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Abstract: Good representing and reasoning with uncertainty is a topic of growing interest within the community of 
artificial intelligence (AI). In this context, the Multi-Entity Bayesian Networks (MEBNs) are proposed as a 
candidate solution. It’s a powerful tool based on the first order logic expressiveness. Furthermore, in the last 
decade they have shown its effectiveness in various complex and uncertainty-rich domains. However, in 
most cases the random variables are vague or imprecise by nature, to deal with this problem; we have to 
extend the standard Multi-Entity Bayesian Networks to improve their capabilities for good representing and 
reasoning with uncertainty. This paper details a promising solution based on fuzzy logic; it permits to 
overcome the weaknesses of classical Multi-Entity Bayesian networks. In addition, we have proposed a 
general process for the inference task. This process contains four steps, (1) Generating a Fuzzy Situation 
Specific Bayesian Networks, (2) Computing fuzzy evidence, (3) Adding virtual nodes, and (4) finally, the 
fuzzy probabilistic inference step. Our process is based on the virtual evidence method in order to 
incorporate the fuzzy evidence in probabilistic inference, moreover, approximate or exact algorithms can be 
used, and this choice of inference type depends to the contribution of the domain expert and the complexity 
of the problem. Illustrative examples taken from the literatures are considered to show potential 
applicability of our extended MEBN. 

1 INTRODUCTION  

Bayesian networks (BNs) (Pearl, 1988; Delcroix et 
al., 2013) have been applied successfully to model 
and resonate with the problems where uncertainty is 
prevalent. it’s a hybrid model in which it is a 
combination between the graph theory and the 
probability theory, they can represent a qualitative 
knowledge such as (dependencies between random 
variable) and a quantitative knowledge 
(probabilities), currently they have been widely used 
in lots of fields such as medical diagnosis, risk 
analytic…etc.   Furthermore, in the last few years 
various researchers tried to improve the classical 
BNs by proposing new extensions such as the Multi-  
Entity Bayesian Networks (MEBNs) (Laskey, 2008), 
Object oriented Bayesian networks (Koller, 1997; 
Liu et al.,2016)…etc., these extensions have been 
proposed to enhance and enrich the classical BNs to 
be expressive enough in order to better represent the 
real world’s problems and  complex systems. 

On one hand, Multi-Entity Bayesian Networks 

are proposed as an extension of the classical 
Bayesian networks by integrating the first order 
logic (FOL) in this later, in order to face the 
randomness. But they are unable to represent the 
vague and imprecise knowledge. 

On the other hand, fuzzy logic and fuzzy sets 
theory (Zadeh, 1975) were introduced to deal with 
vague and imprecise knowledge.  But they are 
unable to represent and deal with the randomness. 

Nowadays, the real world problems are not only 
complex in its large structure but also, in the 
knowledge's nature which involved within, where 
the uncertainty is indispensible in many cases. 
Furthermore, the most of real world problems 
involve several kinds of the uncertainty at the same 
time such as randomness, vagueness and imprecise 
knowledge. It seems very important to develop a 
hybrid models for good representing and reasoning 
with such complex systems and real world’s 
problems, where lot of kinds of uncertainty appear 
simultaneously, for this reason, we propose a new 
extension of the MEBNs we named FuZzy MEBN 
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(FzMEBN) using fuzzy logic and fuzzy sets theory 
to benefit of the advantages of two models. 
Moreover, as key feature of our FuZzy MEBN, is 
very powerful model due to its capability to express 
and reasoning over several kinds of uncertainty at 
the same time, which is inherently present in lots of 
real world problems.  

The rest of this paper is organized as follow: 
Section 2 explores the theoretical background. 
Section 3 presents the related work. Then section 4 
introduces a detailed presentation of the proposed 
FuZzy-MEBN, including its detailed structure, and 
the inference mechanism in this later. Finally, we 
aim to conclude this paper and present some 
perspectives and future works. 

2 BACKGROUND 

In this section we are going to give an outlook on 
some background knowledge, we start by Multi- 
Entity Bayesian Networks (Section 2.1), here after 
we present the fuzzy logic (Section 2.2) 

2.1 Multi-Entity Bayesian Networks  

Multi-Entity Bayesian Networks extends Bayesian 
networks to achieve the high level of expressivity of 
First Order Logic (FOL). Where the capability of 
BN to model uncertainty is combined with the 
expressivity of FOL, in MEBN knowledge’s are 
represented as a collection of MEBN Fragments 
(MFrags) and a set of MFrags are organized into 
MEBN Theories (MTheories). 

