
Evaluating Knowledge Representations for Program Characterization

João Fabrı́cio Filho1,2, Luis Gustavo Araujo Rodriguez1 and Anderson Faustino da Silva1

1Universidade Estadual de Maringá, Maringá, PR, Brazil
2Universidade Tecnológica Federal do Paraná, Campo Mourão, PR, Brazil

Keywords: Knowledge Representation, Program Representation, Reasoning System, Compiler, Code Generation.

Abstract: Knowledge representation attempts to organize the knowledge of a context in order for automated systems
to utilize it to solve complex problems. Among several difficult problems, one worth mentioning is called
code-generation, which is undecidable due to its complexity. A technique to mitigate this problem is to
represent the knowledge and use an automatic reasoning system to infer an acceptable solution. This article
evaluates knowledge representations for program characterization for the context of code-generation systems.
The experimental results prove that program Numerical Features as knowledge representation can achieve
85% near to the best possible results. Furthermore, such results demonstrate that an automatic code-generating
system, which uses this knowledge representation is capable to obtain performance better than others code-
generating systems.

1 INTRODUCTION

Knowledge representation is a field of artificial intel-
ligence dedicated to represent the knowledge of a spe-
cific context in order for it to be utilized to create for-
malisms and, thus, solve complex problems.

A complex problem, worth mentioning in the
computer science field, is to generate good target
code. This is due primarily for the characteristics of
the source program (Aho et al., 2006).

A technique to mitigate the said problem is to rep-
resent the knowledge of the source program, and de-
sign a formalism that can be utilized by automatic rea-
soning systems to infer an acceptable solution for the
code-generation problem. However, automated sys-
tems that attempt to mitigate this problem (de Lima
et al., 2013; Tartara and Reghizzi, 2013; Queiroz Ju-
nior and da Silva, 2015) do not validate the utilized
formalism.

This article aims to find a good knowledge rep-
resentation that can be used to mitigate the code-
generation problem.

The main contributions of this article are: (1) the
description of knowledge representations to charac-
terize programs; (2) the presentation of a technique to
evaluate such representations; and (3) the demonstra-
tion of the use of a good representation.

The results prove that the Numerical Features rep-
resentation is capable to obtain results 85% near to

the best possible results of a knowledge base. Fur-
thermore, when this representation is utilized by a
code-generating system, it is able to obtain a target
code with better performance than those acquired by
Best10 andGA10 techniques.

2 CODE-GENERATING SYSTEM

The purpose of a code-generating system is to pro-
duce target code for a specific hardware architecture,
through a source code (Aho et al., 2006). This pro-
cess, which is divided into several phases, applies di-
verse transformations to the source code in order to
improve the quality of the target code. However, find-
ing a good transformation sequence for a particular
program is a complex task, especially due to the size
of the search space.

A way to mitigate this problem is to extract knowl-
edge from the code-generating system and build a
formalism capable of supporting the selection of the
transformation sequence for the respective program.

A simple technique to extract knowledge is to ap-
ply a training phase for the system, in which various
programs are compiled with different transformation
sequences. After this process, it is possible to extract
good sequences and their respective programs.

Based on this formalism (good transformation se-

582
Filho, J., Rodriguez, L. and Silva, A.
Evaluating Knowledge Representations for Program Characterization.
DOI: 10.5220/0006333605820590
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 582-590
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

quences and their respective programs), to implement
an efficient code-generation turns into a problem of
identifying similar programs.

3 PROGRAM
CHARACTERIZATION

Computer programs can be represented by dynamic or
static characteristics, which assist in parameterizing
the code-generating system. Dynamic characteristics
describe the program behavior in regards to its execu-
tion. On the other hand, static characteristics describe
the algorithmic structures of the program.

The appeal of dynamic characteristics is that it
considers both the program and hardware characteris-
tics. However, this provides a disadvantage due to be-
ing platform-dependent and, thus, incurring the need
for program execution.

Alternatively, static characteristics are platform-
independent and do not require program execution.
However, such representation does not consider the
program-input data, which is an element that can alter
the behavior and consequently cause parameter alter-
ations of the code-generating systems.

