
SPMDSL Language Model
Onto a DSL for Agile Use Case Driven Software Project’s Management

Gilberto G. Gomes Ribeiro1, Ângela M. Amorim Barros1 and António M. Rosado da Cruz1,2
1Polytechnic Institute of Viana do Castelo, Av. do Atlântico, s/n, Viana do Castelo, Portugal

2Algoritmi Research Centre, University of Minho, Portugal

Keywords: DSL, Domain Specific Language, Ontology, Agile Use Case-driven Software Project Management.

Abstract: Project management involves applying knowledge, skills, tools and techniques to project activities to meet
the project requirements. Each project’s unique nature implies tailoring that knowledge, skills, tools and
techniques to adapt the management activities to cope with project constraints. Management and technical
activities meet at some points, namely on activities that have technical and management relevance. This
paper proposes SPMDSL and presents its language model and the domain analysis made during its
development. SPMDSL aims to be a DSL defining a set of representational primitives with which to model
projects in the domain of agile software project management. These primitives are represented as classes
and their interrelationships. The proposed DSL focuses on agile use case driven software development
project management, and so it also integrates concepts from software modeling. The goal is to enable
representing past projects’ information to facilitate retrieving information for lessons learned analysis.

1 INTRODUCTION

Software and other domain’s projects involve one or
more sequences of technical activities and project
management activities. These sequences of activities
intersect at some points, on activities with technical
and management relevance. Examples of such
intersecting activities can be found in the process of
requirements analysis and specification or in the
quality control process, among other processes.

According to the PMBOK Guide (PMI, 2013),
project management (PM) is the application of
knowledge, skills, tools and techniques to project
activities to meet the project requirements.
Managing a project typically includes (PMI, 2013):
 Identifying requirements;
 Managing the needs, concerns, and

expectations of the stakeholders;
 Managing and carrying out communications

with the stakeholders;
 Balancing the competing project constraints,

namely: Scope, Quality, Schedule, Budget,
Resources, and Risks.

The project manager needs to focus its efforts on

the project constraints that affect more a specific
project. Each project has different characteristics and

conditions that determine the constraints that need
more attention. Project managers make use of
software tools for helping them manage projects
according to several dimensions (e.g.: time, cost,
scope), which are bound by project constraints. A
software tool for assisting in managing projects must
allow the project manager to realize the full project
workflow, enabling a better resource management,
and helping manage the different project constraints.

Software projects also involve technical
activities, which typically follow a predefined
process. Development processes are, nowadays,
typically iterative in nature, where requirements,
plans, tasks, and their inner priorities, are
continuously assessed and refined. Agile Methods
are the best examples of this kind of processes.

Modern software development processes are also
typically use case or user story driven. Herein, the
terms use case and user story are used
interchangeably, because both describe system’s
features from the users’ point of view, and for our
purposes that supersedes any minor difference
between the two concepts. From the project’s point
of view, use cases define a unit of functionality that
is selectable for development in each iteration. A use
case is then as important for the product as it is for
the process that develops it.

Ribeiro, G., Barros, Â. and Cruz, A.
SPMDSL Language Model - Onto a DSL for Agile Use case driven Software Projects’ Management.
DOI: 10.5220/0006326804030410
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 403-410
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

403

This paper presents SPMDSL core language
model. The core language model is in fact an
Ontology for that knowledge domain. SPMDSL
intends to be a domain specific language (DSL) for
the management of agile use case driven software
projects, based on the good practices embodied in
the PMBOK Guide (PMI, 2013) and Agile Methods,
without overlooking concepts and good practices in
software engineering, namely from the Unified
Modeling Language (UML). The presented DSL
focuses on the main concepts of both PM and
software engineering domains. The DSL engineering
process is tailored from the one proposed by
Strembeck and Zdun (2009).

The rest of the paper is structured as follows:
next section overviews DSL artifacts and the process
of building a DSL. Section 3 briefly presents
PMBOK (PMI, 2013), the key Agile methodologies,
the main PM tools and existing proposals to PM
ontologies. The goal is to pave the road for eliciting
the main concepts and their interrelationships that
forms the SPMDSL core language model presented
in section 4, together with the appropriate
constraints. Section 5 concludes the paper and
presents some ideas for future work.