An MFrag contains a collection of random 
variables (RVs) and the dependencies among these 
RVs are represented into fragment graph. In 
addition, an MFrag can be considered as a template 
or pattern to represents repeatable piece of 
knowledge fragments of a Bayesian network; an 
MFrag is defined as F = (C; I; R; G; D) (Laskey, 
2008). It includes three types of nodes (RVs):  
resident, input and context nodes. The local 
conditional distribution also called local probability 
distribution (LPD) for Resident nodes is defined in 
the home MFrag, while an input node has its LPD 
defined in another MFrag (it is a resident node 
defined  in another MFrag). The context nodes 
defined in order to represent a set of logical 
constraints that must be satisfied for the distributions 
represented in the MFrag be valid. Furthermore, G 
represents an MFrag graph, and D is a set of local 
distributions.  

MEBN theory represents a coherent probability 

distribution; while Bayes theorem provides a 
mathematical foundation for learning and inference, 
the inference in MEBN consists to instantiated it, i.e. 
generate a Situation Specific Bayesian Network 
(SSBN) in order to models the situation that has 
been observed as evidence. Hence, this instantiation 
overcomes the non-flexibility nature of Bayesian 
networks where the structure kept fixed in the 
classical Bayesian networks. Thus, the generated 
SSBNs can use regular BN inference engines to 
answer the query. 

In (Laskey, 2008) the author presents a Bottom-
Up algorithm to generate SSBNs. More recent work 
presented in (Santos et al., 2016), a new algorithm to 
generate SSBNs based on the Bayes-Ball method, 
this solution overcome the limitation presented in 
the Bottom-Up algorithm, by focusing on the 
scalability problem.   

2.2 Fuzzy Logic 

In the classical logic the variables are binary where 
each variable can belong or not to a set, however, in 
the fuzzy logic and fuzzy set theory an element can 
belong in more than one set at the same time with 
some degrees. This property allows to an element to 
more or less strongly belong to a set, fuzzy logic and 
fuzzy set theory were proposed by Zadeh (Zadeh, 
1975) to manage imprecise and vague knowledge. It 
is proposed as an extension of the binary logic, this 
logic does not consist to be precise in the 
affirmations, for example let ask this question” is the 
speed of the car fast? “in the classical logic  to 
answer to this question we have to say “yes”  if the 
speed  of the car is fast or “no” if the speed of the 
car slow, however, in the fuzzy logic we can 
represent the cases when the speed of the car  is too 
slow, slow, medium, fast, and  too fast. 

In fuzzy logic the variable speed can take many 
values, and if we interpreted this variable as 
“linguistic variable” the corresponding values 
“linguistic values “are {too slow, slow, medium, 
fast, and too fast}. 

Each linguistic variable called fuzzy variable and 
the linguistic value can be seen as a label to a fuzzy 
sets. 

The fuzzy sets can be represented with a 
membership function μA. 

Ax: x 0,1
Where μA(x) = 1 if x is belongs totally in A, μA(x) 
= 0 if x does not belongs to A, and 0< μA(x) < 1   to 
represent the partial belonging of x in the fuzzy set A.  

Examples of membership functions presented in 
Figure 1. 
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Figure 1: membership functions (a) trapezoidal function 
(b) triangular function (c) linear function. 

3 RELATED WORK 

The fuzzy Bayesian networks have been applied 
successfully in many field such as fuzzy Bayesian 
classification (Moura et al., 2015) and the Risk 
analysis (Zhang et al., 2016)… etc. However, 
combining of fuzzy logic with Bayesian networks is 
a very difficult task due to the difference between 
the two formalisms. In addition, the proposed 
approaches are completely different because each 
author used different notations from the others thus 
there is no unified model to define the fuzzy 
Bayesian networks as the classical Bayesian 
networks, which makes this model very difficult to 
understand and to work with.   

To incorporate the fuzzy logic in Bayesian 
networks several approaches have been proposed, an 
approach based on weighted method, another 
approach based on Fuzzy Probability Distribution, 
and finally the virtual evidence method. 

In the Weighted method (Tang et al., 2007; Mrad 
et al., 2012), the main idea  is to extend the different 
rules used in the Bayesian networks by associating a 
membership degree value to each rule as weight; 
then  the fuzzy Bayesian rules can  be defined to 
support the fuzzy Bayesian inference in  FBN 
model. As a limitation of this approach, the 
algorithms of inference in Bayesian networks must 
be also changed and updated. Because these 
algorithms based on the standard Bayesian Equation. 