Among the program representations presented in
the literature, this article evaluates the following:

• Dynamic

1. Performance Counters (PC): are characteris-
tics resulting from the program execution and
consists in the hardware performance counters
that are available. Various works utilizedPC
as a program-representation scheme (Cavazos
et al., 2007; de Lima et al., 2013; Queiroz Ju-
nior and da Silva, 2015). This article specifi-
cally evaluates the characteristics described in
(de Lima et al., 2013) and (Queiroz Junior and
da Silva, 2015).

• Static

1. Compilation Data (CD): are characteristics that
describe the relationships between the program
entities, defined by both the intermediate rep-
resentation utilized by the code-generating sys-
tem, as well as the respective hardware archi-
tecture. These characteristics was proposed
by Queiroz and da Silva (Queiroz Junior and
da Silva, 2015), and their usage is limit by the
data provided by the compiler even though a di-
rect relationship with the source code exists.

2. Numerical Features (NF): are characteristics
extracted from the relationships between pro-
gram entities, which are defined by the speci-
ficities of the programming languages. They

were proposed by Namolaruet al. (Namolaru
et al., 2010) and were systematically produced
experimentally. Namolaruet al. proved their
influence in parameterizing code-generating
systems.

In addition to these representations, this paper
proposes a symbolic representation, similar to aDNA,
in which each intermediate language instruction, used
by the code-generating system, is represented by a
gene. This is an extension of the representation pro-
posed by Sanches and Cardoso (Sanches and Car-
doso, 2010). The advantage of a representation sim-
ilar to aDNA is that it captures all program structures
while it encodes all program instructions.

PC are extracted with tools that analyze the pro-
gram execution; however,CD, NF and DNA are ex-
tracted by the code-generating system.

4 REACTIONS

This article proposes the use ofreactionsto identify
the similarity between two programs.

Hypothesis.Two or more programs are similar if they
react identically when applied the same transforma-
tion sequences.

Validation. It is possible to obtain performance
curves with the same behavior, for programs Px and
Py, applying the same transformation sequences. This
indicates that both programs react identically, having
a high degree of similarity. A simple method to prove
this theorem is to: (1) compile both programs with the
same sequences; (2) plot the performance graph for
both programs; and (3) measure the curve behavior.
As shown in Figure 1, the programsADPCM C andN-
BODY are similar, because they possess a comparable
behavior in regards to reactions, unlike the program
ACKERMANN, which reacts differently. This pattern
always occurs for programs that are similar or not.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

1

2

3

sequences

sp
ee

du
p

adpcm_c
n−body
ackermann

Figure 1: Performance over a compilation without using
transformations.

Naturally, there is a need for a methodology to
identify similar programs based on their characteris-

Evaluating Knowledge Representations for Program Characterization

583

tics. Thus, based on the premise thatreactionsare
a good strategy to identify similarities, a requirement
emerges to specify a similarity coefficient that, given
the characteristics of two programs, determines if they
react identically.

4.1 Coefficients to Identify Programs
with Similar Reactions

This article uses the coefficients applied in the works
of Lima et al. (de Lima et al., 2013) and Queiroz
and da Silva (Queiroz Junior and da Silva, 2015) to
identify similar programs. These coefficients are the
following:

Cosine. In this coefficient, the similarity coefficient
betweenPx andPy is obtained by:

sim(Px,Py) =

M
∑

w=1
(Pxw×Pyw)

√
M
∑

w=1
(Pxw)2×

√
M
∑

w=1
(Pyw)2

Euclidean. In this coefficient, the similarity coeffi-
cient betweenPx andPy is obtained by:

sim(Px,Py) =
1√

M
∑

w=1
(Pxw−Pyw)2

Jaccard. In this coefficient, the similarity coefficient
betweenPx ePy is obtained through:

sim(Px,Py) =
1
M

M

∑
w=1

min(Pxw,Pyw)

max(Pxw,Pyw)

In each coefficient,M is the number of characteris-
tics.

In addition to these 3 coefficients proposed in the
literature, this article evaluates two other coefficients:

SVM. Support Vector Machine.

NW. This article utilizes the Needleman-Wunsch al-
gorithm (Needleman and Wunsch, 1970) to clas-
sify programs represented asDNA. Therefore, to
determine a similar reaction between two pro-
grams, the score from the alignment between two
DNAs is evaluated.

Thus, Cosine (CO), Euclidean (EU), Jaccard
(JA) andSVM are coefficients that estimate the simi-
larity between programs represented byPC, CD or NF.
While,NW is the coefficient that estimate the similarity
between programs represented byDNA.

