
Solid Waste Collection Routing Optimization using Hybridized
Modified Discrete Firefly Algorithm and Simulated Annealing

A Case Study in Davao City, Philippines

Cinmayii Manliguez1,2, Princess Cuabo1, Ritchie Mae Gamot1 and Kim Dianne Ligue1

1Department of Mathematics, Physics, and Computer Science, University of Philipines, Philipines
2Phil-LiDAR 1.B.13 LiDAR Data Processing and Validation in Mindanao: Davao Region

College of Science and Mathematics, University of the Philippines Mindanao,
Davao City, 8022, Philippines,

Keywords: Garbage Collection, Routing Optimization, Travelling Salesman Problem, Discretization, Metaheuristics.

Abstract: Modified Discrete Firefly - Simulated Annealing (MDF-SA) Algorithm was used to solve travelling salesman
problem (TSP) using the tanh function for discretization. MDF-SA was tested on four (4) data instances from
TSPLIB and the Davao City solid waste collection routing system. The objective of this study is to evaluate
and compare MDF-SA with MDFA in terms of running time and solution quality. The data set selected from
the TSPLIB are ST70, PR152, GR431, and TS225. The Davao City solid waste collection routing system is
used in the hopes of finding a better solution from the current. Results show that MDF-SA and MDFA perform
almost equally well on the data sets PR152 and GR43. MDFA performs better on using the TS225 data set,
but MDF-SA performs much better on ST70. In general, the hybrid algorithm has produced better route
system quality of the Davao City solid waste collection than the MDFA.

1 INTRODUCTION

Solid waste management is becoming critical in the
current setting due to the escalating urbanization and
population growth in a location, coupled with
increasing environmental concerns (Awad et al.,
2001). Davao City, for instance, is the most densely
inhabited and highly industrialized city in Region XI
having an approximately 1.63 million residents in
2015 (Philippine Statistics Authority, 2015). As a
result, the volume of waste collected per day
increased by 100% since 2013 driving the city
government to spend about ₱13 million for the
monthly rental of a hundred garbage trucks (Carillo,
2016). This situation poses a good basis for the
importance of optimization in the process of garbage
collection like routing.

The routing problem is one of the main
components of garbage collection. The goal of
optimizing the route for solid waste collection is to
minimize the cost at a desired level of service.
According to Karadimas et al. (2007), at most 80% of
solid waste disposal budget is spent on collection.
Therefore, a small improvement in the collection

operation can result to a significant saving in the
overall cost.

This study explores the possibility of hybridizing
the Modified Discrete Firefly Algorithm (MDFA)
and Simulated Annealing (SA) Algorithm in solving
the solid waste collection routing. Specifically, this
study aims to:

1. Evaluate the performance of Modified
Discrete Firefly with Simulated Annealing
(MDF-SA) algorithm in terms of running
time and solution quality (distance);

2. Evaluate and compare the performance of
MDF-SA algorithm with that of MDFA in
terms of running time and solution quality
using four benchmark data instances (PR152,
ST70, TS225, and GR431)

3. Evaluate the performance of MDFSA
algorithm as applied to solid waste
collection in terms of running time and
solution quality (distance units), and the
2014 Davao City solid waste collection
routing system); and

4. Compare MDF-SA’s performance (solution
quality) with the existing total distance taken
to complete the solid waste collection

Manliguez C., Cuabo P., Gamot R. and Ligue K.
Solid Waste Collection Routing Optimization using Hybridized Modified Discrete Firefly Algorithm and Simulated Annealing - A Case Study in Davao City, Philippines.
DOI: 10.5220/0006322500500061
In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2017), pages 50-61
ISBN: 978-989-758-252-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

routing system in the city of Davao,
Philippines.

This study is limited to the evaluation of the

introduction of standard Simulated Annealing
algorithm to Modified Discrete Firefly algorithm, as
well as the evaluation of the hybrid’s performance
when it is applied to known TSP benchmark data sets
specifically the PR152, ST70, TS225, GR431, and the
garbage collection routing system in the city of Davao,
Philippines.

In this paper, a background of solid waste
collection, the area of study and the algorithms are
discussed first. Next is the methodology of the study,
followed by the results and discussion, and lastly, the
summary and conclusions.

2 RELATED LITERATURE

Davao City, one of the largest city in the world, has a
land area of approximately 244,000 hectares and is
located in Regions 11 or Southern Mindanao. The city
is lying in the grid squares with latitude of 6 degrees
58 minutes to 7 degrees 34 minutes North, and
longitude of 125 degrees 14 minutes to 125 degrees
40 minutes East. The city is bounded by Davao
Province on the north, Davao Province and Davao
Gulf partly on the east, Davao del Sur on the south,
and North Cotabato on the west (City of Davao,
2011a). Coming from Manila, Davao City Proper
goes southeast and is approximately 946 aerial
kilometers.

The strategic location of Davao City made it the
regional trade center in Southern Mindanao, was

developed as international trade center to the
Southern Pacific, and Southern Gateway of the
neighboring countries like Brunei, Indonesia,
Malaysia, Australia, and others (City of Davao,
2011b). There are three congressional districts in the
city, and 11 administrative districts. Davao City
Environmental and Natural Resources Office
summarizes the demography on environmental
services from 2006 to 2010 in Table 1.