In Fuzzy Probability Distribution method 
(Fogelberg et al., 2008; Ryhajlo et al., 2013 ) the 
fuzzy membership integrated directly in the 
probability distribution, where in the first step the 
fuzzy membership degree must be represented like a 
probability distribution, then this later will be 
integrated in the probability distribution in order to 
generate the Fuzzy Probability Distribution, where 
the Fuzzy Probability Distribution is a hybrid 
representation of the fuzzy membership degree and 
the probability distribution. 

The virtual evidence it’s a method proposed in 
(Pearl, 1988), in order to incorporate external 
knowledge such as the uncertainty of evidence into 
Bayesian networks as it mentioned in (Li, 2009). 

Hence, this technique is used in (Pan et al., 1999) in 
order to incorporate fuzzy membership values into a 
Bayesian network. It consists to add a new node in 
the DAG called virtual evidence node. And then we 
can incorporate the fuzzy evidence in this later, the 
fuzzy evidence will be represented as a probability 
distribution in the conditional probability table 
(CPT) of the virtual node. After adding the virtual 
nodes and constructing the CPT of the virtual nodes 
a standard Bayesian inference can be applied in 
order to calculate the fuzzy inference, we can apply 
a classical inference.   We use this method in the 
step of inference in the proposed FzMEBN due to its 
effectiveness and its simplicity. An illustrative 
example is considered in (section 3.2). 

Furthermore, the matter of how to extend the 
Multi-Entity Bayesian Networks is already devoted 
in (Golestan et al., 2013; Golestan et al., 2015), 
where the authors tried to enhance the classical 
MEBN to support fuzzy logic and apply this later in 
the context of the data-fusion, in their extension they 
replaced the First Order Logic by the First Order 
Fuzzy Logic (FOFL) when defining the contextual 
and semantic constraints.  Moreover, they extend the 
definition of MFrag by adding fuzzy rules “if-then 
rules” in this extension where the crisp MFrags were 
slightly modified by annotating each MFrag F by a 
set of fuzzy if-then rules that are used by a Fuzzy 
Inference System (FIS).  

The inference process in the Fuzzy MEBN is 
also been discussed, after the generation of the 
SSFBN (Situation Specific Fuzzy Bayesian 
networks), we can apply the new version of the 
modified Clique Tree (CT) algorithm to tackle 
inference in FBNs. In addition the modified 
algorithm based on the belief propagation where the 
authors treated three cases and all these three cases 
based on weighted formulas using both the 
membership degrees and the probability 
distributions. As drawback of this modification, the 
inference must be done only by the modified Clique 
Tree. However, in our extension we use the virtual 
evidence method in order to allow the possibility to 
the use of both an exact and approximate inference, 
without any changes in these algorithms. And as we 
know that the inference is an NP-complete problem 
(Cooper, 1999). So, if we are limited in one exact 
algorithm as their extension we may risk of a 
computational explosion when the complexity of the 
problem arise. Moreover, in the contrast to FMEBNs 
cited above, in our extension we focus on extending 
the components of the classical MEBN, especially 
the most important one the MEBN fragments 
(MFrags).  Where in our extension a Fuzzy-Mfrag 
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can be seen as template for repeatable Fuzzy small 
knowledge, Based on hybrid Mfrags (a combination 
of fuzzy and crisp nodes) and in the step of the 
inference and after the instantiating we will have a 
hybrid directed acyclic graph (DAG) and this later 
contains two type of node (fuzzy, and crisp). The 
next section will be devoted to the presentation of 
our solution. 

4 THE PROPOSED FUZZY 
MULTI-ENTITY BAYESIAN 
NETWORKS (FzMEBN) 

The contribution in this paper is to propose a new 
extension of the classical Multi-Entity Bayesian 
networks (MEBN) as an answer to the need of 
representing randomness, vague and imprecise 
knowledge at the same time, we have chosen to 
extend this model due to their expressiveness and 
power of reasoning. The idea behind our extension is 
to add new types of nodes in Multi-Entity Bayesian 
Networks to represent the vague and imprecise 
knowledge’s as it illustrated in the figure 2.   

4.1 Modeling with FzMEBN 

FuZzy Multi-Entity Bayesian Network is 
enhancement of the classical Multi-Entity Bayesian 
Network to benefit the power of the fuzzy logic, thus 
improve the expressiveness of classical MEBNs in 
order to well represent knowledge’s of the real 
world’s problems and situations. As the classical 
MEBN the FuZzy Mutli-Entity Bayesian Network 
contains a set of FuZzy MFrags (FzMfrags) 
organized into MTheories. 