4.2 A Methodology to Find the Best
Coefficient

The similarity coefficient that is able to identify if two
performance curves are similar, based on their behav-
ior and amplitude, is considered to be the best. The
behavior refers to the gain in program performance, in
other words, if there wasspeedupor slowdown. The
amplitude refers to how much gain or loss there was
in performance.

It is possible to describe the behavior of the pro-
gramPx, as shown in Table 1, based on the generated-
code analysis withN different transformation se-
quences.

Table 1: Behavior ofPx, when compiled with sequences
from S0 to S9.

S0 S1 S2 ... S9
S0 1 T0/T1 T0/T2 ... T0/T9
S1 T1/T0 1 T1/T2 ... T1/T9
S2 T2/T0 T2/T1 1 ... T2/T9
... 1 ...
S9 T9/T0 T9/T1 T9/T2 ... 1

In Table 1, the linei represents the performance
of the sequences, whereSi is the baseline, andTi/Tj
is the (speedupor slowdown) performance.

There exists a possibility to verify if there was a
gain or loss in performance for the inputsi j . This
can be seen in the tables corresponding toPx andPy.
The methodology consists in using the upper part of
the diagonal to measure the behavior. Thus, for each
pair (sx,sy) of performances compared, the function
Coe f f(sx,sy) measures the resemblance between the
behavior and amplitudes ofspeedupsreferring tosx
andsy, as follows:

Coe f f(sx , sy) =

{
min(sx,sy)
max(sx,sy)

, if ¬(sx > 1⊕ sy > 1)

0, otherwise

SinceN transformation sequences are considered,
the best coefficient is the one that obtains the highest
value ofMCoeff, which is given by:

MCoe f f=
N−1

∑
i=0

N−1

∑
j=i+1

Coe f f(si j , s′i j)

where,si j ands′i j are thespeedupsobtained byPx
andPy, respectively.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

584

5 A DATABASE OF
TRANSFORMATION
SEQUENCES

In order to evaluatereactionsbetween two programs
and also the performance of knowledge representa-
tions for program characterization, it is necessary to
create a database of transformation sequences. Such
process is performed as follows.

Code-generating System.The LLVM 3.7.1 compiler
infrastructure (Lattner, 2017).

Transformations. The creation of a transformation
sequence evaluates 133 transformations, which
are evailable inLLVM.

Training Programs. The training programs are
composed of programs taken fromLLVM’s
test-suite (Lattner, 2017), and The Computer
Language Benchmarks Game (Gouy, 2017).
These programs are composed of a single source
code, and have a short execution time. Such
programs were used by Purini and Jain’s work
(Purini and Jain, 2013).

Reducing the Search Space.This article uses a five-
step process:

1. Reduce the search space using a genetic algo-
rithm (GA);

2. Extract the best transformation sequences from
each training program;

3. Add to this transformation sequences, the 10
good sequences founded by Purini and Jain
(Purini and Jain, 2013);

4. Evaluate each training program using the
62+10 sequences; and

5. Store into the database for each program the
pair: <training program, good transformation
sequences>. A good transformation sequence
is that provides to the program a lower execu-
tion time than the bestLLVM level of transfor-
mation (-O3).

TheGA consists in randomly generating an initial
population, which will be evolved in an iterative
process. Such process involves choosing parents;
applying genetic operators; evaluating new indi-
viduals; and finally a reinsertion operation decid-
ing which individuals will compose the new gen-
eration. This iterative process is performed until a
stopping criterion is reached.
The first generation is composed of individuals
that are generated by a uniform sampling of the
transformation space. Evolving a population in-
cludes the application of two genetic operators:

crossover, and mutation. The first operator has
a probability of 60% for creating a new individ-
ual. In this case, a tournament strategy (Tour= 5)
selects the parents. The second operator, muta-
tion, has a probability of 40% for transforming an
individual. In addition, each individual has an ar-
bitrary initial length, which can ranges from 1 to
|Trans f ormation Space|. Thus, the crossover op-
erator can be applied to individuals of different
lengths. In this case, the length of the new indi-
vidual is the average of its parents. Four types of
mutation operations were used:

1. Insert a new transformation into a random
point;

2. Remove an transformation from a random
point;

3. Exchange two transformations from random
points; and

4. Change one transformation in a random point.

Both operators have the same probability of oc-
currence, besides only one mutation is applied
over the individual selected to be transformed.
This iterative process uses elitism, which main-
tains the best individual in the next generation.
Furthermore, it runs over 100 generations and 50
individuals, and finishes whether the standard de-
viation of the current fitness score is less than
0.01, or the best fitness score does not change in
three consecutive generations.
The strategy used to reduce the search space is
similar to the strategy proposed by Martinset al.
(Martins et al., 2016) and Purini and Jain (Purini
and Jain, 2013).

