xi (with the former play-
ing as super-parent), fori, j ∈ {1, . . . ,m} and y ∈
{0,1}— that are needed to computeP(y|x) according
to Eq. 4 and 8. To make the estimation more robust,
these base probabilities are computed by using the
Laplace estimationmethod (Webb et al., 2005; Zhang

et al., 2005), as specified in the following:P(Y =

1) = D+1
K+2; P(Y = 1,x j) =

D j+1
K j+2·n j

; P(Y = 1,x j ,xi) =
D ji+1

K ji+2·ni ·n j
; P(Y = 0) = N+1

K+2; P(Y = 0,x j) =
Nj+1

K j+2·n j
;

P(Y = 0,x j ,xi) =
Nji+1

K ji+2·ni ·n j
; P(xi |Y = 1) = P(Y =

1,xi)/P(Y = 1); P(xi |Y = 0) = P(Y = 0,xi)/P(Y =
0); P(xi |Y = 1,x j) = P(Y = 1,x j ,xi)/P(Y = 1,x j);
P(xi |Y = 0,x j) = P(Y = 0,x j ,xi)/P(Y = 0,x j).

5 EXPERIMENTAL ANALYSIS

The capability of our approach to effectively recog-
nize deviant behaviors has been assessed by conduct-
ing a series of tests on a real-life log, storing infor-
mation on the clinical pathways of gynecologic can-
cer patients within a Dutch hospital. This log was
made available as a benchmark dataset for the2011
BPI Challenge(van Dongen, 2011). Details on these
datasets, omitted here for the sake of space, can be
found in (Cuzzocrea et al., 2015).

Different evaluation metrics exist in the literature
for testing the effectiveness of classification models
in the presence of a rare class. Carefully choosing
these metrics is important since the usage of metrics
that do not adequately account for the rarity of the
minority class may easily lead to overestimating the
accuracy of a classifier. Specifically, we used four
metrics widely used over imbalanced data, i.e.area
under the ROC curve(AUC) (Bradley, 1997), theG-
mean(Kubat et al., 1997),Precision(P), andRecall
(R) (Buckland and Gey, 1994).

5.1 Settings

Testing our approach requires two key settings: (1)
the kind of patterns used to project the log traces onto
a vector space, and (2) the classifier-induction meth-
ods employed to derive, from such a feature-based
representation of the traces, the base and combined
models that compose the overallHO-DDM.

As concerns the former point, as a first family of
behavioral patterns, denoted byIA (i.e. individual ac-
tivities), we simply considered all the process activi-
ties in their own. In this case, for any trace, we regard
each activity, saya, as an additional (pattern-oriented)
feature of the trace, storing the number of times thata
occurs in the trace. In order to produce more sophis-
ticated representations of traces’ behaviors, we also
considered (as done in (Bose and van der Aalst, 2013;
Nguyen et al., 2014)) all the sequence-based patterns
possibly capturing control-flow constructs (e.g., sub-
processes, loops, and parallelism) ruling the behav-
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Table 1: Prediction results obtained on theBPIC11CC log when using different configurations of the (single DDM) competitor
method (Nguyen et al., 2014). All the values were computed byaveraging the results of 5 trials, performed according to a 5
fold cross-validation scheme. For each metrics, the best outcome is reported in bold.

Alg. Patterns AUC G-Mean R P AvgRank AvgRank5%

IBk

{IA.AMR} 0.771±0.019 0.538±0.049 0.321±0.062 0.458±0.106 9.00 2.75
{IA.ATR} 0.782±0.024 0.566±0.062 0.362±0.092 0.476±0.108 4.25 1.50
{IA.MR} 0.779±0.020 0.538±0.050 0.321±0.062 0.456±0.097 8.25 2.75
{IA.TR} 0.772±0.028 0.545±0.111 0.351±0.151 0.411±0.076 9.00 2.25
{IA} 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084 1.75 1.00

ANN

{IA.AMR} 0.787±0.023 0.451±0.066 0.222±0.076 0.468±0.146 8.75 3.75
{IA.ATR} 0.780±0.020 0.470±0.124 0.261±0.172 0.409±0.144 10.50 3.50
{IA.MR} 0.777±0.026 0.523±0.201 0.360±0.271 0.412±0.082 8.75 2.25
{IA.TR} 0.795±0.038 0.512±0.182 0.339±0.227 0.417±0.049 8.00 2.75
{IA} 0.779±0.037 0.426±0.032 0.198±0.028 0.359±0.107 12.75 4.75

