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Abstract: Modified Discrete Firefly - Simulated Annealing (MDF-SA) Algorithm was used to solve travelling salesman 
problem (TSP) using the tanh function for discretization. MDF-SA was tested on four (4) data instances from 
TSPLIB and the Davao City solid waste collection routing system. The objective of this study is to evaluate 
and compare MDF-SA with MDFA in terms of running time and solution quality. The data set selected from 
the TSPLIB are ST70, PR152, GR431, and TS225. The Davao City solid waste collection routing system is 
used in the hopes of finding a better solution from the current. Results show that MDF-SA and MDFA perform 
almost equally well on the data sets PR152 and GR43. MDFA performs better on using the TS225 data set, 
but MDF-SA performs much better on ST70. In general, the hybrid algorithm has produced better route 
system quality of the Davao City solid waste collection than the MDFA.

1 INTRODUCTION 

Solid waste management is becoming critical in the 
current setting due to the escalating urbanization and 
population growth in a location, coupled with 
increasing environmental concerns (Awad et al., 
2001). Davao City, for instance, is the most densely 
inhabited and highly industrialized city in Region XI 
having an approximately 1.63 million residents in 
2015 (Philippine Statistics Authority, 2015). As a 
result, the volume of waste collected per day 
increased by 100% since 2013 driving the city 
government to spend about ₱13 million for the 
monthly rental of a hundred garbage trucks (Carillo, 
2016). This situation poses a good basis for the 
importance of optimization in the process of garbage 
collection like routing. 

The routing problem is one of the main 
components of garbage collection. The goal of 
optimizing the route for solid waste collection is to 
minimize the cost at a desired level of service. 
According to Karadimas et al. (2007), at most 80% of 
solid waste disposal budget is spent on collection. 
Therefore, a small improvement in the collection 

operation can result to a significant saving in the 
overall cost.  

This study explores the possibility of hybridizing 
the Modified Discrete Firefly Algorithm (MDFA) 
and Simulated Annealing (SA) Algorithm in solving 
the solid waste collection routing. Specifically, this 
study aims to:  

1. Evaluate the performance of Modified 
Discrete Firefly with Simulated Annealing 
(MDF-SA) algorithm in terms of running 
time and solution quality (distance);  

2. Evaluate and compare the performance of 
MDF-SA algorithm with that of MDFA in 
terms of running time and solution quality 
using four benchmark data instances (PR152, 
ST70, TS225, and GR431) 

3. Evaluate the performance of MDFSA 
algorithm as applied to solid waste 
collection in terms of running time and 
solution quality (distance units), and the 
2014 Davao City solid waste collection 
routing system); and 

4. Compare MDF-SA’s performance (solution 
quality) with the existing total distance taken 
to complete the solid waste collection 
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routing system in the city of Davao, 
Philippines. 

 
This study is limited to the evaluation of the 

introduction of standard Simulated Annealing 
algorithm to Modified Discrete Firefly algorithm, as 
well as the evaluation of the hybrid’s performance 
when it is applied to known TSP benchmark data sets 
specifically the PR152, ST70, TS225, GR431, and the 
garbage collection routing system in the city of Davao, 
Philippines.  

In this paper, a background of solid waste 
collection, the area of study and the algorithms are 
discussed first. Next is the methodology of the study, 
followed by the results and discussion, and lastly, the 
summary and conclusions. 

2 RELATED LITERATURE 

Davao City, one of the largest city in the world, has a 
land area of approximately 244,000 hectares and is 
located in Regions 11 or Southern Mindanao. The city 
is lying in the grid squares with latitude of 6 degrees 
58 minutes to 7 degrees 34 minutes North, and 
longitude of 125 degrees 14 minutes to 125 degrees 
40 minutes East. The city is bounded by Davao 
Province on the north, Davao Province and Davao 
Gulf partly on the east, Davao del Sur on the south, 
and North Cotabato on the west (City of Davao, 
2011a). Coming from Manila, Davao City Proper 
goes southeast and is approximately 946 aerial 
kilometers.  

The strategic location of Davao City made it the 
regional trade center in Southern Mindanao, was 

developed as international trade center to the 
Southern Pacific, and Southern Gateway of the 
neighboring countries like Brunei, Indonesia, 
Malaysia, Australia, and others (City of Davao, 
2011b). There are three congressional districts in the 
city, and 11 administrative districts. Davao City 
Environmental and Natural Resources Office 
summarizes the demography on environmental 
services from 2006 to 2010 in Table 1. 