6 EVALUATING KNOWLEDGE
REPRESENTATIONS

The following sections describe the evaluations per-
formed in order to determine the best coefficient and
strategy to characterize programs.

6.1 Experimental Setup

Architecture. Intel(R) Core(TM) i7-3770 CPU
3.4GHz with 8GB RAM running the Ubuntu
14.04 x64 operating system with kernel 4.2.0-41.

Compiler. The LLVM 3.7.1 compiler infrastructure
(Lattner, 2017).

Feature Extraction. PC are extracted with thePAPI
tool. CD are characteristics provided by theLLVM
infrastructure. Two extractor modules, coupled

Evaluating Knowledge Representations for Program Characterization

585

with LLVM, were implemented in order to extract
NF andDNA during the compilation process, from
LLVM intermediate representation.

Representing Programs.This article examines two
different approaches to represent programs: (1)
hot functions (HOT); and (2) full programs (FULL).
Hot functions have a high execution cost, meaning
they possess more time consumption in regards to
the program execution. The similarity coefficient
examines programs based on their hot functions
and determines whether they are similar or not.
The algorithm proposed by Wu and Larus (Wu
and Larus, 1994) was performed to identify the
hot functions.

SVM. TheSKLEARN library was utilized for this co-
efficient (Pedregosa et al., 2011).

Programs. The test phase consists of programs that
belong to theCBENCH benchmark (Fursin, 2017).

Transformation Sequences.This article utilizes 75
sequences to evaluatereactions: 62 founded by
the GA during the process of reducing the search
space; the 10 sequences founded by Purini and
Jain (Purini and Jain, 2013); and the 3 sequences
provided byLLVM (-O1, -O2, and-O3).

Runtime. Each program was executed 100 times in
order to ensure accurate results. In addition, 20%
of the results were discarded: 10% of the best and
10% of the worst. So, the geometric average run-
time is calculated based on 80% of the data.

6.2 Results and Discussions

Analyzing the entire database, the value ofbMCoe f f
represent the best value that can be achieved by
MCoe f f to available training programs. Table 2
presents the results obtained by the evaluated strate-
gies, whereWV, GM andBV refer to the distance for the
best possible value (MCoe f f

bMCoe f f).
The best value ofGM was obtained byFULL-NF

with EU. Other strategies, lost up to 17.65% of per-
formance.

It is worth highlighting the unexpected perfor-
mance forPC, which was the only dynamic data eval-
uated. In fact,PC had the lowest average among all
strategies. The best value was up to 12.94% worse
thanNF.

NF showed consistent results in regards to the
four coefficients, having the smallest variance; 9.17×
10−5, and 10.00× 10−5, for HOT and FULL respec-
tively. Alternatively, other strategies obtained a vari-
ance of 86.67×10−5, and 342.50×10−5, for PC and
CD respectively.

Table 2: Obtained results (WV: worst value;GM: geometric
mean; BV: best value;PR number of perfect results;BR:
number of best results).

Strategy WV GM BV PR BR

DNA NW 0.63 0.82 1.00 1 5

CO 0.58 0.81 1.00 2 4

HOT NF EU 0.58 0.80 1.00 1 3

JA 0.60 0.82 1.00 1 3

SVM 0.58 0.80 1.00 1 3

CO 0.60 0.79 1.00 1 3

PC EU 0.60 0.75 1.00 1 1

JA 0.62 0.80 1.00 1 3

SVM 0.60 0.74 1.00 1 1

CO 0.52 0.81 1.00 1 5

FULL CD EU 0.63 0.82 1.00 5 13

JA 0.50 0.70 0.98 0 3

SVM 0.63 0.82 1.00 1 5

CO 0.66 0.85 1.00 3 10

NF EU 0.63 0.83 1.00 1 6

JA 0.63 0.83 1.00 1 8

SVM 0.63 0.83 1.00 1 6

The highest variance was between the averages
obtained byCD. This means that, although the rep-
resentation achieved good performances with theEU
and SVM coefficients, the results with other coeffi-
cients were discrepant, reaching a≃ 14.64% of dif-
ference betweenJA andEU.