4.1.1 FuZzy MFrags  

Fuzzy MFrag (FzMFrag) is an extension which 

enables the crisp MFrags to deal with vague and 
imprecise knowledge’s, a Fuzzy MFrags F it’s a 
hybrid template in which contains both the vague 
and crisp nodes.  
FzMFrag is a 7-tuple<C, R, I, FR, FI, G, D>: 
 C is a set of crisp context nodes,  
 R is a set of crisp resident nodes,  
 Iis a set of crisp Input nodes.  

 FR is a set of fuzzy resident nodes. 

 FI is a set of fuzzy Input nodes. 

 G represents a hybrid MFrag Graph (Fuzzy 
MFrag Graph), and 

 D represents the local distributions. 
Context Nodes: these types of nodes are 

Boolean random variables representing conditions 
and constraints that must be satisfied to make a 
distribution in an FzMFrag valid. 

Input Nodes: these nodes can be seen as 
«foreign nodes" or "pointers" referring to a resident 
node defined in another FzMFrag. Its own 
distributions defined in its home FzMFrag. 

Fuzzy input Nodes: fuzzy input nodes are fuzzy 
resident nodes defined in another FzMFrag, the 
fuzzy input nodes can also influence the probability 
distribution of the resident nodes, but its probability 
Distribution and own membership functions are 
defined in its own home FzMFrag.   

Resident Nodes: Resident Node can be defined 
as Function, Predicate, or Formula of First Order Logic 
(FOL), and this node is attached by a probability 
distribution. 

Fuzzy resident Nodes: are extensions of the 
classical resident nodes enabling the FzMFrag to 
cope the vagueness and imprecise knowledge. As 
the classical resident nodes the fuzzy resident nodes 
are attached with a probability distribution. In 
addition, they can represent the vagueness by using 
the membership functions. 

 
 LEGEND 

Figure 2: structure of the proposed Fuzzy MFrag. 
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Formally  a   fuzzy resident  node  is  4-tuple <T, P, 
Sfs, M>, where: 

 T can be predicate or function or a first order 
logic expression,  

 P represents the probability distribution of the 
fuzzy resident node,  

 Sfs represent a set of fuzzy states of the resident 
node, and  

 M is a mapping rule which map every fuzzy state 
of each fuzzy resident node to a fuzzy set. Per 
each state ∈Sfs is attached with its own 
membership function. 

An example of Danger MFrag belongs to 
Vehicle Identification MTheory (Park et al., 2013) 
is presented in Figure 03.The Danger MFrags 
contains: 

a) Context nodes, where isA(obj, vehicle) and  
isA(rgn, Region) are used in order to represent the 
types of the ordinary variables (obj and rgn), 
rgn=location (obj) represent a condition about the 
variable rgn must be satisfied, and  
b) An Input node called VehiculeType(obj) its 
defined in another Mfrag, and  
c) A resident node named Danger-level (rgn) to 
represent the danger level of a region and this later 
depends on the type of the vehicle located in this 
region 

 

Figure 3: Danger MFrag. 

The Danger-level (rgn) node is fuzzy by nature and 
it can take this set of Fuzzy states {high, low}. 

The member ship functions to represent the fuzzy 
states {low, high} presented in Figures 4, and 5.   

Figure 4: Low danger 
member ship function. 

Figure 5: High danger 
member ship function. 

4.2 Fuzzy Probabilistic Inference in 
FzMEBN 

We believe strongly that the success of our 
extension depends on it capability to provide a 
strong mechanism for Fuzzy probabilistic reasoning. 
Thus in this section we will explain how the fuzzy 
probabilistic inference can be done in the FuZzy 
Multi-Entity Bayesian networks (FzMEBN).  

The inference in our extension consists to 
generate a Fuzzy Situation Specific Bayesian 
Networks (FSSBN) where the FSSBN is a fuzzy 
Bayesian network contains the crisp and fuzzy 
nodes, and then a fuzzy probabilistic inference based 
on the virtual evidence method can applied in this 
later in order to answer the queries. The process of 
the inference in the FuZzy Multi-Entity Bayesian 
Networks illustrated in the Figure 6. 