2.1 Nondeterministic Polynomial-Time 
(NP) Complete Problems 

Nondeterministic Polynomial-time complete 
problems from theoretical computer science is a very 
intriguing (Dasgupta et al., 2006) and tantalizing class 
of problems because of their reduction property, 
making every problem equally difficult or easy to 
solve (Jensen, 2010). To be able to obtain feasible 
solutions that are short and easy-to-recognize, 
suitable constraints have to be introduced (Kann, 
2000). According to Grom (2010), a problem x that is 
in NP is also in NP-Complete if and only if every 
other problem in NP can be quickly (i.e. in 
polynomial time) transformed into x. A few examples 
of NP-complete problems include Multiprocessor 
Scheduling Comparative Divisibility, Satisfiability 
with 3 literals per clause (3-SAT), and traveling 
salesman problem (Ruiz-Vanoye et al., 2011). 

2.1.1 Travelling Salesman Problem 

The travelling salesman problem (TSP) is one of the 
most studied discrete optimization problems 
(Bookstaber, 1997). Although TSP is difficult to  
 

Table 1: Demography on Environmental Services 2006-2010 of Davao City (City of  Davao, 2011b). 

Indicator 2006 2007 2008 2009 2010 
Average Volume of garbage 
disposed daily, cu. M. 

946.51 997.14 996.03 1167 1189 
Number of hauling trucks 
utilized 

43  75 80 83 80 
Number of Garbage 
Collectors 

280  714 714 714 360 
Frequency of Collection Daily Daily Daily Daily Daily 
Dumping Site (location) Brgy. New Carmen, 

Tugbok District 
Barangay Lacson, 
Calinan District 

Barangay Lacson, 
Calinan District 

Barangay Lacson, 
Calinan District 

Brgy. Lacson, Calinan 
Dist. and Brgy. 

Carmen Tugbok Dist.
Other garbage disposal 
practices 

Burning,  
dump in pit, 
composting 

Burying Composting Composting Composting

Garbage Sources,  %  
Residential, Commercial, 
Industrial 

- 83 83 83 83 
Market - 15 15 15 15 
Canals/garden waste/cut 
trees 

- 2 2 2 2  



solve especially with large number of cities, it is still 
very popular because aside from it is easy to 
formulate, it has a large number of applications.  

Lin (1965) defined TSP as a problem of a 
salesman who needs to visit each city only once of the 
N given cities. The salesman can start from any city 
but should return to that same city. One critical 
consideration in the solution is that the route or tour 
that the salesman must take must have the minimum 
distance. Distance traveled may be replaced with 
other notions such as time, cost, etc. The salesman 
must know the distances of travelling between each 
pair of cities (Poort, 1997). 

TSP may be represented as a weighted graph. The 
nodes of the graph represent the cities and the edges 
represent the existence of a route between two cities 
and the weight represents the distance between two 
cities. 

Lin (1965) also showed a mathematical 
representation of TSP:  Given a “distance matrix” D 
= [dij], where dij is the distance from city i to city j, (i, 
j = 1, 2, 3, …, n), find a permutation P from 1 through 
n that minimizes the quantity 

 

 (1)
 

TSP may also be formulated as a linear problem; 
hence it may be solved as such. Dantzig et al. (1954) 
have given a linear programming approach that 
considers only part of the required linear constraints 
and have found the technique effective in several 
cases (Lin, 1965). 

The main application of the TSP is logistics. One 
may wish to find good route schedules for trucks, 
order-pickers in a warehouse, aircraft, tours, etc. 
Other applications include scheduling jobs on 
machines, computing DNA sequences, controlling 
satellites (also telescopes, microscopes, and lasers), 
designing telecommunications networks, designing 
and testing VLSI circuits, x-ray crystallography, and 
clustering data arrays (Letchford, 2010). 

2.1.2 Methods of Solving TSP 

Methods of solving TSP can be classified into two 
categories: exact algorithms and heuristic algorithms. 

Exact algorithms can be considered brute force, 
which will not only find solutions but also compare 
them to get the optimal one (Goyal, 2010). 

Heuristic methods are used to provide solutions, 
which are not necessarily optimal. Most methods of 
this type employ practical techniques based on 
experimentation and trial-and-error. In modern 
methods, the solutions for TSP having millions of 
cities can be found within a reasonable time. These 

solutions can be as close as 2% to 3% away from the 
optimal one (Edelkamp and Schroedl, 2012). 