J48

{IA.AMR} 0.740±0.066 0.587±0.099 0.397±0.139 0.459±0.082 6.50 1.50
{IA.ATR} 0.768±0.019 0.570±0.098 0.378±0.134 0.425±0.070 7.00 1.75
{IA.MR} 0.746±0.069 0.599±0.090 0.412±0.128 0.459±0.086 5.00 1.50
{IA.TR} 0.706±0.062 0.458±0.100 0.244±0.105 0.370±0.091 13.75 4.50
{IA} 0.757±0.044 0.561±0.103 0.359±0.138 0.496±0.042 6.50 2.00

MAX 0.798±0.034 0.599±0.090 0.412±0.128 0.496±0.042 1.75 1.00

ior of the analyzed process:tandem repeats(TR), al-
phabet tandem repeats(ATR), maximal repeats(MR),
andalphabet maximal repeats(AMR). When comput-
ing the f-View representation of a trace, we turned
each of these patterns as a non negative integer at-
tribute, storing the number of times the respective pat-
tern occurred in the trace.

Similarly to (Nguyen et al., 2014), we considered
the following heterogenous families of patterns:(i)
{IA}, i.e. individual activities used alone (produc-
ing a bag-of-activity representation of traces’ struc-
ture);(ii) {IA,TR}, i.e. the combination of individual
activities and of tandem repeats;(iii) {IA,ATR}, i.e.
individual activities combined with alphabet tandem
repeats;(iv) {IA,MR}, i.e. individual activities plus
maximal repeats;(v) {IA,AMR}, i.e. individual activi-
ties plus alphabet maximal repeats.

For each pattern family, we used only a selection
of those patterns that most frequently occur in the
log (namely, 100 patterns of type{IA} and 250 pat-
terns for each other pattern family). In addition, when
HO-DDM-mine exploited the re-sampling to mitigate
the skewness in the log, all the deviant (i.e. positive)
traces in it were duplicated until a deviant-normal ra-
tio of approximately 1:2 is reached.

As to the induction of base DDMs, we resorted
to the following methods: the decision-tree learn-
ing methodJ48(Quinlan, 1993); thek-NN procedure
IBk (with k= 10); the multi-layer perception method
(named hereinafterANN) (Zhang, 2000); theLibSVM
Support-Vector-Machines classifier (Cortes and Vap-
nik, 1995) with an RDF kernel; and the rule-base clas-
sifier JRip(Witten and Frank, 2005).

For the induction of a probabilistic combiner
model, we tested two alternative settings of algorithm
HO-DDM-mine: one using anAODE-based classifier,
and the other using anHNB-based classifier.

5.2 Test Results

A First Look a the Competitor’s Results. Since
the approach in (Nguyen et al., 2014) consists in ap-
plying each learning method to each distinct view of
the log (generated according to one of the pattern fam-
ilies described in the previous subsection), it produces
the 15 independent DDM models shown in Table 1
—namely, J48{IA}, . . ., J48{IA+AMR}, IBk{IA}, . . .,
IBk{IA+AMR}, ANN{IA}, . . ., ANN{IA+AMR}—which
should be compared with the ones discovered by our
approach. However, it is easy to notice that the out-
comes in Table 1 are almost all very close to one an-
other, and no one single DDM can be clearly declared
winning over its competitors in all the quality metrics
simultaneously. For instance, theAUC value for the
IBK{IA} model is 0.798, while that forANN{IA+TR} is
0.795 —this difference of less than 5% in their val-
ues reveals that they are practically equivalents to one
another in terms of AUC performances. The same
holds for theG-Meanof J48{IA+MR} (0.599), which
is very close again to that ofIBk{IA} (0.597). Simi-
lar considerations can be easily spotted as well for the
remaining metrics. In such a situation, choosing the
most suitable competitor to run againstHO-DDM-mine
is not a straightforward task.
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Table 2: Prediction results on theBPIC11CC log by HO-DDM-mine and selected configurations of the competitor
method (Nguyen et al., 2014). All the values were computed byaveraging the results of 5 trials, performed according to
a 5 fold cross-validation scheme. For each metrics, the bestoutcome is reported in bold.