DNA reached an average 3.53% lower than the best
strategy. However, in global terms, it was 50% worse
when compared to the best strategy. Among theHOT
strategies, onlyDNA andJA achieved satisfactory re-
sults. These results indicate that the best strategy con-
sists in representing the program completely and not
focusing only on its hot function.

NF is the best program representation scheme, be-
cause of four reasons:

1. provided the bestMCoeff;

2. has stability to achieve perfect results when the
similarity coefficient is altered;

3. obtained one of the lowest variances between the
best results; and

4. its worst results are not as low as those reached by
other representations.

In regards to coefficients,CO is the best for three
reasons:

1. provided the best values ofMCoeff;

2. was the coefficient that presented, extensively, the
best result; and

3. had the highest number of programs with the best
result.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

586

7 AN AUTOMATIC
CODE-GENERATING SYSTEM

In order to evaluate the performance of the best strat-
egy to characterize and find similar programs, this
section describes an automatic code-generating sys-
tem (ACGS) capable of inferring the best transforma-
tion sequence, based on previous experiences, for the
test program.

The system employs a traditional machine-
learning model, which is composed by offline and on-
line phases. The former creates a database contain-
ing good transformation sequences for different pro-
grams. While the latter predicts a good sequence for
the test program and generates the target code.

7.1 The Offline Phase

In a machine-learning model the offline phase con-
sists on a training phase.

In this article, the offline phase is as described in
Section 5. As a result, the training data is the same
database that was generated to evaluatereactionsand
also the performance of knowledge representations
for program characterization.

7.2 The Online Phase

The online phase is a case-based reasoning strategy
(Richter and Weber, 2013), which performs the fol-
lowing steps:

1. Retrieve Past Experiences.This is accomplished
by extracting the characteristicsNF of the test pro-
gram, and calculating the value of similarity for
each program that belongs to the database with
theCO coefficient. Finally,N sequences of the test
program with the highest similarity are recovered.

2. Reuse Past Experiences.This is accomplished
by generating code for the test program utilizing
the transformation sequences recovered in the pre-
vious step.

3. Review the Result, Evaluating the Success of
the Solution. This is performed by executing the
generated code and measuring its execution time.

7.3 Methodology

The described system was evaluated utilizing a
methodology described in Section 6.1. The evalua-
tion considers 1, 3, 5 and 10 past experiences. In ad-
dition, to evaluate the effectiveness of the automatic
code-generating system, this section compares it with
three techniques:

1. Genetic Algorithm with Tournament Selector.
(GA50) It is similar to the technique described on
Section 7.1.

2. Genetic Algorithm with Tournament Selector.
(GA10) It is also similar to the technique described
on Section 7.1, except that it runs over 10 genera-
tions and 20 individuals.

3. 10 Good Sequences.(Best10) It is a technique
proposed by Purini and Jain (Purini and Jain,
2013). They founded 10 good sequences, which
is able to cover several classes of programs. Thus,
in this technique the unseen programs is compiled
with all sequences, and the best target code is re-
turned.

The evaluation uses four metrics to analyze the re-
sults, namely:

1. GMS: geometric mean speedup;

2. NPS: number of programs achieving speedup over
the best transformation level (-O3);

3. NoS: number of sequences evaluated; and

4. ReT: the technique response time.

The speedup is calculated as follows:

Speedup= Runningtime Level O0/Runningtime

7.4 Results and Comparison

This section compares theACGS with other strategies.
Figure 2 shows the speedups forACGS, Best10, GA10
andGA50.

GMS. TheGMS achieved byACGS was 1.919, outper-
formed only byGA50 which achieved 1.980. The
Best10 and GA10 reached 1.784 and 1.822, re-
spectively. It is important to consider the differ-
ent premises ofACGS andGA. The former consists
on a machine learning paradigm which return a
solution on a few steps. The latter is an iterative
compilation technique, which evaluate several se-
quences over the program.ACGS achieves similar
performance results forGA50, with a difference of
only 6.1%, on a considerably lower time (99%).
Futhermore,ACGS surpasses the other strategies.