2.1 Nondeterministic Polynomial-Time
(NP) Complete Problems

Nondeterministic Polynomial-time complete
problems from theoretical computer science is a very
intriguing (Dasgupta et al., 2006) and tantalizing class
of problems because of their reduction property,
making every problem equally difficult or easy to
solve (Jensen, 2010). To be able to obtain feasible
solutions that are short and easy-to-recognize,
suitable constraints have to be introduced (Kann,
2000). According to Grom (2010), a problem x that is
in NP is also in NP-Complete if and only if every
other problem in NP can be quickly (i.e. in
polynomial time) transformed into x. A few examples
of NP-complete problems include Multiprocessor
Scheduling Comparative Divisibility, Satisfiability
with 3 literals per clause (3-SAT), and traveling
salesman problem (Ruiz-Vanoye et al., 2011).

2.1.1 Travelling Salesman Problem

The travelling salesman problem (TSP) is one of the
most studied discrete optimization problems
(Bookstaber, 1997). Although TSP is difficult to

Table 1: Demography on Environmental Services 2006-2010 of Davao City (City of Davao, 2011b).

Indicator 2006 2007 2008 2009 2010
Average Volume of garbage
disposed daily, cu. M.

946.51 997.14 996.03 1167 1189
Number of hauling trucks
utilized

43 75 80 83 80
Number of Garbage
Collectors

280 714 714 714 360
Frequency of Collection Daily Daily Daily Daily Daily
Dumping Site (location) Brgy. New Carmen,

Tugbok District
Barangay Lacson,
Calinan District

Barangay Lacson,
Calinan District

Barangay Lacson,
Calinan District

Brgy. Lacson, Calinan
Dist. and Brgy.

Carmen Tugbok Dist.
Other garbage disposal
practices

Burning,
dump in pit,
composting

Burying Composting Composting Composting

Garbage Sources, %
Residential, Commercial,
Industrial

- 83 83 83 83
Market - 15 15 15 15
Canals/garden waste/cut
trees

- 2 2 2 2

solve especially with large number of cities, it is still
very popular because aside from it is easy to
formulate, it has a large number of applications.

Lin (1965) defined TSP as a problem of a
salesman who needs to visit each city only once of the
N given cities. The salesman can start from any city
but should return to that same city. One critical
consideration in the solution is that the route or tour
that the salesman must take must have the minimum
distance. Distance traveled may be replaced with
other notions such as time, cost, etc. The salesman
must know the distances of travelling between each
pair of cities (Poort, 1997).

TSP may be represented as a weighted graph. The
nodes of the graph represent the cities and the edges
represent the existence of a route between two cities
and the weight represents the distance between two
cities.

Lin (1965) also showed a mathematical
representation of TSP: Given a “distance matrix” D
= [dij], where dij is the distance from city i to city j, (i,
j = 1, 2, 3, …, n), find a permutation P from 1 through
n that minimizes the quantity

 (1)

TSP may also be formulated as a linear problem;
hence it may be solved as such. Dantzig et al. (1954)
have given a linear programming approach that
considers only part of the required linear constraints
and have found the technique effective in several
cases (Lin, 1965).

The main application of the TSP is logistics. One
may wish to find good route schedules for trucks,
order-pickers in a warehouse, aircraft, tours, etc.
Other applications include scheduling jobs on
machines, computing DNA sequences, controlling
satellites (also telescopes, microscopes, and lasers),
designing telecommunications networks, designing
and testing VLSI circuits, x-ray crystallography, and
clustering data arrays (Letchford, 2010).

2.1.2 Methods of Solving TSP

Methods of solving TSP can be classified into two
categories: exact algorithms and heuristic algorithms.

Exact algorithms can be considered brute force,
which will not only find solutions but also compare
them to get the optimal one (Goyal, 2010).

Heuristic methods are used to provide solutions,
which are not necessarily optimal. Most methods of
this type employ practical techniques based on
experimentation and trial-and-error. In modern
methods, the solutions for TSP having millions of
cities can be found within a reasonable time. These

solutions can be as close as 2% to 3% away from the
optimal one (Edelkamp and Schroedl, 2012).

Some of the heuristic algorithms that have been
used for TSP in the past are Cutting Planes in the
study of Dantzig et al. (1954), Branch and Bound in
Little et al. (1963), Lagrangian Relaxian in Held and
Karp (1970), Simulated Annealing in Kirkpatrick et
al. (1983), and Branch and Bound in Padberg et al.
(1987).

2.1.3 Garbage Collection Routing

In garbage collection routing, the selection of a
certain route on a set of location points by a garbage
truck can be reduced to a TSP (Belien et al., 2011).
Different techniques have been used in selecting a
garbage collection route such as minimal
“deadheading” as used by Caliper Corporation (2008),
an Automated Routing for Solid Waste Collection
Software, genetic algorithm by von Poser et al. (2006),
modified heuristic travelling salesman procedure by
Awad et al. (2001), and mixed integer programming
model by Agha (2006).