Some of the heuristic algorithms that have been 
used for TSP in the past are Cutting Planes in the 
study of Dantzig et al. (1954), Branch and Bound in 
Little et al. (1963), Lagrangian Relaxian in Held and 
Karp (1970), Simulated Annealing in Kirkpatrick et 
al. (1983), and Branch and Bound in Padberg et al. 
(1987). 

2.1.3 Garbage Collection Routing 

In garbage collection routing, the selection of a 
certain route on a set of location points by a garbage 
truck can be reduced to a TSP (Belien et al., 2011). 
Different techniques have been used in selecting a 
garbage collection route such as minimal 
“deadheading” as used by Caliper Corporation (2008), 
an Automated Routing for Solid Waste Collection 
Software, genetic algorithm by von Poser et al. (2006), 
modified heuristic travelling salesman procedure by 
Awad et al. (2001), and mixed integer programming 
model by Agha (2006). 

In the study of Agha (2006) in Gaza Strip in the 
Mediterranean, mixed integer programming (MIP) 
model was applied to minimize the garbage collection 
route in Deir El-Balah.  Results showed that the 
application of the model improved the collection 
system by reducing the total distance by 23.47%. 
Awad et al. (2001) used modified heuristic travelling 
salesman procedure to shorten the waste collection 
route in Irbid, Jordan. Results showed a cut in the 
transportation length of about five kilometers per day, 
which leads to 1800 kilometers per year. 

2.2 Firefly Algorithm 

Firefly algorithm is an evolutionary metaheuristic 
optimization algorithm inspired by fireflies’ behavior 
in nature (Farahani et al., 2011). Developed by Xin-
She Yang in 2007, the firefly algorithm uses three 
idealized rules: 

1. All fireflies are unisex so that one firefly 
will be attracted to other fireflies regardless of their 
sex; 

2. Attractiveness is proportional to their 
brightness, thus for any two flashing fireflies, the less 
bright firefly will move towards the brighter one. The 
attractiveness and brightness both decrease as 
distance increases. If there is no brighter firefly 
movement of the firefly is random; and 

3. The brightness of a firefly is affected or 
determined by the landscape of the objective function. 
For a maximization problem, the result of the 



objective function can be assumed to be in proportion 
to the brightness.  

Yang (2010) stated two (2) important issues in 
firefly algorithm: the variation of light intensity and 
formulation of the attractiveness. For simplicity, 
Yang assumed that the attractiveness of a firefly is 
determined by its brightness, which in turn is 
associated with the encoded objective function. Each 
firefly has its own specific attractiveness β, which is 
judged by the beholder or by other fireflies. In 
addition, the light intensity also depends on the 
distance from the source. The light is also absorbed in 
the media resulting to varying attractiveness and 
degree of absorption. If a given medium has a fixed 
light absorption coefficient γ, the light intensity I 
depends on the value of the distance r between two 
fireflies:  

 (2)

where I0 is the original light intensity. 
As a firefly’s attractiveness is proportional to the 

light intensity seen by adjacent fireflies, attractiveness 
β of a firefly is now defined by 

 (3)

where β0 is the attractiveness when distance 
between the two fireflies, represented by r, is zero. 

The distance between any two fireflies i and j is 
the Cartesian distance: 

 

(4)

where xi,k is the kth component of the spatial 
coordinate xi of ith firefly. 

The movement of a firefly i attracted to another 
more attractive or brighter firefly j is determined by 

(5)

where xij refers to the new value of the moved 
firefly. The second term is for the attraction and the 
third term is for the random movement using the 
randomization parameter alpha α. The variable rand 
is a random number generator uniformly distributed 
in [0, 1]. 

In the study of Yang (2010), he was able to show 
that the firefly algorithm performed more efficiently 
and provided better success rate than PSO and GA. 
This implies the very high potential of FA as a 
powerful approach in solving NP-hard problems. 

 

2.2.1 Modified Discrete Firefly Algorithm 

The Modified Discrete Firefly Algorithm was studied 
in 2011 by Pabrua (2011). The algorithm was derived 
from the study of Sayadi et al. (2010). Pabrua (2011) 
made discrete the modified firefly algorithm of 
Sayadi et al. (2010) by applying the hyperbolic 
tangent Sigmoid function (tanh), Equation 7, in 
computing probabilities after the initialization of 
fireflies and after every firefly movement. Sayadi et 
al. (2010) used the following Sigmoid function to 
replace the real number generated by the algorithm 
with a binary number: 

, (6)

where xjk is the calculated firefly movement from 
firefly j to firefly k and S(xik) denotes the probability 
of bit xjk taking 1.  

