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Abstract: Final customers are expected to play an active role in the Smart Grid scenario by offering their flexibility to

allow a more efficient and reliable operation of the electric grid. Among the household appliances, heat pumps

used for space heating are commonly recognized as flexible loads that can be suitably handled to gain benefit

in the Smart Grid context. This paper proposes an optimization algorithm, based on a Mixed-Integer Linear

Programming approach, designed to achieve power peak shaving in the distribution grid while providing at

the same time the required thermal comfort to the end-users. The developed model allows considering a

continuous operation mode of the heat pumps and different comfort requirements defined by the users over the

day. Performed simulations prove the proper operation of the proposed algorithm and the technical benefits

potentially achievable through the devised management of the heating devices.

1 INTRODUCTION

With the evolution towards the Smart Grid (SG) para-
digm, new technologies and applications will be put
in place to obtain a more efficient, reliable and sustai-
nable utilization of the electric system assets. Some of
the most important changes concern the distribution
grid, where the penetration of Distributed Generation
(DG) and other Distributed Energy Resources (DERs)
requires novel management tools to deal with the in-
creasing complexity of the network (Fan and Borlase,
2009). Differently from the past, end-users are also
expected to play an active role in the SG scenario.
Many customers already evolved into the so-called
prosumers, thanks to the installation of photovoltaic
panels or small wind turbines in their household pre-
mises. From one side, this goes in the direction of
a more environmentally friendly system, on the other
hand it also enables a better use of the network infra-
structure if these resources are suitably managed.

Customers’ role, however, is not only limited to
the installation of generation units based on renewa-
ble energy sources, but also includes the possibility
to support the grid operation by offering flexibility
in the power demand. The exploitation of the flexi-
bility available on the customer side has been a hot
research topic in the last years. Several Demand Re-

sponse (DR) and Demand Side Management (DSM)
models have been designed to achieve economic be-
nefits or specific technical goals through the control of
different appliances (Balijepalli et al., 2011; Caprino
et al., 2014; Klaassen et al., 2016a). Even though
many challenges still prevent a wide diffusion of DR
and DSM (such as the lack of a suitable regulatory
framework, or the absence of the metering and com-
munication infrastructure), the benefits deriving from
the application of these schemes are well recognized
(Strbac, 2008). As a consequence, it is foreseeable
that such applications will play a relevant role in fu-
ture SGs.

Nowadays, DR schemes are already deployed and
well established in the U.S. (US DoE, 2006). From a
market perspective the existing programs can be divi-
ded in two main categories:

• Price-based programs: customers are motivated to
change their demand pattern in response to day
ahead or real-time price signals. According to this
model, utilities or energy aggregators cannot di-
rectly act on end-users appliances but they mo-
tivate people to change their power consumption
habits usually by offering higher prices in peak
hours and lower prices during off-peak hours.

• Incentive-based programs: customers provide to
utilities or energy aggregators the possibility to di-
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rectly control or schedule some of their appliances
and are rewarded for this service through specific
incentives in the tariff scheme. In this case, thus,
the DR program provider can manage the flexible
loads allowed by the customer following his own
needs, while fulfilling some customer comfort re-
quirements if this is specified in the agreement.

According to (FERC, 2011), DR programs de-
ployed in U.S. unlock a potential power peak re-
duction larger than 53 GW. More than 80% of
this peak reduction comes from incentive-based pro-
grams. This solution, despite being more invasive
with respect to the price-based alternatives, allows
an optimum management of the load flexibility lea-
ding to the certain achievement of the desired targets.
Given the invasiveness of these schemes, incentive-
based DR is usually implemented to control not criti-
cal shiftable or interruptible loads, such as heating de-
vices, air conditioners and water heaters. In Europe,
DR and DSM programs are still at an early stage. This
is mainly because of the heterogeneity of the regu-
latory framework in the different countries and, so-
metimes, also within the same country. Nevertheless,
these services are recently being proposed more in-
sistently and DR is regarded as a key tool to achieve

the targets of at least 27% for renewable energy and

energy savings by 2030 (SEDC, 2014).

This paper proposes an optimization algorithm
conceived to exploit the flexibility provided by he-
ating devices, like heat pumps. Electro-thermal de-
vices are in fact becoming more and more used for
space heating, also thanks to the support of recent re-
gulations aimed at improving the energy efficiency in
the residential sector. Thanks to the relatively slow
dynamics of thermal phenomena, electric heat pumps
can be operated flexibly, thus offering a great poten-
tial for the deployment of DSM and DR schemes de-
signed for their management (Arteconi et al., 2013).
The goal of the optimization algorithm here presented
is twofold. The main objective is to minimize the po-
wer peaks on the grid, but the heat pumps scheduling
is performed also in order to guarantee the thermal
comfort required by the end-users.