In the study of Agha (2006) in Gaza Strip in the
Mediterranean, mixed integer programming (MIP)
model was applied to minimize the garbage collection
route in Deir El-Balah. Results showed that the
application of the model improved the collection
system by reducing the total distance by 23.47%.
Awad et al. (2001) used modified heuristic travelling
salesman procedure to shorten the waste collection
route in Irbid, Jordan. Results showed a cut in the
transportation length of about five kilometers per day,
which leads to 1800 kilometers per year.

2.2 Firefly Algorithm

Firefly algorithm is an evolutionary metaheuristic
optimization algorithm inspired by fireflies’ behavior
in nature (Farahani et al., 2011). Developed by Xin-
She Yang in 2007, the firefly algorithm uses three
idealized rules:

1. All fireflies are unisex so that one firefly
will be attracted to other fireflies regardless of their
sex;

2. Attractiveness is proportional to their
brightness, thus for any two flashing fireflies, the less
bright firefly will move towards the brighter one. The
attractiveness and brightness both decrease as
distance increases. If there is no brighter firefly
movement of the firefly is random; and

3. The brightness of a firefly is affected or
determined by the landscape of the objective function.
For a maximization problem, the result of the

objective function can be assumed to be in proportion
to the brightness.

Yang (2010) stated two (2) important issues in
firefly algorithm: the variation of light intensity and
formulation of the attractiveness. For simplicity,
Yang assumed that the attractiveness of a firefly is
determined by its brightness, which in turn is
associated with the encoded objective function. Each
firefly has its own specific attractiveness β, which is
judged by the beholder or by other fireflies. In
addition, the light intensity also depends on the
distance from the source. The light is also absorbed in
the media resulting to varying attractiveness and
degree of absorption. If a given medium has a fixed
light absorption coefficient γ, the light intensity I
depends on the value of the distance r between two
fireflies:

 (2)

where I0 is the original light intensity.
As a firefly’s attractiveness is proportional to the

light intensity seen by adjacent fireflies, attractiveness
β of a firefly is now defined by

 (3)

where β0 is the attractiveness when distance
between the two fireflies, represented by r, is zero.

The distance between any two fireflies i and j is
the Cartesian distance:

(4)

where xi,k is the kth component of the spatial
coordinate xi of ith firefly.

The movement of a firefly i attracted to another
more attractive or brighter firefly j is determined by

(5)

where xij refers to the new value of the moved
firefly. The second term is for the attraction and the
third term is for the random movement using the
randomization parameter alpha α. The variable rand
is a random number generator uniformly distributed
in [0, 1].

In the study of Yang (2010), he was able to show
that the firefly algorithm performed more efficiently
and provided better success rate than PSO and GA.
This implies the very high potential of FA as a
powerful approach in solving NP-hard problems.

2.2.1 Modified Discrete Firefly Algorithm

The Modified Discrete Firefly Algorithm was studied
in 2011 by Pabrua (2011). The algorithm was derived
from the study of Sayadi et al. (2010). Pabrua (2011)
made discrete the modified firefly algorithm of
Sayadi et al. (2010) by applying the hyperbolic
tangent Sigmoid function (tanh), Equation 7, in
computing probabilities after the initialization of
fireflies and after every firefly movement. Sayadi et
al. (2010) used the following Sigmoid function to
replace the real number generated by the algorithm
with a binary number:

, (6)

where xjk is the calculated firefly movement from
firefly j to firefly k and S(xik) denotes the probability
of bit xjk taking 1.

Although Sayadi et al. (2010) showed that the
modified Firefly algorithm is better than the existing
ant colony algorithm, Pabrua’s method of
discretization was still more effective (Pabrua, 2011).

The effectiveness of tanh in computing
probabilities is shown in Pabrua’s (2011) study
mentioning the data applied to generate or compare
the results:

(7)

where xij signifies the value of the movement of
firefly I towards firefly j.

2.3 Simulated Annealing

The name and principle of Simulated Annealing (SA)
algorithm is from the process of cooling molten metal.
If a metal cools rapidly, there is a limited time for its
atoms to settle into a tight lattice and are solidified in
a random configuration, which results in brittle
material. If the temperature is decreased very slowly,
the atoms are given enough time to settle into a strong
crystal (Luke, 2009).

SA starts with generating a new solution using the
objective or cost function given in the problem. The
probability that the new solution is accepted when the
following condition is true, otherwise, the current
configuration is used for the next steps (Kirkpatrick
et al., 1983):

e(-ΔE/kT) > rand (8)
where ΔE is the change of energy or the absolute

difference from the current solution to the new
solution function value. The Boltzmann constant is
represented by k, and the synthetic “temperature” is T.

The rand is the same in FA.
Hamdar (2008) used a starting temperature of

10,000, cooling rate of 0.9999, and absolute
temperature of 0.00001 as his parameters. Goossaert
(2010) solved TSP through SA with varying
parameters: a range of cooling rate from 0.95 to 0.99,
starting temperature range of 1e+10 to 1e+50, and
ending temperature of 0.001 to 1. On the other hand,
Wright (2010) developed an automated parameter
selection for SA algorithm in which the best results
were obtained, thus this set of parameters were used
in this study.