Although Sayadi et al. (2010) showed that the 
modified Firefly algorithm is better than the existing 
ant colony algorithm, Pabrua’s method of 
discretization was still more effective (Pabrua, 2011). 

The effectiveness of tanh in computing 
probabilities is shown in Pabrua’s (2011) study 
mentioning the data applied to generate or compare 
the results:  

 
(7)

where xij signifies the value of the movement of 
firefly I towards firefly j. 

2.3 Simulated Annealing 

The name and principle of Simulated Annealing (SA) 
algorithm is from the process of cooling molten metal. 
If a metal cools rapidly, there is a limited time for its 
atoms to settle into a tight lattice and are solidified in 
a random configuration, which results in brittle 
material. If the temperature is decreased very slowly, 
the atoms are given enough time to settle into a strong 
crystal (Luke, 2009). 

SA starts with generating a new solution using the 
objective or cost function given in the problem. The 
probability that the new solution is accepted when the 
following condition is true, otherwise, the current 
configuration is used for the next steps (Kirkpatrick 
et al., 1983):  

e(-ΔE/kT) > rand (8)
where ΔE is the change of energy or the absolute 

difference from the current solution to the new 
solution function value. The Boltzmann constant is 
represented by k, and the synthetic “temperature” is T. 



The rand is the same in FA. 
Hamdar (2008) used a starting temperature of 

10,000, cooling rate of 0.9999, and absolute 
temperature of 0.00001 as his parameters. Goossaert 
(2010) solved TSP through SA with varying 
parameters: a range of cooling rate from 0.95 to 0.99, 
starting temperature range of 1e+10 to 1e+50, and 
ending temperature of 0.001 to 1. On the other hand, 
Wright (2010) developed an automated parameter 
selection for SA algorithm in which the best results 
were obtained, thus this set of parameters were used 
in this study. 

2.4 Hybrid Algorithms 

Over the years there has been a substantial amount of 
progress on the fundamental ideas of designing 
efficient algorithms and the theoretical properties of 
these methods of simulation. Each algorithm has 
different strengths and can be categorized by meeting 
different criteria based on the statistical properties of 
the simulated Markov chain. It is therefore natural 
that the question arises whether a better scheme can 
be developed by combining the best aspects of 
existing algorithms (Lee, 2011). 

A hybrid algorithm can be designed from different 
perspectives by a variety of choices of algorithms to 
combine and the way in which they are combined. 
The primary motivation is to propose an efficient 
algorithm that overcomes identified weakness in the 
individual algorithms. 

Hybrid methods have previously been applied to 
TSP. One of the hybrids solutions was developed by 
Zarei and Meybodi (2002). Zarei and Meybodi used 
both genetic algorithm (GA) and learning automata 
(LA) simultaneously to search in state space. It has 
been shown that the speed of finding answer increases 
remarkably using LA and GA simultaneously in 
search process, and it also prevents algorithm from 
being trapped in local minima. 

In this study, SA was used as a local optimizer of 
the modified discrete firefly algorithm (MDFA). The 
resulting hybrid algorithm was modified to address 
the constraints of the garbage collection routing as a 
TSP. 

2.5 TSP Benchmark Datasets 

Researchers of TSP have relied on the availability of 
standard test instances to measure the efficiency of 
the introduced solution methods. Since 1994, Gerhard 
Reinelt have collected various TSP test instances 
together with new examples drawn from industrial 
applications and from geographic locations of cities 

on maps. Reinelt’s library, called the TSPLIB, 
contains over 100 examples with sizes from 14 cities 
up to 85,900 cities. A few of these benchmark data 
sets are PR152 (a 152-city problem), ST70 (a 70-city 
problem), TS225 (225-city problem), and GR431 
(431-city problem). 

3 METHODOLOGY 

The succeeding subsections present the proposed 
algorithm utilizing a nature-inspired algorithm on an 
optimization problem hybridized with a non-
population-based local heuristic method. The method 
proposed is called Modified Discrete Firefly – 
Simulated Annealing Algorithm (MDF-SA). The 
Modified Discrete Firefly Algorithm is the main 
algorithm throughout the procedure and is hybridized 
with Simulated Annealing Algorithm as its local 
optimizer. The subsections include details on 
population initialization, local optimizer and 
generation of a new solution. The performance 
criteria to evaluate the results of the study is also 
listed in this section as well as the benchmark data 
sets used. 