2 DEVELOPING A DSL

2.1 DSL Engineering

A DSL is a “tailor-made (computer) language for a
specific problem domain” (Strembeck and Zdun,
2009). A DSL comprises the development of:
 A Language model (Abstract Syntax),

defining the concepts and relationships (the
core language model), as well as a set of rules
enforcing well-formedness through static
semantics (model constraints). This may be
defined by an Ontology or Metamodel.

 A Concrete Syntax, establishing a textual or
graphical concrete notation for the language,
which defines the allowed language constructs
and phrases (Moody, 2009).

 A semantics for the allowed language phrases:
Giving meaning to those phrases, either
formally, through denotational semantics, or
more informally, through illustrative examples
of language usage and informal explanations
of those examples, among other ways.

DSL development involves an iterative lifecycle

with four activities (Strembeck and Zdun, 2009):
1. Defining the DSL’s core language model and

model constraints;

2. Defining DSL language elements’ behavior;
3. Defining the DSL’s concrete syntax(es);
4. Integrating DSL artefacts with the platform.

Each of these main activities is in itself a
subprocess that may be tailored to better meet the
influencing factors identified by Strembeck and
Zdun (2009). In this paper, we focus on defining the
DSL’s core language model and model constraints,
including reporting the domain analysis activities.

2.2 Tailored Subprocess for Defining
the DSL’s Language Model

This subsection presents the tailored subprocess
“Defining the DSL’s core language model and
constraints”, following (Strembeck and Zdun, 2009).
The tailored subprocess is depicted in Figure 1, and
comprises the following activities:

1. Domain Analysis: Covers the analysis of the
problem domain, in this case the standards and
practices in PMBOK and main Agile methods
for finding domain concepts, and the
identification of corresponding domain
abstractions, that take the form of language
elements added to the DSL being created;

2. Analysis of existing platforms and tools:
Identifying elements on existing PM tools and
defining or deriving language elements for the
DSL, if they aren’t already defined.

3. Integrate Domain Abstractions/Language
Elements to ensure that the defined DSL is not
redundant (there is no overload of language
elements) and does not have neither deficit nor
excess of language elements (Moody, 2009).

4. Define Language Model Constraints: Identify
rules and constraints in the domain, and reflect
them as Model Constraints.

5. Check Language Model: The language model,
comprising the core language model and the
constraints, must be checked for completeness
and correctness from a domain-oriented
perspective (Strembeck and Zdun, 2009).

In this work, domain knowledge is gathered both
inductively (bottom-up), by identifying elements in
existing PM tools and existing ontologies, and
deductively (top-down), by identifying domain
abstractions from the real world, embodied in the
PMBOK and the Agile Methodologies (Voelter,
2013). Then, the domain abstractions are associated
to existing or new language elements, and elements
from existing platforms and ontologies are used to
derive new language elements. These elements are
related to each other, also per the gathered
knowledge, and together form the DSL being built.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

404

Figure 1: The subprocess for defining the DSL language
model, tailored from (Strembeck and Zdun, 2009).

3 ANALYSIS OF DOMAIN AND
OF EXISTING PM TOOLS AND
ONTOLOGIES

The process of constructing a DSL must gather
concepts and concept interrelationships of the
knowledge domain it addresses. The PMBOK Guide
(PMI, 2013) enfolds knowledge and good practices
in PM and forms a body of knowledge for the PM
domain. The next subsection introduces PMBOK.

Additionally, Agile Methods are used today in
almost every software project. Agile methods share
many concepts, useful for describing and discussing
software projects. As such, the domain analysis for
UC driven software projects must also address Agile
Methods, which are overviewed in subsection 3.2.

The study of existing applications in the PM
domain is also essential, so that the concepts already
in place in existing PM tools may be taken into
consideration. Subsection 3.3 outlines five PM tools.
Subsection 3.4 presents existing approaches to
domain ontologies related to project management.

3.1 The PMBOK Guide

The PMBOK guide (PMI, 2013) includes knowledge
and good practices about project management,
which have application in “most projects most of the
time”, and their value and usefulness is object of
consensus. The knowledge described is not directly
and uniformly applicable to all projects, being the
responsibility of each organization/project manager
to select and adapt what is applicable in each
particular project. The PMBOK guide does not
prescribe a process model, but rather a set of process
groups that may be selectively adapted to any
process model, including agile processes.

The PMBOK Guide also promotes a common
vocabulary within the PM domain, having published
the PMI Lexicon of Project Management Terms
(PMI, 2015), which provides a set of vocabulary that
can be consistently used by project managers and
other stakeholders. That vocabulary is not, however,
an ontology as it does not focus on PM main
concepts nor addresses their relationships. It mainly
focuses on concepts and terms used in the PMBOK
Guide when describing tools and techniques within
each process or process activity.