2.4 Hybrid Algorithms

Over the years there has been a substantial amount of
progress on the fundamental ideas of designing
efficient algorithms and the theoretical properties of
these methods of simulation. Each algorithm has
different strengths and can be categorized by meeting
different criteria based on the statistical properties of
the simulated Markov chain. It is therefore natural
that the question arises whether a better scheme can
be developed by combining the best aspects of
existing algorithms (Lee, 2011).

A hybrid algorithm can be designed from different
perspectives by a variety of choices of algorithms to
combine and the way in which they are combined.
The primary motivation is to propose an efficient
algorithm that overcomes identified weakness in the
individual algorithms.

Hybrid methods have previously been applied to
TSP. One of the hybrids solutions was developed by
Zarei and Meybodi (2002). Zarei and Meybodi used
both genetic algorithm (GA) and learning automata
(LA) simultaneously to search in state space. It has
been shown that the speed of finding answer increases
remarkably using LA and GA simultaneously in
search process, and it also prevents algorithm from
being trapped in local minima.

In this study, SA was used as a local optimizer of
the modified discrete firefly algorithm (MDFA). The
resulting hybrid algorithm was modified to address
the constraints of the garbage collection routing as a
TSP.

2.5 TSP Benchmark Datasets

Researchers of TSP have relied on the availability of
standard test instances to measure the efficiency of
the introduced solution methods. Since 1994, Gerhard
Reinelt have collected various TSP test instances
together with new examples drawn from industrial
applications and from geographic locations of cities

on maps. Reinelt’s library, called the TSPLIB,
contains over 100 examples with sizes from 14 cities
up to 85,900 cities. A few of these benchmark data
sets are PR152 (a 152-city problem), ST70 (a 70-city
problem), TS225 (225-city problem), and GR431
(431-city problem).

3 METHODOLOGY

The succeeding subsections present the proposed
algorithm utilizing a nature-inspired algorithm on an
optimization problem hybridized with a non-
population-based local heuristic method. The method
proposed is called Modified Discrete Firefly –
Simulated Annealing Algorithm (MDF-SA). The
Modified Discrete Firefly Algorithm is the main
algorithm throughout the procedure and is hybridized
with Simulated Annealing Algorithm as its local
optimizer. The subsections include details on
population initialization, local optimizer and
generation of a new solution. The performance
criteria to evaluate the results of the study is also
listed in this section as well as the benchmark data
sets used.

3.1 Benchmark Data Sets

The benchmark data sets downloaded from TSPLIB
used in this study are: PR152, ST70, TS225 and
GR431. These data sets were selected for their
similarity on their type of data inputs. The proposed
algorithm was also applied to the current garbage
collection routing system of the City of Davao. This
data set was taken from the Davao City Environment
and Natural Resource Office (CENRO). As seen in
Table 1, the city currently has 360 garbage collectors
distributed to 80 garbage trucks and collects an
average of 1,189 cubic meters of trash daily.

Garbage collection areas (areas the garbage truck
must visit) were represented by nodes mp j in a graph
and by data vectors zp upon implementation. Hence,
for each node, letting zp be a node and mij be the
distances between nodes, then

zp = (mp2, mp3, mp4, …, mp j)

where j is the jth node to be visited; and each
firefly (solution to the routing problem) from 1 to N
(total number of fireflies) is :

where V is the vth node to be visited.

3.2 Parameter Settings

The study adopted the parameters of Sayadi et al.
(2010) for MDFA while the parameters used in SA
algorithm was based on the method of Wright (2010)
as summarized in Table 2.

Table 2: Firefly algorithm (FA) and Simulated Annealing
(SA) parameters adopted from other studies.

Sayadi et al. (2010) Wright (2010)
FA Parameters Value SA Parameters Value
Attractiveness
(β0)

1.0 Initial
Temperature
(initial_temp)

50.00

Adaptable
Absorption
Coefficient (γ0)

0.8 Final
Temperature
(final_temp)

2.00

Random Step
size (α)

0.2 Geometric
Ratio (k)

0.99

Number of
fireflies (N)

30.0

Max number of
iterations
(max_iter)

50.0

3.3 Algorithms

MDFA by Pabrua (2011) is a modified version of the
DFA by Sayadi et al. (2010) wherein the Sigmoid
function is replaced with the hyperbolic tangent
sigmoid function. In this study, MDFA is made
hybrid with SA. Figure 1 shows the pseudocode of the
MDF-SA algorithm being proposed.

The algorithm begins with the initialization of the
algorithm parameters, namely N (number of fireflies),
gamma, beta_zero, alpha, and max_iter (Line 1). The
initialization of fireflies then follows (Line 2). Upon
the random generation, each firefly should produce
valid solutions.

The light intensity (I) of all fireflies is initialized
using the objective function (Line 3 to 5). The light
intensity in this context is defined as the sum of
the distances between cities in a specific order, solved
by Equation [2]. The firefly with the best light
intensity value, denoted as best is selected from the
randomly generated firefly population (Line 6). This
value is then initialized as the initial global best firefly
called global_best. For all fireflies, the light

intensities are compared and if the light intensity of
firefly j is less than the light intensity of firefly i, a
new position for firefly i is generated.