3.1 Benchmark Data Sets 

The benchmark data sets downloaded from TSPLIB 
used in this study are: PR152, ST70, TS225 and 
GR431. These data sets were selected for their 
similarity on their type of data inputs. The proposed 
algorithm was also applied to the current garbage 
collection routing system of the City of Davao. This 
data set was taken from the Davao City Environment 
and Natural Resource Office (CENRO). As seen in 
Table 1, the city currently has 360 garbage collectors 
distributed to 80 garbage trucks and collects an 
average of 1,189 cubic meters of trash daily. 

Garbage collection areas (areas the garbage truck 
must visit) were represented by nodes mp j in a graph 
and by data vectors zp upon implementation. Hence, 
for each node, letting zp be a node and mij be the 
distances between nodes, then  

zp = (mp2, mp3, mp4, …, mp j) 

where j is the jth node to be visited; and each 
firefly (solution  to the routing problem) from 1 to N 
(total number of fireflies) is : 

 



 
where V is the vth node to be visited. 

3.2 Parameter Settings 

The study adopted the parameters of Sayadi et al. 
(2010) for MDFA while the parameters used in SA 
algorithm was based on the method of Wright (2010) 
as summarized in Table 2. 

Table 2: Firefly algorithm (FA) and Simulated Annealing 
(SA) parameters adopted from other studies. 

Sayadi et al. (2010) Wright (2010) 
FA Parameters Value SA Parameters Value
Attractiveness 
(β0) 

1.0 Initial 
Temperature 
(initial_temp) 

50.00 

Adaptable 
Absorption 
Coefficient (γ0) 

0.8 Final 
Temperature 
(final_temp) 

2.00

Random Step 
size (α) 

0.2 Geometric 
Ratio (k) 

0.99

Number of 
fireflies (N) 

30.0   

Max number of 
iterations 
(max_iter) 

50.0   

3.3 Algorithms 

MDFA by Pabrua (2011) is a modified version of the 
DFA by Sayadi et al. (2010) wherein the Sigmoid 
function is replaced with the hyperbolic tangent 
sigmoid function. In this study, MDFA is made 
hybrid with SA. Figure 1 shows the pseudocode of the 
MDF-SA algorithm being proposed. 

The algorithm begins with the initialization of the 
algorithm parameters, namely N (number of fireflies), 
gamma, beta_zero, alpha, and max_iter (Line 1). The 
initialization of fireflies then follows (Line 2). Upon 
the random generation, each firefly should produce 
valid solutions.  

The light intensity (I) of all fireflies is initialized 
using the objective function (Line 3 to 5). The light 
intensity in this context is defined as the sum of 
the distances between cities in a specific order, solved 
by Equation [2]. The firefly with the best light 
intensity value, denoted as best is selected from the 
randomly generated firefly population (Line 6). This 
value is then initialized as the initial global best firefly 
called global_best. For all fireflies, the light 

intensities are compared and if the light intensity of 
firefly j is less than the light intensity of firefly i, a 
new position for firefly i is generated.  

The generation of the new position is done in three 
steps. First, is to compute the Euclidean distance 
(Line 11) between firefly i and firefly j using equation 
[4]. Second, is to compute the movement of firefly i 
towards firefly j with the use of equation [5] (Line 13). 
The third and final step of the position generation part 
of the algorithm is to apply tanh (Equation [7]) to the 
newly generated position so that these values are now 
discretized, taking values in the range (-1, +1) (Line 
14). The second and third are repeatedly iterated until 
a valid solution is generated.  