3.2 Agile Methodologies

In 2001, a group of developers established a set of
12 principles and called it the “Agile Manifesto”
(http://agilemanifesto.org), which focused more on
people than on processes. Those principles are the
basis to many variations of agile methods. Agile
methods involve a process definition and a set of
tools and techniques. Process and tools envisage to
embrace the Agile principles, whichever the specific
Agile method they belong to. Practice has leveraged
some Agile methods in detriment of other less used
ones. Scrum and XP (eXtreme Programming) are
commonly accepted as two of the most currently
used agile methods. XP can be characterized by
short development cycles, incremental planning,
continuous feedback, reliance on communication,
and evolutionary design (Beck, 2004). Scrum
focuses on the team work rather than a set of
specific software development rules. What Scrum
and XP have in common is a prioritized list of

SPMDSL Language Model - Onto a DSL for Agile Use case driven Software Projects’ Management

405

features, short iteration cycles for developing
selections of those features, frequent deliveries of
running software and an approach to development
that promotes developing simple yet needed
features, instead of nice to have but unrequired ones
(Beck, 2004; Schwaber and Sutherland, 2016).

Besides Scrum and XP, other Agile methods
made their way at different levels of adoptability.
Examples are Feature Driven Development (FDD)
and Extreme Modeling (XM). Unlike other
methodologies, FDD does not cover the entire
development process but rather focuses on the
design and building phases (Palmer and Felsing,
2002). FDD also has frequent deliverables, along
with accurate monitoring of the progress report. Its
five sequential steps include developing an overall
system model, which models requirements of the
whole system being developed, and progresses
together with the system (De Luca, n.d.). A domain
classes model is built, identifying attributes,
relationships and methods. FDD also develops a
prioritized features’ list to support the requirements.
Each feature identifies actions over objects of the
domain model, and new or changing requirements
are modeled back into the overall model. New or
changed features arise from the updated model.

“Model first, code later” is the main idea behind
Extreme Modeling (XM). XM claims that modeling
can be something done on the spur of the moment
whereas coding might not be as immediate or
practical, making the feedback not as easy to get. By
modeling first, the software developer can analyze
the problem prior to coding the solution. XM and
XP share the same values and principles. The main
practices of XM are model to communicate and
model to understand (Ambler, 2001).

3.3 Project Management Tools

This subsection presents five PM tools, which are
compared in terms of features and concepts elicited
from the PMBOK, but also from typical software
development process models, such as the Unified
Process and Scrum. The studied tools are Microsoft
Project (https://products.office.com/en/Project),
MSP, the most used PM tool, and the open source
tools Open Project (openproject.org), OP, LibrePlan
(libreplan.com), LP, Agilefant (agilefant.com), AF,
and Redmine (redmine.org), RM.

In software project management, requirements
are usually modeled through use cases or user
stories, and these typically drive the software
development activities, by being divided into work
items, and these further divided into work tasks.

This way, use cases are associated to project work
tasks, as the latter are defined by the need to
implement and satisfy the former.

MSP, LP, AF, OP, and RM allow an effective
project management, enabling some good practices
underlined by PMBOK. Task (work package)
management is supported, along with their
hierarchical structuring, enabling the establishment
of a Work Breakdown Structure (WBS). The first
two do not support the concepts of Requirement or
Use Case/User Story, which commonly leads to
confusion between requirements and project tasks.

All the surveyed tools allow defining task
dependencies (e.g. follows, precedes). AF, OP, LP
and RM also allow the creation of links between
tasks and external documents (e.g. text documents,
diagrams, images). Tasks may be associated to team
members.

MSP, AF, OP and LP allow creating budgets
associated to the defined project tasks, helping to
keep track of the effort and cost the project activities
require. Time, cost and resource management are,
then, well covered by these tools.

AF and OP allow a scrum management style by
enabling the definition of a product backlog (fairly
equivalent to a requirements list) and sprint
backlogs, along with user stories with the associated
priority level and effort story points. AF enables
defining dependencies between user stories. Scope
and resource management are also fairly addressed,
although scope change management is very poorly
covered. The notion of a change requests’ analysis
team, envisaged in PMBOK, is absent in every tool
surveyed.