The generation of the new position is done in three
steps. First, is to compute the Euclidean distance
(Line 11) between firefly i and firefly j using equation
[4]. Second, is to compute the movement of firefly i
towards firefly j with the use of equation [5] (Line 13).
The third and final step of the position generation part
of the algorithm is to apply tanh (Equation [7]) to the
newly generated position so that these values are now
discretized, taking values in the range (-1, +1) (Line
14). The second and third are repeatedly iterated until
a valid solution is generated.

The next step of the algorithm is to convert the
positions of the firefly into a discrete matrix (Line 16),
wherein the lowest values in each row is assigned
with 1, while the others are assigned with the value 0.
A local search using SA is then employed to the
population of the fireflies (Line 19). The light
intensity of each firefly is updated after the
processing of the local search (Line 20). The values
for best and global_best are updated and the iteration

1 Initialize necessary parameters
2 Randomly generate initial

population of firefly Fi’s
3 For each firefly
4 Calculate light intensity
5 End for
6 Select best and initialize as

global_best
7 for t = 1 to max_iter do
8 for i=1 to N
9 for j=1 to N, (i != j)
10 if light intensity j < light

intensity i
11 Calculate Euclidean distance
12 do
13 Calculate firefly movement
14 Apply tanh
15 while solution is not valid
16 Convert to discrete matrix
17 Subject moved firefly to SA
18 Update light intensity
19 End if
20 End for
21 End for
22 Rank fireflies according to light

intensity
23 Update best and global_best
24 End for
25 Print/Report result to an output

module

Figure 1: Pseudocode of MDF-SA algorithm.

counter is incremented once (Line 23). It is then
checked if the number of iterations reached the
maximum number of iterations (max_iter). If the
maximum number of iteration is reached, then the
value of global_best is returned. Otherwise, the
execution of the algorithm continues.

3.3.1 Population Initialization

As discussed before, a firefly is a sequence of nodes.
The process of generating the population of the
fireflies is specified in the following discussion; the
pseudo code for population initialization is Figure 2.

Each firefly is initialized as a zero matrix. For all
initialized fireflies, a random permutation of the
given N nodes is generated and is designated to each.
For example, there are 50 fireflies and 70 visiting
nodes. Each firefly represents a unique solution. No
two fireflies shall correspond to the same solution.

The position of the node in the solution denotes its
priority in visitation. The node j assigned to visiting
priority n is assigned the value 1. This is true for all
nodes and all fireflies. Each value of the firefly
position is then restricted to a discrete value using the
hyperbolic tangent sigmoid function (Equation [7]).

3.3.2 Hyberbolic tangent sigmoid function

The effectiveness of tanh (Equation [7]) in computing
probabilities of placing a node in a visiting priority
was sused because of its superior results in the study
of Pabrua (2011).

In this study, the node j in visiting propriety k with
the lowest value is assigned to that priority denoted
by 1. Otherwise, the value of node j in visiting priority
k is not assigned to that priority and takes the value of
0. If the node with the minimum value has already
been assigned to a visiting priority, the next minimum
value is assigned to that specific priority.

Figure 2: Pseudo code for generating initial population of
fireflies.

3.3.3 Local Search - SA

In this study, simulated annealing (SA) was used as
the local search algorithm.

The first step of SA process is the initialization of
temperature (Line 1). The temperature is set in a
manner high enough to virtually accept all transitions
of solutions during the early stage of the process. The
moved firefly from the MDFA process is /initialized
as the current solution (Line 2). While the final
temperature has not yet been reached, a new solution
is then generated randomly in an attempt to replace
the current one, given the fact that it has a better
fitness value. The quantization error of the current
solution and the newly generated solution are
represented by evaluation (new) and evaluation
(current) (Line 5). If Edelta is less than zero or if a
randomly generated number from a uniform

Table 3: Summary of MDFA and MDF-SA results from four benchmarks.

Benchmark Number of
Cities

MDFA MDF-SA Best Known
Solution

Best Solution Running
Time (ms)

Best Solution Running
Time (ms)

PR152 152 160980 279115 160980 278862 73682
ST70 70 3072 48366 1422 217647 675
TS225 225 277540 291067 277556 295731 126643
GR431 431 3519 666715 3518 676417 171414

1 for each firefly
2 Initialize as set of nodes
3 End for
4 for each firefly
5 for all nodes to be visited
6 do
7 do
8 Generate random number

(rand) between 1 to n
9 while rand is in permutation

list
10 while generated permutation

list already exists
11 End for
12 End for
13 for each firefly
14 for all nodes
15 Apply tanh
16 End for
17 Assign node visiting priority
18 End for

distribution [0, 1] is less than , the new
solution will replace the current solution (Lines 6 to
11). If the equilibrium condition is reached, the value
of the temperature is lowered by multiplying T to a
constant value k. This process is repeated until T
reaches a certain value, and the best solution is
returned.

3.3.4 Configuration of a New Solution

A swapping scheme was utilized in the configuration
of a new solution. To generate a new solution, two
nodes from the moved firefly is swapped. For an easy
understanding, an example is shown below:

Suppose a firefly Fi has values:

Fi = {D, A, C, B, W, M}

Upon random selection, nodes C and W are chosen.
These two nodes were then swapped resulting to:

Fi = {D, A, W, B, C, M}

The swapping scheme in SA was applied until a
valid solution is found or until stopping criterion is
met.