Method Bayesian
Combiner Setting AUC G-Mean Recall Precision

Ours

HNB
RES+MORE LEARNERS 0.857±0.051 0.740±0.018 0.606±0.041 0.745±0.047

RES 0.822±0.040 0.726±0.030 0.592±0.059 0.717±0.044
NO RES 0.817±0.024 0.652±0.035 0.477±0.055 0.505±0.077

AODE
RES+MORE LEARNERS 0.853±0.053 0.736±0.022 0.598±0.042 0.742±0.049

RES 0.819±0.044 0.722±0.047 0.584±0.080 0.715±0.047
NO RES 0.813±0.026 0.648±0.039 0.469±0.056 0.502±0.082

(Nguyen et
al., 2014)

-
BEST OF BEST 0.798±0.034 0.599±0.090 0.412±0.128 0.496±0.042
BEST AVG RANK 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084

BEST AVG RANK 5% 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084

Summarizing the Competitor’s Achievements. In
order to enable an easier comparison of our approach
to the alternative settings of the competitor approach
presented above, we devised a method for summa-
rizing the performances of the latter. More pre-
cisely, we defined three different criteria for choos-
ing the best achievement of the competitor ap-
proach: (i) BEST OF BEST, (ii) BEST AVG RANK, and
(iii) BEST AVG RANK 5%.

As to theBEST OF BEST row, it simply reports, for
each evaluation method, the best value (i.e. the max-
imum) obtained by all of the different configurations
of the approach in (Nguyen et al., 2014) in each sin-
gle metric. To make clear which values are chosen,
the best outcome in each column (i.e. performance
metric) of Table 1 have been marked in bold. For the
reader’ convenience, these values are also explicitly
reported in the row with theMAX label at the bottom
of the same table. Clearly, it is important to point out
that this row provides an overestimated evaluation of
the competitor approach, which may not correspond
to any actual configuration of it. In a sense, this row
is a sort of upper bound for the performance of all the
considered configurations of the competitor.

Thus, in order to provide a more realistic (yet
concise) term of comparison, we defined a sec-
ond criterion for a further competitor, denoted by
BEST AVG RANK, aiming at meaningfully aggregating
all the results obtained with the approach of (Nguyen
et al., 2014) and reported in Table 1. The way this
competitor is actually determined is explained in the
following.

Let C be the set of all DDM models discovered
by the tested methods, andM = {AUC,G-Mean,R,P}
be the set of metrics considered in our evaluation set-
ting. For any modelc ∈ C and any metricsm∈ M,
let score(c,m) be the value returned by evaluatingm
againstc. Based on these values, we ranked the mod-
els inC over each metrics. More clearly,rank(c,m) =

1 (resp.rank(c,m) = k) iff c is the best (k-th best) per-
former according to metricsm. Considering all met-
rics equally important for assessing the quality of a
DDM, we computed an overall average ranking score
for each modelc∈C as follows:

AvgRank(c) = .25× (rank(c,AUC)+

+ rank(c,G−Mean)+ rank(c,R)+ rank(c,P))

The BEST AVG RANK model, selected among all
the other models discovered by (using different con-
figurations of) the approach of (Nguyen et al., 2014),
is the one reaching the highest value of the overall
ranking scoreAvgRank.

Example 1. Let us consider the modelIBK{IA}, dis-
covered with methodIBk on individual-activities fea-
tures (i.e., by using only the familyIA of patterns)
According to the values in Table 1, it can be easily
noted thatrank(IBK{IA},AUC) = 1 sinceIBK{IA} is
scored higher than any other model on the AUC met-
ric (i.e. it achieved the maximum score over the AUC
column). By converse,rank(IBK{IA},G-Mean) = 2,
since IBK{IA} is the second best performer accord-
ing to theG-Meanmetric —the same holds also for
the metricsR and P. As a final result, we obtain
the overall rank-oriented scoreAvgRank(IBK{IA}) =
.25× (1+ 2+ 2+ 2) = 0.25× 7 = 1.75. According
to this ranking criterion, the model returned byIBk
on theIA-based log view is deemed as the best re-
sult of the approach in (Nguyen et al., 2014), namely
BEST AVG RANK, with an average rank of 1.75. �

For the sake of comparison, the row of Table 2
marked asBEST AVG RANK reports the quality mea-
sures received by this model, as a second term of com-
parison for our approach.

The way theBEST AVG RANK competitor has been
computed might be susceptible to criticisms due
to numeric approximation problems possibly plagu-
ing very close values. Indeed, it may happen that

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

170



Table 3: Prediction results on theBPIC11CC log by HO-DDM-mine (in the configurationRES+MORE LEARNERS) when using
different learning algorithms (as an alternative to ourAODE-based andHNB-based Bayesian meta-classifiers) for the discovery
of a combiner model. All the values were computed by averaging the results of 5 trials, performed according to a 5 fold
cross-validation scheme. For each metrics, the best outcome is reported in bold.