NPS. TheACGS did not achieve the higher speedups
reached byGA50; however theNPS was 38.9%
larger, covering 25 programs whileGA50 covers
only 18. It means thatGA50 achieves discrepant
higher values on isolate programs, whileACGS
achieves good performance for more programs.
Best10 andGA10 had 12 and 17NPS, respectively.

NoS. As iterative compilation techniques,GA10 and
GA50 evaluate a high number of sequences to find

Evaluating Knowledge Representations for Program Characterization

587

ad
pc

m
_c

ad
pc

m
_d

bi
tc

ou
nt

bl
ow

fis
h_

d

bl
ow

fis
h_

e

bz
ip

2d

bz
ip

2e

C
R

C
32

di
jk

st
ra

gh
os

ts
cr

ip
t

gs
m

jp
eg

_c

jp
eg

_d

la
m

e

m
ad

pa
tr

ic
ia

pg
p_

d

pg
p_

e

qs
or

t1

rij
nd

ae
l_

d

rij
nd

ae
l_

e

rs
yn

th

sh
a

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

S
pe

ed
up

 o
ve

r
−

O
0

0

1

2

3

4

5

ACGS Best10 GA10 GA50 −O3

−O3 GMS

Figure 2: Speedups achieved compared with other techniques.

a result, having, on average,NoS of 57.1 and
259.3 sequences, respectively. TheBest10 strat-
egy evaluate the same number of sequences of
ACGS.10 (10 sequences). However,Best10 eval-
uates always the same 10 sequences, whileACGS
retrieves specific past experiences based on the
program characteristics.

ReT. The GA50 was the most time-consuming tech-
nique, taking more than 26865 seconds to give a
result, on average.GA10 spent a mean of 8378.5
seconds for each input program, whileBest10
gave an answer after 424.2 seconds, on average
too. ACGS was 62% faster thanBest10 tech-
nique, evaluating the same number of sequences.
Theoretically, the response time is essentially
proportional to the number of sequences evalu-
ated. However,Best10 evaluates the same 10 se-
quences to any test program, sequences which can
be more time-consuming than the good sequences
retrived by theACGS.

These results indicates that iterative compilation
achieves higher speedups, but with a high response
time.

The considered metrics indicates thatACGS is a
good strategy to find a good transformation sequence
to a test program, surpassing other strategies. It is due
to it is a technique which (1) gives an answer on a low
response time, (2) finds a solution based on program
characteristics, and (3) utilizes previous knowledge to
return a sequence.

8 RELATED WORK

De Lima et al. (de Lima et al., 2013) proposed the
use of a case-based reasoning strategy to find trans-
formation sequences for a specific program. They ar-
gue that it is possible to find good sequences, from
previous compilations, for an unseen program. This
strategy creates several sequences in a training stage.
Afterwards, in a deployment stage, the strategy infers
a good sequence for a test program. This step is based
on the similarity between two programs. De Lima
et al. proposed several models to measure similar-
ity, also based on feature vectors which is composed
of performance counters. They demonstrated that it
is possible to infer a sequence that achieves multiple
goals; for example, runtime and energy efficency. De
Lima’s work has the same limitations than Cavazos’
work.

Tartara and Reghizzi (Tartara and Reghizzi, 2013)
proposed a long-term strategy, which its goal is to
eliminate the training stage. In their strategy, the com-
piler is able to learn during every compilation, how to
generate good target code. In fact, they proposed the
use of a genetic algorithm that creates several heuris-
tics based on the static characteristics of the test pro-
gram (Namolaru et al., 2010). Basically, this strat-
egy performs two tasks. First, it extracts the charac-
teristics of the test program. Second, a genetic algo-
rithm creates heuristics inferring which optimizations
should be enabled. Although Tartara’s and Reghizzi’s
work uses a good static characteristic to represent pro-
grams (NF), they did not formalize the efficiency of

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

588

this representation.
Queiroz and Da Silva (Queiroz Junior and

da Silva, 2015) evaluates different configurations of
a case-based reasoning strategy, which aims to find
transformation sequences for a specific program. The
goal of their work was to evaluate the performance of
such strategy using: (1) different databases; (2) differ-
ent coefficients to identify programs with similar re-
actions; and (3) different program characterizations.
Although, Queiroz’s and Da Silva’s work has the ap-
peal of evaluating several configuration, it has three
problems: (1) it does not describe a formalism to find
an efficient representation; (2) it evaluates only two
representations; and (3) the results obtained by the
code-generating system does not use only one con-
figuration.