3.4 Performance Criteria

Evaluation of the results of MDF-SA algorithm was
performed by:

a) Taking the average best solution quality and
corresponding running time for MDF-SA;

b) Taking the average best solution time among
the 30 runs for MDF-SA;

c) Taking the best solution quality and
corresponding running time among the 30
runs for the MDF-SA;

d) Taking the best solution time among the 30
runs for MDF-SA;

e) Running MDFA and getting the best
solution quality and its corresponding
running time among the 30 runs;

f) Comparing the best solution quality and
corresponding running time among the 30
runs for the MDF-SA to MDFA; and

g) Comparing the best solution quality for
MDF-SA to the current solid waste routing
system of Davao City.

The best solution quality refers to the smallest

value of the solution quality among the 30 runs. The
average best solution quality refers to the average of

the best solution quality of the 30 runs. The average
best solution time refers to the average of the running
time of the 30 runs.

The best running time indicated in this paper
refers to the best solution’s elapsed time in
milliseconds (ms) from the random initialization until
the best solution was found.

The better solution quality refers to the smaller
value of solution quality and better running time
refers to the smaller value on obtained running time.

3.5 Computer Specifications

The method proposed was implemented using Java
Programming language (JDK 1.6 and Netbeans IDE
v6.9.9 or above) because of its object-oriented
mechanism. Also, Java has built-in randomization
functions and data structures that are very usable in
the implementation phase. The program was run on
computer units which run on a Windows 7 operating
system o with a central processing unit of Intel®
Core™ i5-3380M Processor and 2GB RAM.

4 RESULTS AND DISCUSSION

In this chapter the evaluation of the performance of
MDF-SA algorithm is done in two sections, based on
the given 1) benchmark data sets, and 2) the real data
set, Davao City Solid Waste Collection Route.

4.1 Evaluation of the Performance of
the MDF-SA Algorithm

The results of MDF-SA algorithm is summarized in
Table 3. On applying the MDF-SA on PR152, among
the 30 runs, the best solution quality and best average
solution quality is 160980 units, which is
approximately 4327 units better than the average best
solution quality (165307.67 units). It took MDF-SA
Algorithm 278862 ms or approximately 4 minutes
and 38 seconds to obtain this solution.

The best solution time for MDF-SA algorithm run
for 276499 ms which is approximately 3291 ms faster
than the average running time (279790ms) of the 30
runs and 2362 ms faster than the running time of the
obtained solution quality. The best solution time
obtained a solution quality and average solution
quality of 167385 units.

Figure 3: (A) Actual route of Davao City solid waste collection in Central Davao Area, (B) Route generated by MDF-SA.

On using ST70, the average best solution quality
of the 30 runs of using the ST70 data set is 1455.1
units. The best average solution quality is 1771 units.
The best solution quality is 1422 units with average
solution of 217647 units. From the start of the
execution of the algorithm, the solution gradually
converged to a lower value until the best solution was
obtained at the 50th iteration. It took MDF-SA
217647 ms to obtain the best solution quality.

The best solution time on using ST70 data set is
203399 ms, which is 11901ms faster than the average
running time (215301 ms) of the 30 runs and 57090
ms faster than the running time of the obtained best
solution quality among the 30 runs. The MDF-SA
execution with best solution time obtained the
solution quality and average solution quality of
167385 units.

In the use of TS225 data set, the average best
solution quality of the 30 runs 280439 units. The best
average solution is 277540 units, which is also the
best solution obtained among the 30 runs. It has a
running time of 293979 ms. The best solution time
among the 30 runs is 290903 ms which obtained a
best and average solution quality of 283540 units.

GR431 obtained the average best solution quality
of 3543.1 units. The best average solution quality
among the 30 runs is 3518 units with running time of
676417 ms. The best running time among the 30 runs
is 669816 ms with an obtained best and average
solution quality of 3542 units.

In using the Davao City Garbage Collection Data
Set, the best solution quality obtained is 731.2 km
with a running time of 497254ms. The average best
solution quality is 1144.5 km. The best average
solution quality among the 30 runs is also 731.2 km.
The fastest among the 30 runs is 481327 ms with best
and average solution quality of 1259.85 km.

4.2 Result for Davao City Garbage
Collection Data Set

Table 4 shows the best solutions obtained when
applying MDF-SA and MDFA algorithms to the
Davao City Garbage Collection data set. Based on the
results shown, MDF-SA obtained the best and
average solution of 731.2 km, and running time of
99450 ms. On the other hand, MDFA obtained the
best solution quality and best average solution quality,
both having values of 737.1 km and running time of
100937 ms.

The application of MDF-SA Algorithm to the
current garbage collection routing system of Davao
city resulted to a relative difference of 27.92% while
the application of MDFA to the same data set resulted
to relative difference of 28.95% from the current
routing distance.

It is observed that there is no significant difference
between the performance of the MDFA and MDF-SA
in terms of solution quality. In terms of running time

of the runs resulting to the best solution quality,
MDF-SA performed better than MDFA.

Table 4: Results of the application of MDF-SA Algorithm
and MDFA Algorithm to the Garbage Collection Routing
System of Davao City.