In the following, Section 2 shows how the flexibi-
lity given by heat pumps can be used for DSM purpo-
ses and points out the differences between the propo-
sed approach and those already available in literature.
In Section 3, the designed optimization algorithm is
presented and the constraints taken into account in the
used model are described. Section 4 presents the ap-
plication of the proposed optimization algorithm in
different case studies, highlighting the technical be-
nefits potentially achievable through the devised heat
pumps management. Section 5 finally summarizes the

obtained results and concludes the paper.

2 USE OF HEAT PUMPS FOR

DEMAND SIDE MANAGEMENT

The flexibility provided by heating systems has been
studied and evaluated in several works, proving that a
large potential exists for the application of DR sche-
mes based on the management of electro-thermal de-
vices (Klaassen et al., 2016b; Chapman et al., 2016).
As a consequence, large efforts have been focused
on this research field, dealing with different aspects
like the modelling of the thermal system (Good et al.,
2013; Akmal and Fox, 2016) or the estimation of the
heating demand (Kouzelis et al., 2015) in order to de-
sign tailored DR schemes. Many of the DSM and DR
programs proposed in the literature refer to the price-
based model and aim at minimizing the costs incur-
red by the final customer. Therefore, the developed
models are usually conceived as a service to the cu-
stomer, while the utilities can address their needs (in
terms of grid management) by sending different price
signals over the time and relying on the response of
the users to the varying prices.

In (Molitor et al., 2011), different price schemes
are used as input to an optimization algorithm run-
ning at the end-user premises for the scheduling of
heat pumps. Results show that the optimal schedu-
ling leads to a reduction of the energy consumption of
the customer, but this is obtained at the expense of a
thermal discomfort. In (Loesch et al., 2014), an evo-
lutionary algorithm is proposed to schedule the heat
pump so to minimize the costs for the user, given the
price of the energy in the spot market. Here utilities
can also define power limitations in specific periods
of the day for solving possible contingencies in their
grid and charge penalties to the customer if such li-
mitations are not respected. The algorithm is able to
exploit the flexibility provided by the heating system
and to minimize the user costs, but a direct link to the
thermal comfort delivered to the customer is missing.
The proposal in (Bhattarai et al., 2014) also tries to
combine the objective of minimizing the costs for the
customer with a service that is oriented to the distribu-
tion grid management. A two-step optimization pro-
cess is presented, where the first step gives the sche-
duling of the heat pumps (minimizing the costs) while
the second step checks possible voltage problems in
the grid and, in case, shifts the heat pumps operation
to the following time slots. Again, customer discom-
fort is in general possible in case of reallocation of
the heat pumps operation. Heat pump flexibility is
directly used to improve the operation of distribution
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grids in (Csetvei et al., 2011). A method to define lo-
cal price signals for the end-users is presented, where
additional costs are added to the spot market prices if
overload conditions exist. The price signals are then
used to determine the set point temperature of the heat
pumps. The method allows eliminating the overloads,
but customer discomfort can still arise during over-
load periods.

To avoid thermal discomfort for the end-user,
some proposals include in the optimization model
constraints on the indoor temperature provided to the
customer. In (De Angelis et al., 2013), temperature
boundaries are considered in a home energy manage-
ment system which is used to schedule the operation
of flexible loads (including heat pumps) and possible
storage systems. The objective is to reduce the costs
for the customer, so utilities can pursue their goals
only by setting different price signals over the time. In
(Nielsen et al., 2012), instead, the price-based scheme
is compared to two different DR approaches where
the power consumption or the temperature set point
of the heat pump are directly controlled by the DR
provider. The objective is in this case to minimize the
costs for the energy aggregator (which is providing
the DR program), while minimizing the discomfort
for the customers by keeping their home temperature
between the considered boundaries. Similarly to the
case of the heat pumps, (Li et al., 2017) propose an
algorithm to manage air conditioners by acting on the
temperature set points in order both to reduce energy
consumption and to provide the interruptibility of the
load as DR service. In this case, no fixed temperature
boundaries are used, but the control scheme was tes-
ted in the field and tuned according to the customers
feedback in order to minimize their thermal discom-
fort.