Meta-algorithm AUC G-Mean R P
HNB 0.857±0.051 0.740±0.018 0.606±0.041 0.745±0.047
AODE 0.853±0.053 0.736±0.022 0.598±0.042 0.742±0.049
AdaBoostM1 0.811±0.056 0.719±0.039 0.579±0.057 0.710±0.070
J48 0.748±0.057 0.724±0.048 0.584±0.065 0.718±0.071
JRip 0.715±0.029 0.693±0.033 0.543±0.040 0.676±0.061
Logistic 0.789±0.052 0.712±0.033 0.570±0.049 0.696±0.042

two models have performance scores so much close
among them (i.e. under a certain approximation
thresholdz) that could be retained unfair assign-
ing them different ranks. In order to preventively
cope with such potential concerns, we considered a
third evaluation strategy accounting as equivalent two
modelsc1,c2∈ C w.r.t. a given metricm∈ M if the
difference between their values falls below a specified
thresholdz. More formally, this can be stated as in the
following:

rank(c1,m) = rank(c2,m) iff

|m(c1)−m(c2)| ≤ z×min(m(c1),m(c2))

As a consequence of the definition above, a new
rankAvgRankz% can be easily defined. Specifically,
in our setting we considered as a reasonable approxi-
mation a threshold of 5% (i.e.z= .05), and then we
selected the competitorBEST AVG RANK 5% (cf. last
row of Table 2) according to the indexAvgRank5%.

Example 2. Let us focus again on theIBkIA
model, and letz = .05 be the threshold value
used for alleviating the numeric approximation prob-
lem in our calculus. Based on Table 1, it re-
sults thatrank(IBK{IA},AUC) = 1, as IBK{IA} per-
forms better than any other approach over the
metric AUC. However, under this new threshold-
based setting,rank(IBK{IA},G-Mean) = 1, although
the best performer w.r.t. the metricG-Mean
is J48{IA,MR}. Indeed, IBK{IA} and J48{IA,MR}
are ranked equally due to the fact that|G-
Mean(IBK{IA}) − G-Mean(J48{IA,MR})| = |0.597−
0.599| = .002 ≤ .05× min(0.597,0.599) = .05×
0.597 = .03. Similar considerations apply for
metrics R and P. Therefore, we have that
AvgRank5%(IBK{IA}) = .25× (1 + 1 + 1 + 1) =
0.25× 4 = 1.00. As a consequence,IBK{IA} is the
best performer according to criterionAvgRank5%,
i.e. the BEST AVG RANK 5% model. Please, notice
that, by pure chance, it incidentally coincides with the
BEST AVG RANK model. �

Clearly, by the way it is computed, the perfor-
mances of our competitor in itsBEST OF BEST setting

are always better than that in both theBEST AVG RANK
and BEST AVG RANK 5% ones. Therefore, the com-
parative analysis carried out in the following is
focused on the (“optimistic” for the competitor)
BEST OF BEST scenario.

Comparing HO-DDM-mine’s Results with the Best
Ones of the Competitor. Table 2 reports the results
obtained by algorithmHO-DDM-mine, compared with
those of the proposed in (Nguyen et al., 2014). For the
sake of comparison, we used the same families of pat-
terns and the same (or a slightly wider) set of classifi-
cation methods as in (Nguyen et al., 2014), and turned
the probabilistic classifications ofHO-DDM-mine into
deterministic ones, using a fixed deviance threshold
γ = 0.5.

Specifically, as far as concernsHO-DDM-mine, we
tested three different configurations of it:
• NO RES, where no resampling procedure is applied

to the transformed log (in order to reduce the class
imbalance ratio), and the same set of (base) induc-
tive learning methods as in (Nguyen et al., 2014)
(namely J48, IBk, ANN) are used;

• RES, using our basic oversampling scheme and the
same battery of base classifiers as in the previous
configuration (and in (Nguyen et al., 2014));

• RES+MORE LEARNERS, which uses the same over-
sampling setting as in configurationRES, while
exploiting the classifier-induction methods imple-
mented in our prototype system (i.e. J48, IBk,
ANN, LibSVM, JRip).
The three bottommost rows in the table report, as

a term of comparison, the best scores obtained by
all the settings of the competitor, and computed ac-
cording to the three criteria (namely,BEST OF BEST,
BEST AVG RANK, and BEST AVG RANK 5%) explained
in the previous paragraph.