The next step of the algorithm is to convert the 
positions of the firefly into a discrete matrix (Line 16), 
wherein the lowest values in each row is assigned 
with 1, while the others are assigned with the value 0. 
A local search using SA is then employed to the 
population of the fireflies (Line 19). The light 
intensity of each firefly is updated after the 
processing of the local search (Line 20). The values 
for best and global_best are updated and the iteration  
 
1 Initialize necessary parameters 
2 Randomly generate initial 

population of firefly Fi’s 
3 For each firefly 
4   Calculate light intensity 
5 End for 
6 Select best and initialize as 

global_best 
7 for  t = 1 to max_iter do 
8  for i=1 to N  
9   for j=1 to N, (i != j) 
10 if light intensity j < light 

intensity i 
11      Calculate Euclidean distance  
12      do 
13       Calculate firefly movement 
14       Apply tanh 
15      while solution is not valid 
16      Convert to discrete matrix  
17      Subject moved firefly to SA 
18     Update light intensity 
19     End if 
20   End for 
21   End for 
22 Rank fireflies according to light 

intensity 
23   Update best and global_best 
24  End for 
25  Print/Report result to an output 

module 

Figure 1: Pseudocode of MDF-SA algorithm. 



counter is incremented once (Line 23). It is then 
checked if the number of iterations reached the 
maximum number of iterations (max_iter). If the 
maximum number of iteration is reached, then the 
value of global_best is returned. Otherwise, the 
execution of the algorithm continues. 

3.3.1 Population Initialization 

As discussed before, a firefly is a sequence of nodes. 
The process of generating the population of the 
fireflies is specified in the following discussion; the 
pseudo code for population initialization is Figure 2. 

Each firefly is initialized as a zero matrix. For all 
initialized fireflies, a random permutation of the 
given N nodes is generated and is designated to each. 
For example, there are 50 fireflies and 70 visiting 
nodes. Each firefly represents a unique solution. No 
two fireflies shall correspond to the same solution.  

The position of the node in the solution denotes its 
priority in visitation. The node j assigned to visiting 
priority n is assigned the value 1. This is true for all 
nodes and all fireflies. Each value of the firefly 
position is then restricted to a discrete value using the 
hyperbolic tangent sigmoid function (Equation [7]). 

3.3.2 Hyberbolic tangent sigmoid function 

The effectiveness of tanh (Equation [7]) in computing 
probabilities of placing a node in a visiting priority 
was sused because of its superior results in the study 
of Pabrua (2011). 

In this study, the node j in visiting propriety k with 
the lowest value is assigned to that priority denoted 
by 1. Otherwise, the value of node j in visiting priority 
k is not assigned to that priority and takes the value of 
0. If the node with the minimum value has already 
been assigned to a visiting priority, the next minimum 
value is assigned to that specific priority. 

Figure 2: Pseudo code for generating initial population of 
fireflies. 

3.3.3 Local Search - SA 

In this study, simulated annealing (SA) was used as 
the local search algorithm.  

The first step of SA process is the initialization of 
temperature (Line 1). The temperature is set in a 
manner high enough to virtually accept all transitions 
of solutions during the early stage of the process. The 
moved firefly from the MDFA process is /initialized 
as the current solution (Line 2). While the final 
temperature has not yet been reached, a new solution 
is then generated randomly in an attempt to replace 
the current one, given the fact that it has a better 
fitness value. The quantization error of the current 
solution and the newly generated solution are 
represented by evaluation (new) and evaluation 
(current) (Line 5). If Edelta is less than zero or if a 
randomly generated number from a uniform  
 

Table 3: Summary of MDFA and MDF-SA results from four benchmarks. 

Benchmark Number of 
Cities 

MDFA MDF-SA Best Known 
Solution 

Best Solution Running 
Time (ms) 

Best Solution Running 
Time (ms) 

 

PR152 152 160980 279115 160980 278862 73682
ST70 70 3072 48366 1422 217647 675
TS225 225 277540 291067 277556 295731 126643
GR431 431 3519 666715 3518 676417 171414

1 for each firefly 
2   Initialize as set of nodes 
3 End for  
4 for each firefly 
5   for all nodes to be visited 
6    do 
7     do 
8   Generate random number 

(rand) between 1 to n 
9   while rand is in permutation 

list 
10   while generated permutation 

list already exists 
11   End for 
12 End for 
13 for each firefly 
14    for all nodes 
15    Apply tanh  
16   End for 
17    Assign node visiting priority 
18 End for 
 



distribution [0, 1] is less than , the new 
solution will replace the current solution (Lines 6 to 
11). If the equilibrium condition is reached, the value 
of the temperature is lowered by multiplying T to a 
constant value k. This process is repeated until T 
reaches a certain value, and the best solution is 
returned.  

3.3.4 Configuration of a New Solution 

A swapping scheme was utilized in the configuration 
of a new solution. To generate a new solution, two 
nodes from the moved firefly is swapped. For an easy 
understanding, an example is shown below: 

Suppose a firefly Fi has values: 

Fi = {D, A, C, B, W, M} 

Upon random selection, nodes C and W are chosen. 
These two nodes were then swapped resulting to: 

Fi = {D, A, W, B, C, M} 

The swapping scheme in SA was applied until a 
valid solution is found or until stopping criterion is 
met. 