Quality and risk management are not covered in
OP. LP, however, has some support for risk related
activities such as Monte Carlo simulation. In OP and
RM, communicating project information between
team members and stakeholders is centered on a
Wiki. In OP, meetings may also be scheduled and
messages sent through the system.

AF allows creating backlogs for different
stakeholders and let them feed in ideas or feedback
they have, and after validating the provided items,
these can be inserted into the product backlog.

3.4 Existing PM Ontologies

Existing approaches to domain ontologies related to
project management comprise PROMONT (Abels et
al., 2006), a PM ontology for virtual project
organizations, based on German standard DIN
69901 (DIN, 2009). Another standard for PM data
exchange is PMXML (Curran et al., 2004).

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

406

Other PM ontology approaches include “Project
metrics ontology” (www.daml.org/ontologies/349),
a simple ontology focusing project metrics that
enables performance metrics comparison between
projects; Aramo-Immonen (2009) ontology proposal
puts together a PM ontology and a project learning
model, focusing project learning integrated in
project processes; Sheeba et al. (2012) proposes an
ontology to automatically classify learning materials
for the Project Management knowledge domain, in
order to facilitate the search for learning materials.

3.5 Unified Modeling Language

UML provides tools for generic system’s analysis
and design, and implementation of software-based
systems (OMG, 2015). It provides a metamodel that
supports modeling generic systems, especially
software systems, through several diagrams that may
be used to model specific views of the system. UML
structural semantics provides elements for building a
domain model, class model, etc.; UML behavioral
semantics provides model elements for building
activity diagrams, state machines, and so on; UML
supplemental modeling semantic area provides
elements for Use Case models, etc. (OMG, 2015).

We consider that a system model should have at
least the following model views (Cruz, 2015):
Structural View – modeled by a domain model,
which contains the entities/concepts from the system
or domain being modeled; Functionality View –
modeled by a Use Case Diagram, providing a vision
of the system functionality modeled as use cases;
Behavioral View – provides a more or less formal
specification of the system behavior; Presentational
View – provides an abstract model of the system’s
user interface. Since UML doesn’t foresee this last
kind of models, screen mockups are typically used.

4 SPMDSL LANGUAGE MODEL

The language model proposed in this section,
besides considering the PMBOK as a foundation for
the ontology building process, incorporates concepts
drawn from Agile methodologies, the studied PM
tools, and existing PM ontology approaches. The
proposed ontology/DSL core language model
focuses on project management in use case driven
software development projects, and so it also
incorporates concepts from software modeling and
design, namely model elements from the UML
definition (OMG, 2015), although some of them
have been renamed to avoid confusion with other
concepts (e.g.: Actor, UseCase, DomainEntity).

4.1 Identified Language Elements and
the Proposed Core Language
Model

In this subsection, the main concepts and their
interrelationships, elicited from the PMBOK, Agile
methods, studied PM tools and existing PM
ontologies, overviewed in the previous section, are
put together in a diagrammatic form, to embody the
proposed ontology and core DSL model. This is
depicted in Figure 2 (some entity attributes are left
out of the diagram, for improved readability). The
rest of this section should be read with continuous
reference to the ontology presented in the figure.

A Project aggregates stakeholders, requirements,
work activities and tasks, that breakdown the
project’s work structure, use cases, domain entities,
system models and screens (interaction spaces).

A Team member is a stakeholder that has a
working role on the project. Working roles demand
skills, which are provided by team members. Other
Stakeholders may be actively involved in the project
or be positively or negatively affected by it, thus
having a role in the project. Stakeholders have
communication needs or demands (PMI, 2013).

Project requirements, which are proposed by
stakeholders, may specify a degree of importance.
Requirements have a priority level of fulfilment, and
may pass through a set of defined states, as depicted
in the state machine diagram of Figure 3 (this is
explained in the next subsection).

Common software processes are use case (UC)
driven, having requirements specified as use cases.
A UC represents a specific usage of the system from
the user’s point of view. Each UC is further detailed
by including or being extended by other UCs. UCs
can also be further detailed through the specification
of Use Case Activities, which represent activities
within a UML activity diagram, and may be
constrained by a precedence order and activity
preconditions. When specifying UCs, from
requirements, domain entities are also identified and
related with other domain entities and with UCs.
Actors (users playing a role in the system) interact
with UCs through interaction spaces. Within a UC,
one or more domain entity is manipulated (Cruz,
2015). A project also aggregates system models,
which take the form of a set of diagrams of some
type. In UC driven software processes, work
activities (work packages) are identified from the
UCs specified. Work activities and tasks, as defined
in the ontology, enable building a WBS for each UC.
So, when a UC is selected for development, being
included in an iteration, a set of work tasks must be
started by team members, and these also have a
precedence order.