From the figures in Table 2, we can draw several
interesting observations. First of all,HO-DDM-mine
(irrespective of the kind of probabilistic combiner
adopted), even in the basicNO RES configuration, per-
forms always better (over all the quality metrics) than
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the competitor (Nguyen et al., 2014), whatever con-
figuration is used for the latter. This confirms the va-
lidity of using an ensemble-learning approach to the
deviance detection problem. In particular, it is worth
noticing that when allowed to induce an HNB com-
biner, algorithmHO-DDM-mine achieves better perfor-
mances than its AODE-based version, despite the lat-
ter method make use of an ensemble of SPODEs (see
Section 2.1) while HNB only adopts a single Bayesian
model. This likely descends from the capability of
HNB to effectively capture the inherent dependencies
between the attributes in ours-Viewrepresentation.

Performing a finer grain analysis, we can notice
that the gain achieved by the HNB-based version of
HO-DDM-mine over the approach in (Nguyen et al.,
2014) in its basic configuration without resampling
becomes even more marked when using a basic over-
sampling procedure (i.e. in theRES configuration).
Specifically, even though the increment in terms of
AUC is moderate (3.00%), we can observe a signif-
icant improvement for the metricG-Mean(21.20%),
and a noticeable 44.56% (resp. 43.69%) achievement
in terms of precision (resp. recall).

Further improvement is obtained by our approach
(still equipped with HNB) when letting it use both the
oversampling procedure and a broader range of base
classifiers (i.e. configurationRES+MORE LEARNERS)
—actually, we only extended the learning methods
used by our competitor with the insertion ofLibSVM
andJRip. Indeed, in this case, a gain of 7.39% (resp.
23.54%, 50.20%, 47.09%) is obtained in terms of
AUC (resp.G-Mean, precision, recall) w.r.t. the over-
estimatedBEST OF BEST configuration.

Notably, a similar trend in the results can be found
for the version ofHO-DDM-mine adopting AODE as
combiner, and then it does not require any further sup-
plementary discussion.

In summary, it seems that the combination of
an oversampling method with our ensemble-learning
strategy helps obtain higher improvements (w.r.t. the
competitor supervised deviance-detection approach)
than exploiting a wider range of base classifiers.

Benefits of using Bayesian Combiners. In a fur-
ther series of tests, we considered some variants of
algorithmHO-DDM-mine where we tried the follow-
ing meta-learning methods (for inducing the com-
biner model ˆc of anyHO-DDM) as an alternative to its
native Bayesian classifiers:AdaBoostM1, J48, JRip,
Logistic. The results of this experimentation are
reported in Table 3. It is clear that both kinds of
Bayesian combiner allow to achieve superior perfor-
mances, over all the quality metrics, than these alter-
native methods. This is likely due to their capabil-

ity of obtaining accurate and robust estimates of the
class membership probability, despite the high degree
of dependence between the attributes in the stacked
view given as input to it.

6 CONCLUSION

In this paper, we have extended a previous proposal
where an innovative ensemble-learning framework
for mining business process deviances that exploits
multi-view learning has been provided. Relevant con-
tributions, which clearly confirm the flexibility, the re-
liability and the effectiveness of the general deviance
detection framework, respectively, have been intro-
duced and experimentally assessed via a wide and
comprehensive experimental campaign. Notice that
our multi-view learning approach is neatly different
from many others in the literature that do not follow
an ensemble-based scheme (such as, e.g., (Blum and
Mitchell, 1998; Nigam and Ghani, 2000; Wang and
Zhou, 2010)), and somewhat rely on the fact that the
different data views are (more or less) conditionally
independent of one another given the label —an as-
sumption that does not hold in the setting considered
in this work, where the views are likely to feature high
levels of redundancy and of inter-dependence.

As future work, we mainly plan to investigate
on the combination of our ensemble learning ap-
proach with log-oriented clustering methods (like
those in (Folino et al., 2014; Bose and van der Aalst,
2010)), as well as to apply the framework to real-life
projects, in order to derive new test-beds, new require-
ments, and new solutions. Also, to provide effective-
ness, we aim at studying the integration of intelligent
data processing techniques (e.g., (Cuzzocrea and Ma-
trangolo, 2004; Cuzzocrea, 2006; Cuzzocrea et al.,
2009)).
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