3.4 Performance Criteria 

Evaluation of the results of MDF-SA algorithm was 
performed by: 

a) Taking the average best solution quality and 
corresponding running time for MDF-SA; 

b) Taking the average best solution time among 
the 30 runs for MDF-SA; 

c) Taking the best solution quality and 
corresponding running time among the 30 
runs for the MDF-SA; 

d) Taking the best solution time among the 30 
runs for MDF-SA; 

e) Running MDFA and getting the best 
solution quality and its corresponding 
running time among the 30 runs; 

f) Comparing the best solution quality and 
corresponding running time among the 30 
runs for the MDF-SA to MDFA; and 

g) Comparing the best solution quality for 
MDF-SA to the current solid waste routing 
system of Davao City. 

 
The best solution quality refers to the smallest 

value of the solution quality among the 30 runs. The 
average best solution quality refers to the average of 

the best solution quality of the 30 runs. The average 
best solution time refers to the average of the running 
time of the 30 runs.  

The best running time indicated in this paper 
refers to the best solution’s elapsed time in 
milliseconds (ms) from the random initialization until 
the best solution was found.  

The better solution quality refers to the smaller 
value of solution quality and better running time 
refers to the smaller value on obtained running time. 

3.5 Computer Specifications 

The method proposed was implemented using Java 
Programming language (JDK 1.6 and Netbeans IDE 
v6.9.9 or above) because of its object-oriented 
mechanism. Also, Java has built-in randomization 
functions and data structures that are very usable in 
the implementation phase. The program was run on 
computer units which run on a Windows 7 operating 
system o with a central processing unit of Intel® 
Core™ i5-3380M Processor and 2GB RAM. 

4 RESULTS AND DISCUSSION 

In this chapter the evaluation of the performance of 
MDF-SA algorithm is done in two sections, based on 
the given 1) benchmark data sets, and 2) the real data 
set, Davao City Solid Waste Collection Route. 

4.1 Evaluation of the Performance of 
the MDF-SA Algorithm 

The results of MDF-SA algorithm is summarized in 
Table 3. On applying the MDF-SA on PR152, among 
the 30 runs, the best solution quality and best average 
solution quality is 160980 units, which is 
approximately 4327 units better than the average best 
solution quality (165307.67 units). It took MDF-SA 
Algorithm 278862 ms or approximately 4 minutes 
and 38 seconds to obtain this solution.  

The best solution time for MDF-SA algorithm run 
for 276499 ms which is approximately 3291 ms faster 
than the average running time (279790ms) of the 30 
runs and 2362 ms faster than the running time of the 
obtained solution quality. The best solution time 
obtained a solution quality and average solution 
quality of 167385 units.  



 
Figure 3: (A) Actual route of Davao City solid waste collection in Central Davao Area, (B) Route generated by MDF-SA. 

On using ST70, the average best solution quality 
of the 30 runs of using the ST70 data set is 1455.1 
units. The best average solution quality is 1771 units. 
The best solution quality is 1422 units with average 
solution of 217647 units. From the start of the 
execution of the algorithm, the solution gradually 
converged to a lower value until the best solution was 
obtained at the 50th iteration. It took MDF-SA 
217647 ms to obtain the best solution quality. 

The best solution time on using ST70 data set is 
203399 ms, which is 11901ms faster than the average 
running time (215301 ms) of the 30 runs and 57090 
ms faster than the running time of the obtained best 
solution quality among the 30 runs. The MDF-SA 
execution with best solution time obtained the 
solution quality and average solution quality of 
167385 units.  

In the use of TS225 data set, the average best 
solution quality of the 30 runs 280439 units. The best 
average solution is 277540 units, which is also the 
best solution obtained among the 30 runs. It has a 
running time of 293979 ms. The best solution time 
among the 30 runs is 290903 ms which obtained a 
best and average solution quality of 283540 units. 

GR431 obtained the average best solution quality 
of 3543.1 units. The best average solution quality 
among the 30 runs is 3518 units with running time of 
676417 ms. The best running time among the 30 runs 
is 669816 ms with an obtained best and average 
solution quality of 3542 units. 