SPMDSL Language Model - Onto a DSL for Agile Use case driven Software Projects’ Management

407

SPMDSL core model also enables tracing back
and forth between any project management
processual or work element (e.g.: iteration, work

activity, work task) and the use cases that specify the
project requirements that justify it, and ultimately
from the use cases to the requirements themselves.

Figure 2: SPMDSL core language model/ontology.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

408

Figure 3: State-machine diagram for Requirement.

Figure 4: State-machine diagram for Change Request.

Note that the concept of use case, in a UC driven
software development project, is twofold. On one
hand, UCs specify user requirements. For this, they
may be further refined into more fine-grained use
cases and into activity diagrams, to specify system
level functions or packages of functionality (Cruz,
2015). On the other hand, use cases drive the
software development process, being selected for
development in each iteration. For this purpose, they
are detailed into work activities and work items,
which represent work that must be done to develop
the system for the functionality represented by the
UC. SPMDSL allows this two-folded vision of UCs.

A Change Request may be proposed by any
stakeholder, and may target one or more specific
requirements. As advocated by the PMBOK (PMI,
2013), a project may have a Change Analysis Team,
which is formed by the PM and other key
stakeholders, and is responsible for analyzing
change requests and deciding about their acceptance.

4.2 Model Constraints

The previous subsection presented the ontology/core
language model that underlies the proposed DSL.
However, for obtaining the SPMDSL language
model, some constraints need yet to be defined. This
subsection presents the needed constraints in the
form of state-machine diagrams and OCL.

As mentioned before, project requirements may
be proposed by stakeholders, and may have a set
degree of importance. Requirements have a priority
level of fulfilment, and they may pass through a set
of defined states, as depicted in the state machine
diagram of Figure 3. A Requirement Proposal is,
then, a Requirement in state “Proposed”.

A Change Request may be proposed by any
stakeholder and, if a Change Analysis Team exists,
may be voted on by members of the analysis team
and, as a result of that voting process, requests can
be accepted or rejected. Figure 4 shows the state-
machine diagram for Change Request.

Work tasks (WorkTask) may have a binary
precedence order between them (TaskPrecedence).
One must make sure that a work task is not preceded
by itself, in one or several steps. That is, it must be
illegal to define a work task as being transitively
preceded by itself. Being t1->closure(pred.ti) the set
of work tasks predecessors reachable from task t1 in
one or more steps, the following invariant constraint
must then be defined:

Context WorkTask inv:
 self->closure(wt : WorkTask |
 wt.pred.ti)->excludes(self)

(1)

A similar invariant must be defined in the

context of UseCaseActivity, to prevent loops in
relation to UCActivityPrecedence.

As mentioned earlier, Work activities and tasks
allow to build a WBS (PMI, 2013), which is a tree
structure decomposing work. But only the leaves of
that structure, the work taks (work packages),
contain actual work to be done. These leaves don’t
have subtasks, and the binary precedence order,
TaskPrecedence, may only be defined on these kind
of work activities, as stated by the next invariant:

Context TaskPrecedence inv:
 self.ti.subtasks->isEmpty()
 and self.tf.subtasks->isEmpty()

(2)

Other constraints are needed, including one to

ensure that complete use cases are selected for
implementation in each iteration, and that every
work package of the selected use cases must be
automatically associated to the same iteration. A

SPMDSL Language Model - Onto a DSL for Agile Use case driven Software Projects’ Management

409

work package may, though, be also associated to
ulterior iterations, when they are postponed. Lack of
space impedes us to present these constraints here.

5 CONCLUSIONS

This paper has focused the language model
(metamodel/ontology), and its construction process,
of SPMDSL, a domain specific language for the
domain of agile use case driven software projects’
management. Per the Ontology building
methodology set by Uschold and King (1995), and
the DSL development process proposed by
Strembeck and Zdun (2009), the ontology capture
has been based on a domain analysis which involved
the identification of key concepts and relationships.
This has been made essentially from the PMBOK,
Agile methods, and UML. Then, from studied PM
Tools and ontologies, key terms and concepts were
identified and related to the previously known ones.