All these approaches, while proposing solutions to
make DR and DSM programs more attractive for the
final customer, do not allow to fully exploit the availa-
ble flexibility for enhancing the efficiency of the elec-
tric system operation. As described in (Strbac, 2008)
and reported in (US DoE, 2006), one of the main be-
nefits for the system would be the power peak mi-
nimization. By minimizing the power peaks in the
grid, utilities can minimize power losses, improve the
voltage profile in the grid, reduce the risk of contin-
gencies and postpone network reinforcement in areas
with increasing connected power. At system level,
this also leads to avoid the use of expensive genera-
tion units during peak hours and to reduce the needed
spinning reserve, thus minimizing the overall costs.

For this reason, differently from the other propo-
sals available in the literature, the DSM model here
presented performs an optimal day ahead scheduling

Figure 1: Example of user-defined comfort requirement.

of the heat pumps for minimizing the power peaks on
the grid over the day. The minimization is performed
by taking into account user-defined requirements in
terms of thermal comfort, so that both utilities and
end users can take advantage from the proposed DSM
program. Further reward to the final customers could
be also defined, in terms of incentives in their tariff,
to make the DSM scheme more appealing, depending
on the savings the utilities estimate to achieve from
the application of this optimization on a large scale.

3 MODEL FORMULATION

This section presents the formulation used for the pro-
posed DSM model. First, the thermal model, con-
sisting of comfort constraints, boundary constraints,
energy balance equations and heat pump equati-
ons/constraints, is described. Then, the optimization
algorithm designed to perform the day ahead schedu-
ling of the heat pumps in the considered grid is pre-
sented.

3.1 Thermal Model

Comfort constraints They are used in the model to
guarantee the comfort requirements of the residents
living in each house. In the proposed DSM scheme,
users choose the reference temperature they want to
have (it can also vary during the day) and provide
a certain boundary around such reference tempera-
ture. Figure 1 shows an example of possible tempe-
rature requirement for a customer. The comfort con-
straints are thus defined so that, for every time period
t, the indoor temperature is always within the permit-
ted range. Indicating with ΓLB

h,t and ΓUB
h,t the lower and

the upper bound, respectively, of the temperature in
house h at time t, the following holds:

T IN
h,t ≥ ΓLB

h,t ∀h, t (1a)

T IN
h,t ≤ ΓUB

h,t ∀h, t (1b)
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where T IN
h,t is the variable associated to the indoor

temperature of house h at time t.

Boundary constraints They are added to define the
initial and final states of the temperature for the daily
optimization. Given a starting temperature ΓINI

h , the
temperature at time t = 0 is:

T IN
h,0 = ΓINI

h ∀h (2)

while at the final time period f , the indoor tempera-
ture is bounded with the inequality constraint:

T IN
h,f ≥ ΓREF

h,f ∀h, (3)

where ΓREF
h,f =

ΓUB
h,f +ΓLB

h,f

2 is the reference temperature
of house h at t = f. Such a choice is done in order
not to have a final temperature too close to the lower
bound, since this would force to turn on the heat pump
at the beginning of the following day (thus removing
any flexibility for the first time steps of the subsequent
day ahead scheduling).

Energy balance The energy balance equation defi-
nes how the indoor temperature changes over the time
due to the heat provided by the heat pump and the heat
loss to the outdoor environment. The used equation is
based on the model described in (De Angelis et al.,
2013) and it is:

T IN
h,t = T IN

h,t−1 +
∆t

µHS
h γAR

(
QHP

h,t −QLS
h,t

)
∀h, t (4)

where ∆t is the duration of the time period between
two consecutive discrete time steps, µHS

h and γAR are
specific parameters, namely the house indoor air mass
and the air heat capacity, and QHP

h,t and QLS
h,t are varia-

bles indicating the heat flow given by the heat pump
and the heat loss, respectively.

The indoor air mass µHS
h is a parameter that de-

pends on the size and geometrical characteristics of
the house (see (De Angelis et al., 2013) for more de-
tails) and, combined with the air heat capacity γAR, ap-
pears as a thermal energy storage for the house, thus
affecting the dynamics of the thermal phenomena.

The heat losses are instead defined through the fol-
lowing relationship:

QLS
h,t = κHS

h (T IN
h,t−1 −ΓOT

h,t−1) ∀h, t (5)

Such losses depend on a heat loss factor κHS
h and on

the temperature difference between the indoor and the
outdoor temperature ΓOT

h,t−1.

As for QHP
h,t , more details will be provided in the

following paragraph where the used heat pump model
is fully described.
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Figure 2: Power demand of the heat pump in binary or con-
tinuous mode.