In using the Davao City Garbage Collection Data 
Set, the best solution quality obtained is 731.2 km 
with a running time of 497254ms. The average best 
solution quality is 1144.5 km. The best average 
solution quality among the 30 runs is also 731.2 km. 
The fastest among the 30 runs is 481327 ms with best 
and average solution quality of 1259.85 km. 

4.2 Result for Davao City Garbage 
Collection Data Set 

Table 4 shows the best solutions obtained when 
applying MDF-SA and MDFA algorithms to the 
Davao City Garbage Collection data set. Based on the 
results shown, MDF-SA obtained the best and 
average solution of 731.2 km, and running time of 
99450 ms. On the other hand, MDFA obtained the 
best solution quality and best average solution quality, 
both having values of 737.1 km and running time of 
100937 ms. 

The application of MDF-SA Algorithm to the 
current garbage collection routing system of Davao 
city resulted to a relative difference of 27.92% while 
the application of MDFA to the same data set resulted 
to relative difference of 28.95% from the current 
routing distance. 

It is observed that there is no significant difference 
between the performance of the MDFA and MDF-SA 
in terms of solution quality. In terms of running time 



of the runs resulting to the best solution quality, 
MDF-SA performed better than MDFA.  

Table 4: Results of the application of MDF-SA Algorithm 
and MDFA Algorithm to the Garbage Collection Routing 
System of Davao City. 

  MDF-SA MDFA 
Current 
Routing 

Best Solution 
(km) 731.2 737.1 571.6* 

Average Solution 
(km) 731.2 737.1 - 

Running Time 
(ms) 99450 100937 - 

*manually calculated 

Table 5: Summary of results of using MDF-SA and MDFA 
to ST70, PR152, TS225,  GR431 and Davao City solid 
waste collection route. 

Data Set Algorithm with better Results
ST70 MDF-SA 
PR152 MDF-SA and MDFA 
TS225 MDFA 
GR431 MDF-SA 
Davao City Solid 
Waste Collection 

MDF-SA 

When MDF-SA algorithm was applied to the 
current Davao City Garbage collection route system, 
it produced a better solution than the one generated 
by MDFA. A summary of results using both 
algorithms is summarized in Table 5. Factors causing 
these differences in the performance of the hybrid 
algorithm may have been the parameters of the 
algorithm used and the approximation of the distances 
among the nodes/garbage collection areas. Figure 3 
shows the route generated by MDF-SA in comparison 
with the actual route of the Davao City Solid Waste 
Collection.  

5 SUMMARY AND 
CONCLUSIONS 

This study hybridized the Discrete Firefly Algorithm 
with Simulated Annealing  

This study used tanh on Discrete Firefly 
Algorithm (DFA) and hybridized it with Simulated 
Annealing on discretizing the data to solve the NP-
complete problem specifically the travelling 
salesman problem.  

The researcher evaluated the performance of 
MDF-SA Algorithm in five benchmarks: ST70, 
PR152, TS225, GR431 and the current Davao City 

Garbage Collection route. In using the MDF-SA 
Algorithm and MDFA Algorithm, the researcher used 
30 fireflies, 50 iterations, 0.8 gamma value, 1 initial 
beta value, and 0.2 alpha value. On the hybridized 
MDF-SA, the researcher used an initial temperature 
of 50, final temperature of 2 and geometric ration of 
0.99.  

Both algorithms used the same parameters with 
those in Sayadi et al. (2010) for the Firefly Algorithm 
and Wright (2010) for the Simulated Annealing 
parameters automation. 

In terms of best solution quality, MDF-SA did not 
improve the best known solution for all data sets. 
MDF-SA and MDFA performed almost equally on 2 
of the data sets: PR152 and GR431. MDFA 
performed better by .01% relative error on one of the 
data sets, TS225. MDF-SA performed much better on 
the remaining 2 data sets: ST70 and the actual solid 
waste collection system of Davao City. 

In terms of running time, MDFA performed faster 
on three of the data sets (ST70, TS225 and GR431) 
compared to MDF-SA, which may have executed 
more iterations to obtain a solution.  

On using the actual solid waste collection route of 
Davao City as a data set, MDF-SA generated better 
collection route than the one by MDFA. 

For further improvements of this study, the 
researcher recommends the use of variations on the 
parameters both on the Firefly Algorithm and 
Simulated Annealing Algorithm. The researcher also 
recommends implementing the algorithm in a 
problem with around 70 to 431 number of cities, 
collection points, or nodes. 
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