9 CONCLUSIONS AND FUTURE
WORK

Finding the best form of knowledge representation
depends on a determined objective and requires de-
tailed evaluations of the constructed formalism.

A complex problem, in the computer science field,
is to generate good target code because it is program-
dependent. This indicates that proposed strategies
should consider the program during decision-making.
In addition, they need to contemplate which transfor-
mations should be applied during the code-generation
process.

Although the literature describes several strate-
gies that attempt to mitigate the code-generation prob-
lem, there is no consensus on which knowledge rep-
resentation should be utilized in these types of sys-
tems. Furthermore, various strategies do not consider
the said problem as program-dependent, because the
complexity to identify an efficient knowledge repre-
sentation.

This article presented and validated an efficient
knowledge representation to characterize programs,
theNF. This representation is interesting because can
be extracted statically and is not dependent of pro-
gramming languages nor hardware architecture. An-
other contribution of this article is the identification of
a coefficient that is able to identify programs that react
similarly when compiled applying the same transfor-
mation sequence.

The results obtained by the code-generating sys-
tem, that considersNF as program representation, is
able to find good transformation sequences, as well
as outperforms other code-generating systems.

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools. Pren-
tice Hall, Boston, MA, USA, 2 edition.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle,
M. F. P., and Temam, O. (2007). Rapidly Select-
ing Good Compiler Optimizations Using Performance
Counters. InProceedings of the International Sym-
posium on Code Generation and Optimization, pages
185–197, Washington, DC, USA. IEEE Computer So-
ciety.

de Lima, E. D., de Souza Xavier, T. C., da Silva, A. F.,
and Ruiz, L. B. (2013). Compiling for performance
and power efficiency. InPower and Timing Modeling,
Optimization and Simulation (PATMOS), 2013 23rd
International Workshop on, pages 142–149.

Fursin, G. (2017). Collective Benchmark - En-
abling realistic benchmarking and optimization.
http://ctuning.org/cbench. Access: January, 9 - 2017.

Gouy, I. (2017). The Computer Language Benchmarks
Game. http://benchmarksgame.alioth.debian.org/. Ac-
cess: January, 9 - 2017.

Lattner, C. (2017). The LLVM Compiler Infrastructure.
http://llvm.org. Access: January, 9 - 2017.

Martins, L. G. A., Nobre, R., Cardoso, J. a. M. P., Delbem,
A. C. B., and Marques, E. (2016). Clustering-based
selection for the exploration of compiler optimiza-
tion sequences. ACM Trans. Archit. Code Optim.,
13(1):8:1–8:28.

Namolaru, M., Cohen, A., Fursin, G., Zaks, A., and Fre-
und, A. (2010). Practical Aggregation of Semanti-
cal Program Properties for Machine Learning Based
Optimization. InInternational Conference on Com-
pilers Architectures and Synthesis for Embedded Sys-
tems, Scottsdale, United States.

Needleman, S. B. and Wunsch, C. D. (1970). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins.Journal
of Molecular Biology, 48(3):443 – 453.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Purini, S. and Jain, L. (2013). Finding good optimization se-
quences covering program space.ACM Transactions
on Architecture and Code Optimization, 9(4):56:1–
56:23.

Queiroz Junior, N. L. and da Silva, A. F. (2015). Finding
good compiler optimization sets - a case-based rea-
soning approach. InInternational Conference on En-
terprise Information Systems, pages 504–515.

Richter, M. M. and Weber, R. (2013).Case-Based Reason-
ing: A Textbook. Springer, USA.

Sanches, A. and Cardoso, J. M. P. (2010). On identifying
patterns in code repositories to assist the generation of
hardware templates. InInternational Conference on

Evaluating Knowledge Representations for Program Characterization

589

Field Programmable Logic and Applications, pages
267–270, Washington, DC, USA. IEEE Computer So-
ciety.

Tartara, M. and Reghizzi, S. C. (2013). Continuous learn-
ing of compiler heuristics.ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 9(4):46:1–
46:25.

Wu, Y. and Larus, J. R. (1994). Static branch frequency
and program profile analysis. InAnnual International
Symposium on Microarchitecture, pages 1–11, New
York, NY, USA. ACM.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

590