Step 1 - Generating Fuzzy SSBN  

The purpose of this step is to generate a Fuzzy 
SSBN by executing a query, thus the generation of 
the FSSBN achieved with the same manner as the 
classical SSBN using Laskey algorithm (Laskey, 
2008). Furthermore, each instance of a fuzzy 
Resident node must be attached with a set of 
membership functions and these last are similar to 
the membership functions attached to the resident 
node in which it belong. 

The generation of the Fuzzy SSBN is held 
according to algorithm 1. 
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Figure 6: The inference process in the FuZzy MEBN. 

Algorithm 1: Generating Fuzzy SSBN. 

Inputs : <query List: L, knowledge base: k, FuZzyMEBN: 
m, Fuzzy resident nodes list: FL > 

Output: Probabilistic Network Net; 
Begin: 
01: Net=LaskeySSBNGenerator.generateSSBN (L, k, m); 
02: For all N ∈ Net do 
03:     RgetResidentNodeName (N) 
  //Get the resident name in which this node was instantiated. 
04:     If (R ∈ FL) Then           
   //If the resident node is fuzzy. 
 05: Attach N with the same membership functions than R. 
06:  Endif 
07: Done  
End 

Example of a Fuzzy Situation Specific Bayesian 
Network FSSBN is presented in figures 7.  

 

Figure 7: Fuzzy Situation Specific Bayesian Network 
(FSSBN) (given v1, v2, and v3 as vehicle, and region1_1 
as region). 

Step 2- Computing Fuzzy Evidence 

For each fuzzy node appear in the query the agent  
must give the observed value, hereafter, the degrees 
of membership of every state of every fuzzy node 

can be calculated using the membership functions 
attached to each fuzzy node. 

Let LFMD be a list of fuzzy membership degrees 
for all fuzzy node in the query i.e. The fuzzy 
evidence, so FLMD can be defined as: 

 LFMD={ FMDnode1 , FMDnode2………….FMDnoden 
} where  nodei   1< i<n are a fuzzy nodes and  

FMDnodei=<state1,state2,………….statem> 
represent the membership degrees for a fuzzy node i.  

Occasionally, the sums of the membership degrees 
of a linguistic variable are not well-defined as it’s 
discussed in (Waltman et al., 2005). To deal with 
this problem we normalize each membership degree  
μܒ܍ܜ܉ܜܛሺܠሻ  as flows:  

ߤ̅ satatejሺxሻ ൌ
μܒ܍ܜ܉ܜܛሺܠሻ	

∑ μstateiሺxሻ	|࢔|
௜ୀ଴ 	

 (1)

For example the agent executes this query on the 
generated Fuzzy SSBN: 

P (VhiculeType_v2=tracked| Danger_level_region1_1=high). 

In this case the danger level node is fuzzy and it 
appear in the query, so let assume that the observed 
level of danger is 27 %, so   high(27)=0.7and 
low(27) = 0.3 calculated using “Low”, and “High” 
membership functions attached to the 
Danger_leve_region1_1 node.   

LFMD= {FMD Danger_leve_region1_1 }={ <low , high 
>}={<0.3,0.7>}. 

The computation of the fuzzy evidence is held 
according to the algorithm 2. 
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Algorithm 2: Computing the Fuzzy evidence 

Input : < list of observed values: L, Fuzzy resident nodes list: 
FL > 
Output: LFMD  Lmd. 
Begin: 
01:   Lmd= Φ. 
02:   i   1. 
03: While i < = |FL| do           //Get the observed value for the 
node i       04:   ObservedVi getVlaueL(i);  
//Calculate the membership degrees for each state i ∈ node i  
05: FMDnodei=<μstate1(ObservedVi)…… μstatem(ObservedVi )>; 
06: If (FMDnodei is not normalized)    Then                                
07:      Normalize each state using equation   (1); 
08:      Update FMDnodei; 
09: Endif                  
10:     ADD (FMDnodei, Lmd) ; 
11: Done  
End 

Step 3- Adding the virtual nodes 

For each fuzzy node appear in the query of the 
agent, a child node will be added automatically, then 
the normalized membership degrees calculated using 
step 2 will be incorporated in the CPT of the virtual 
node as probability distributions. 

The “Danger_level_region1_1” node appears in 
the query of the agent and it is fuzzy. So a virtual 
node will be added as it illustrated in the figure 8. 
The step of adding the virtual nodes is held 
according to the algorithm 3. 

Algorithm 3: Adding the virtual nodes. 