 MDF-SA MDFA
Current
Routing

Best Solution
(km) 731.2 737.1 571.6*

Average Solution
(km) 731.2 737.1 -

Running Time
(ms) 99450 100937 -

*manually calculated

Table 5: Summary of results of using MDF-SA and MDFA
to ST70, PR152, TS225, GR431 and Davao City solid
waste collection route.

Data Set Algorithm with better Results
ST70 MDF-SA
PR152 MDF-SA and MDFA
TS225 MDFA
GR431 MDF-SA
Davao City Solid
Waste Collection

MDF-SA

When MDF-SA algorithm was applied to the
current Davao City Garbage collection route system,
it produced a better solution than the one generated
by MDFA. A summary of results using both
algorithms is summarized in Table 5. Factors causing
these differences in the performance of the hybrid
algorithm may have been the parameters of the
algorithm used and the approximation of the distances
among the nodes/garbage collection areas. Figure 3
shows the route generated by MDF-SA in comparison
with the actual route of the Davao City Solid Waste
Collection.

5 SUMMARY AND
CONCLUSIONS

This study hybridized the Discrete Firefly Algorithm
with Simulated Annealing

This study used tanh on Discrete Firefly
Algorithm (DFA) and hybridized it with Simulated
Annealing on discretizing the data to solve the NP-
complete problem specifically the travelling
salesman problem.

The researcher evaluated the performance of
MDF-SA Algorithm in five benchmarks: ST70,
PR152, TS225, GR431 and the current Davao City

Garbage Collection route. In using the MDF-SA
Algorithm and MDFA Algorithm, the researcher used
30 fireflies, 50 iterations, 0.8 gamma value, 1 initial
beta value, and 0.2 alpha value. On the hybridized
MDF-SA, the researcher used an initial temperature
of 50, final temperature of 2 and geometric ration of
0.99.

Both algorithms used the same parameters with
those in Sayadi et al. (2010) for the Firefly Algorithm
and Wright (2010) for the Simulated Annealing
parameters automation.

In terms of best solution quality, MDF-SA did not
improve the best known solution for all data sets.
MDF-SA and MDFA performed almost equally on 2
of the data sets: PR152 and GR431. MDFA
performed better by .01% relative error on one of the
data sets, TS225. MDF-SA performed much better on
the remaining 2 data sets: ST70 and the actual solid
waste collection system of Davao City.

In terms of running time, MDFA performed faster
on three of the data sets (ST70, TS225 and GR431)
compared to MDF-SA, which may have executed
more iterations to obtain a solution.

On using the actual solid waste collection route of
Davao City as a data set, MDF-SA generated better
collection route than the one by MDFA.

For further improvements of this study, the
researcher recommends the use of variations on the
parameters both on the Firefly Algorithm and
Simulated Annealing Algorithm. The researcher also
recommends implementing the algorithm in a
problem with around 70 to 431 number of cities,
collection points, or nodes.

ACKNOWLEDGEMENTS

Our gratitude to the Department of Mathematics,
Physics, and Computer Science and the Office of
Research of the University of the Philippines
Mindanao for their support in writing this paper.

REFERENCES

Agha, S.R. 2006. Optimizing Routing of Municipal Solid.
6 September 2012.

Awad, A.R., M.T. Aboul-Ela and R. Abu-Hassan. 2001.
Development of a Simplified Procedure for Routing
Solid Waste Collection. Scientia Iranica Publication. 6
September 2012. <http://www.scientiairanica.com/
PDF/ Articles/00000409/SI080109.pdf>.

Belien, J., Boeck, L. D., and J. V. Ackere. 2011. Municipal
Solid Waste Collection Problems:A Literature Review.
Hub Research Papers.

Bookstaber, D. 1997. Simulated Annealing for Traveling
Salesman Problem. 11 September 2011. <http://
www.eit.1th.se/fileadmin/eit/courses/ets061/Material/2
012/SATSP.pdf>.

Caliper Corporation. 2008. Automated Routing for Solid
Waste Collection Software. 6 September 2012.
<http://www.caliper.com/Press/pr990722 htm>.

Carillo, C. A. 2016, February 15. Waste management-
compliant Davao City struggles with garbage
segregation. Business World Online. Retrieved
December 15, 2016, from http://www.bworldonline
.com/content. php?section=Nation&title=waste-
management-compliant-davao-city-struggles-with-
garbage-segregation& id=123051

City of Davao. 2011a. Davao City - Geographical Location.
11 September 2012. <http://www.davaocity.gov.ph/
davao/ profile.aspx?id=location>.

City of Davao. 2011b. Demography – Environment. 2011.
11 September 2012. <http://www.davaocity.gov.ph/
davao/ demoenv.aspx>.

Dantzig, G., R. Fulkerson, and S. Johnson. 1954. Solution
of a large-scale traveling-salesman problem. Journal of
the Operations Research Society of America. 2.4:393-
410.

Dasgupta, S., C.H. Papadimitriou and U.V. Vazirani. 2006.
Chapter 8: NP-complete Problems. 7 September 2012.
<http://www.cs.berkeley.edu/~vazirani/algorithms/cha
p8.pdf>.