Guidelines for evaluating the ontology/language
model built, involve making a technical judgement
with respect to a frame of reference (Uschold and
King, 1995; Strembeck and Zdun, 2009). For this,
SPMDSL has been used as basis for developing two
prototype applications for the domain of use case
driven software project management (Ribeiro, 2015;
Barros, 2016). A comparative discussion between
the developed prototype and the studied PM tools
can be found in (Ribeiro, 2015).

The proposed DSL enables the description of
software project management artefacts, facilitating
the archiving and easy retrieval of these artefacts for
closed projects, contributing to a more effective
sharing of lessons learned and good practices from
previous projects within an organization or among
organizations in the software projects domain.

SPMDSL’s language model also aims to
contribute for establishing a common language for
use case driven software projects’ management and
to contribute to a complete Software PM Ontology.

Besides a well-defined Language Model, a DSL
needs a concrete language syntax or notation.
SPMDSL concrete notation is based on XML. This
suffices for representing past projects’ information
and serving as an exchange language between
software PM tools. Possible future research
directions may include the establishment of a more
human-readable concrete notation for SPMDSL.

REFERENCES

Abels, S., Ahlemann, F., Hahn, A., Hausmann, K.,
Strickmann, J., 2006. PROMONT - A Project
Management Ontology as a Reference for Virtual
Project Organizations. In OTM 2006 Workshops (vol.
1, pp. 813-823), Montpellier, France, Oct 29 - Nov 3.

Ambler, S.W., 2001, A Closer look at Extreme Modeling,
www.drdobbs.com/xm/184414729. Acc. 15April ‘16.

Aramo-Immonen, H., 2009. Project Management
Ontology – The Organizational Learning Perspective.
(PhD Thesis). Tampere Univ. of Technology, Finland.

Barros, A., 2016. Agile Management System for User
Requirements Mappable into Software Models. Project
Report, I. Politécnico de Viana do Castelo, Portugal.

Beck, K., 2004. Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2nd ed., Nov. 26.

Curran, K., Flanagan, L., Callan, M., 2004. PMXML: An
XML Vocabulary Intended for the Exchange of Task
Planning and Tracking Information. Information
Technology Journal; 3 (2): pp. 192-195.

Cruz, A.M.R., 2015. Use Case and User Interface Patterns
for Data Oriented Applications. In: Hammoudi, Pires,
Filipe, Neves (Eds.), MODELSWARD‘14, Revised
Selected Papers, CCIS, vol. 506, p. 117-133, Springer.

DIN, 2009. DIN 69901-4 Project management - Project
management systems - Part 4: Data, data model,
Deutsches Institut für Normung. http://www.din.de.

Moody, D. L., 2009. The “Physics” of Notations: Towards
a Scientific Basis for Constructing Visual Notations in
Software Engineering. In IEEE TSE, vol. 35, no. 5.

OMG, 2015. OMG Unified Modeling Language (OMG
UML). Version 2.5, March 2015.

PMI, 2013. A Guide to the Project Management Body of
Knowledge (PMBOK, 5th ed.), P.M.I., PA, USA.

PMI, 2015. Lexicon of Project Management Terms–
Version 3.0, Project Management Institute, PA, USA.

Sheeba, T., Krishnan, R., Bernard, M., 2012. An Ontology
in Project Management Knowledge Domain. Int’l
Journal of Computer Applications, vol 56–no 5, Oct.

Strembeck, M., Zdun, U., 2009. An approach for the
systematic development of domain-specific languages.
In Software-Practice and Experience, vol. 39, pp.
1253-1292. John Wiley & Sons, Ltd.

Ribeiro, G.G.G., 2015. Software para Gestão de Projetos
de Software. (MSc Thesis, in portuguese), Instituto
Politécnico de Viana do Castelo, Portugal.

Uschold, M., King, M., 1995. Towards a Methodology for
Building Ontologies. Workshop on Basic Ontological
Issues in Knowledge Sharing.

Palmer, S.R., Felsing, J.M., 2002. A Practical Guide to
Feature-Driven Development. NJ, Prentice-Hall.

De Luca, J., n.d.. Feature Driven Development Overview,
www.nebulon.com/articles/fdd. Accessed 15Apr 2016.

Schwaber, K., Sutherland, J., 2016. The Scrum Guide.
July 2016. Available at http://www.scrumguides.org/.

Voelter, M., 2013. DSL Engineering: Designing,
Implementing and Using Domain-Specific Languages.
Available at http://dslbook.org/.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

410