Input :< FLMD: Flm,Fuzzy resident nodes list: FL , FSSBN : 
BN> 
 Begin: 
01: For all nodei ∈  Fl do 
                  //Get the membership degrees for the node i 
02:       FMDnodei=getFMD(Flm,i);   
                 //Create a virtual node of the node i as a child 
03:        child create_Child (nodei, BN); 
04:        Incorporate FMDnodei in the CPT of child node; 
05:        ADD (child, FMDnodei);      
06: Done  
End  

 

 

Figure 8: Fuzzy Situation Specific Bayesian Network 
(FSSBN) with a virtual node.  

Step 4- Fuzzy Probabilistic Inference 

The fuzzy probabilistic inference can be done by 
substituting each fuzzy node appears in the query by 
its virtual node. Then a classical probabilistic 
inference approximate or exact will be tackled.  

The fuzzy probabilitic inference can be done 
using the algorithm 4. 

Algorithm 4: Fuzzy probabilistic inference. 

Input :< query nodes X, Fuzzy Evidence Y, Fuzzy resident 
nodes list: FL, FSSBN BN > 
Output: Probability value;  
Begin: 
 01:      If( X ∈ FL) Then // if the query node is fuzzy 
02:        VgetVirtualNodeName(X, BN);         
03:        Substitute X by V; 
04      Endif 
05:  For all N ∈ Y do 
06: If (n ∈ FL) Then {if the node is fuzzy} 
          //Get the virtual node name of the node N from FSSBN 
07:         VgetVirtualNodeName(N, BN);              
08:         Substitute N by V in Y; 
09: Endif  
10: Done  
11: Run a classical Bayesian inference using X and the new 
evidence Y; 
End. 

In our example the Danger_level_region1_1 is fuzzy 
so it will be substituted in the evidence by its chilled 
virtual node “VirtualDanger_level_region1_1”.To 
make the notation easy we note VhiculeType_v2 as 
V2, Danger_level_region1_1 as D1,   
Virtual_Danger_level_region1_1 as V_D1, High as H 
and Low as L. 

Then the new query taken V_D1 as evidence: 

PሺV2 ൌ Tracked|	D1 ൌ H	ሻ ൌ P	ሺVT2 ൌ Tracked|	V_D1 ൌ Hሻ.	
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ൌ
୔ሺ୚_ୈଵୀୌ|୚ଶୀ୘୰ୟୡ୩ୣୢሻ∗୮ሺ୚ଶୀ୘୰ୟୡ୩ୣୢሻ

௉ሺ୚_ୈଵୀୌሻ
. 

ൌ
୔ሺ୚_ୈଵୀୌ|୚ଶୀ୘୰ୟୡ୩ୣୢሻ∗୮ሺ୚ଶୀ୘୰ୟୡ୩ୣୢሻ

௉ሺ୚_ୈଵୀୌ|ୈଵୀୌሻ∗௉ሺୈଵୀୌሻା௣ሺ୚_ୈଵୀୌ|ୈଵୀ୐ሻ∗௣ሺୈଵୀ୐	ሻ
. 

Noting that PሺV_D1 ൌ H|D1 ൌ Hሻ and PሺVୈଵ ൌ H|D1 ൌ Lሻ 
represents the membership degrees incorporated in 
step 3 in the CPT of the virtual node respectively  
high and low. 

5 CONCLUSIONS 

The overall goal of this paper is to develop a 
solution to deal with vague and imprecise 
knowledge in MEBNs, thus dealing with tow kind of 
uncertainty at the same time, for this, we have 
introduced a new extension of the Multi-Entity 
Bayesian Networks based on fuzzy logic in order to 
improve the classical MEBN by extending the 
classical MFrags to a FuZzy MFrags, our approach 
based on a strong probabilistic graphical model 
enabling the reasoning with uncertainty under a 
complex problems.  Moreover, we have proposed a 
complete process to do the fuzzy inference in the 
extended MEBNs, where  the inference task in 
FzMEBN is divided in four steps, the first one 
consist to generate a  minimal fuzzy Bayesian 
networks (Fuzzy SSBN) capable to answer the query 
as the classical MEBN using Laskey algorithm . The 
second one consists to computing the fuzzy 
evidence, the third consist to incorporate the fuzzy 
evidence in the Fuzzy SSBN and finally, fuzzy 
Bayesian inference can be done using classical 
Bayesian inference on the generated Fuzzy SSBN. 

Currently, we are focusing on evaluating the 
ability of the proposed FuZzy Multi-Entity Bayesian 
Networks by apply it on a complex real world 
problems, thus in our next work we are interesting to 
evaluate the performance of our solution taking the 
diabetes disease as a case of study.  
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