Goossaert, E. 2010. Simulated annealing applied to the
traveling salesman problem. 10 September 2010.
<http://codecapsule.com/2010/04/06/simulated-
annealing-traveling-salesman/>.

Goyal, S. 2010. A Survey on Travelling Salesman Problem.
11 September 2012 <http://www.cs.uwec.edu/MICS/
papers/mics2010_submission_51.pdf>.

Grom A. 2010. What is an NP-complete problem? 7
September 2012.
<http://stackoverflow.com/questions/210829/ what-is-
an-np-complete-problem>.

Hamdar, A. 2008. Simulated Annealing - Solving the
Travelling Salesman Problem (TSP). 7 September 2012.
<http://www.codeproject.com/Articles/26758/Simulat
ed-Annealing-Solving-the-Travelling-Salesma>.

Held M. and R. M. Karp. 1970. The traveling salesman
problem and minimum spanning trees. Operations
Research. 18.6:1132-1162.

Jensen, F. R. 2010. Using the Traveling Salesman Problem
in Bioinformatic Algorithms. 7 September 2012.
<http://www.daimi.au.dk/~cstorm/students/Rosenbech
Jensen_Dec2010.pdf>.

Kann, V. 2000. NPO Problems: Definitions and
Preliminaries. 7 September 2012. <http://www nada
kth.s/~viggo/ wwwcompendium/node2 html>.

Karadimas N.V., Papatzelou K., and V.G. Loumos. 2007.
Genetic Algorithms for Municipal Solid Waste
Collection and Routing Optimization. In: Boukis C.,
Pnevmatikakis A., Polymenakos L. (eds) Artificial

Intelligence and Innovations 2007: from Theory to
Applications. AIAI 2007. IFIP The International
Federation for Information Processing, vol 247.
Springer, Boston, MA.

Kirkpatrick S., C.D. Gelatt Jr., and M.P. Vecchi. 1983.
Optimization by simulated annealing. Science.
220.4598:671-680.

Lee, J. 2011. Issues in designing hybrid algorithms. 7
August 2012. <http://arxiv.org/pdf/1111.2609v1.pdf>.

Letchford, A. N. 2010. The Traveling Salesman Problem.
11 September 2011. <http://www.lancs.ac.uk/staff/
letchfoa/talks/TSP.pdf>.

Lin, S. 1965. Computer Solutions of the Traveling
Salesman Problem. 7 September 2012.
<http://www.alcatel-lucent.com/bstj/vol44-
1965/articles/bstj44-10-2245.pdf>.

Little, J.D.C., K. G. Murty, D. W. Sweeney, and C. Karel.
1963. An algorithm for the traveling salesman problem.
Operations Research. 11.6:972-989.

Luke, S. 2009. Essentials of Metaheuristics. Version 1.3. 7
August 2012. <http://cs.gu.edu/~sean/book/
metaheuristics/Essentials.pdf>.

Pabrua, L. D. B. 2011. Modified Discrete Firefly Algorithm
With Mutation Operations as Local Search For
Makespan Minimization of the Permutation Flowshop
Scheduling Problem.

Padberg, W. Manfred, and G. Rinaldi. 1987. Optimization
of a 532-city symmetric traveling salesman problem by
branch and cut. Operations Research Letters. 6.1:1-7.

Pearl, J. 1983. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addision-Wesley,
Michigan.

Philippine Statistics Authority (PSA). 2015. Population of
Region XI - Davao (Based on the 2015 Census of
Population). Retrieved December 15, 2016, from
https://psa.gov.ph/content/population-region-xi-davao-
based-2015-census-population

Poort, E.S.V.D. 1997. Aspects of Sensitivity Analysis for
the Traveling Salesman Problem. 6 September 2012.
<http://irs.ub rug nl/ppn/163665907>.

Reinelt, G. 1994. The traveling salesman: computational
solutions for TSP applications. Springer-Verlag, Berlin.

Ruiz-Vanoye, J. A., Pérez-Ortega, J., R., R. A., Díaz-Parra,
O., Frausto-Solís, J., Fraire-Huacuja, H. J. et al. 2011.
Survey of Polynomial Transformations between NP-
Complete problems. Journal of Computational and
Applied Mathematics, 235(16), 4851-4865.

Sayadi, M., R. Ramezanian, and N. Ghaffari-Nasab. 2010.
A discrete firefly meta-heuristic with local search for
makespan minimization in permutation flow shop
scheduling problems. International Journal of Industrial
Engineering Computations. 1.1:1-10.

von Poser, I., M.K. Ingenierurtechnik and A.R.D. Awad.
2006. Optimal Routing for Solid Waste Collection in
Cities by using Real Genetic Algorithm version 1. 6
September 2012.

Wright, M. 2010. Automating Parameter Choice for
Simulated Annealing. 5 August 2012. <http://www
research. lancs.ac.uk/portal/services/

downloadRegister/610492/Document.pdf>.

Yang, X. 2010. Nature-inspired metaheuristic algorithms.
Luniver press, United Kingdom.

Zarei, B. and M.R. Meybodi. 2002. A Hybrid Method for
Solving Traveling Salesman Problem. 7 September
2012. <http://ceit.aut.ac.ir/~meybodi/paper/Zare-Conf-
Paper.pdf>.