Heat pump model This model has to link the deli-
vered heat QHP

h,t to the electrical power PHP
h,t required

to produce such heat, and has to account for all the
possible constraints present in the heat pump opera-
tion. In the literature, heat pumps are often conside-
red to work at a fixed power and thus a simple binary
variable is adopted to define if their status is on or off.
In some papers, a multi-operation mode is instead de-
fined by considering different discrete air mass flows
to which different electrical powers are consequently
associated. In this case, binary variables are intro-
duced for each discrete operation mode, hence deter-
mining an increasing complexity of the optimization
problem. In this paper, a continuous operation mode
of the heat pump is considered. This means that the
heat pump can generate any value of air mass flow
included in the range between a minimum and a max-
imum limit. The electrical power needed to generate
the output air mass flow can be described through a
function, which can be in first approximation lineari-
sed through a given number of linear segments. Fi-
gure 2 shows an example of linearised curve map-
ping the air mass flow to the required electrical power,
which has been obtained using heat pump data given
in (De Angelis et al., 2013).

In Figure 2, it is possible to observe that three ope-
ration modes are defined: the first one, named m0, is a
discrete value corresponding to the minimum air mass
flow of the heat pump; the second one, m1, is associ-
ated to the first segment of the curve; the last one,
called m2, is linked to the upper segment of the curve
and arrives till the maximum air mass flow for the heat
pump. As it will be shown in the following, such a
solution can be implemented in the optimization al-
gorithm by using integer variables for each operating
mode, while just one binary value is used to deter-
mine the status (on or off) of the heat pump. Figure 2
also shows the possible limits present in the definition
of a simple binary operation mode for the heat pump.
In fact, in such a case a single operating point of the
heat pump has to be decided, which does not reflect
the actual operation mode of many heat pumps.
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Relying on the described continuous operation,
the generated heat is defined as:

QHP
h,t = γAR ∑

m

∆FHP
h,m,t

(
ΓHP

h −ΓRF
h,t−1

)
∀h, t (6)

where ΓHP
h is the output temperature of the heat pump

(assumed as constant) and ΓRF
h,t−1 is the reference tem-

perature of the house h at the time step t − 1. It is
worth noting that a rigorous definition of the genera-
ted heat QHP

h,t would require the use of the actual ind-

oor temperature T IN
h,t−1 in (6) in place of the reference

temperature ΓRF
h,t−1. However, such a solution would

lead to a nonlinear relationship and for this reason it is
here approximated by using the constant value given
by ΓRF

h,t−1. This approximation is considered accepta-
ble since the indoor temperature is constrained to be
close to the reference temperature due to the comfort
constraints previously defined.

The other term appearing in (6), namely ∆FHP
h,m,t , is

the additional air mass flow of mode m with respect
to the upper bound air mass flow of mode m− 1. As
for the first operating mode m0, the air mass flow is
constrained by the following equality constraint:

∆FHP
h,m0,t = yh,t Φh,m0 ∀h, t. (7)

where Φh,m0 is the minimal air mass flow of the heat
pump. The air mass flow of mode m0 is thus either
0 or Φh,m0 depending on the binary decision variable
yh,t . The additional air mass flows of all other opera-
ting modes m are instead constrained by the following
inequality constraints:

∆FHP
h,m,t ≤ yh,t ∆ΦUB

h,m ∀h, m /∈ {m0}, t (8)

where ∆ΦUB
h,m is the upper bound of the additional

air mass flow of the linearised segment associated to
mode m.

Given these definitions of the additional air mass
flows, the required power of the heat pump is directly
mapped to the air mass flow by means of the follo-
wing equation:

PHP
h,t =∑

m

βm∆FHP
h,m,t ∀h, t (9)

where the parameter βm is the power per air mass flow
associated to each mode m. The total power of the
heat pump is thus determined by taking the sum of all
the additional air mass flows ∆FHP

h,m,t multiplied by the

respective parameter βm over all the operating modes
m. The proposed formulation works properly for in-
creasing values of βm (βm0 ≤ βm1 ≤ βm2 . . . ) as in Fi-
gure 2. In fact, since the following optimization ope-
rates to minimize the used powers, this ensures that
the modes will be automatically selected by the sol-
ver in the order m = {m0,m1,m2 . . .}.

A further aspect considered in heat pump model is
the possible presence of time constraints. These con-
straints account for the minimum (or maximum) ti-
mes the equipment has to operate or have to be turned
off since, usually, many operational switches result
in inefficiency and mechanical stress. In (Hedman
et al., 2009), several different methods to account for
time constraints in another scheduling problem (the
unit commitment problem) were proposed and exa-
mined. Results of such work are here adapted to the
heat pump scheduling problem. In this case, only a
minimum number of time periods τ, during which the
heat pump has to be turned on, is implemented (e.g.,
no minimum turn-off time) by the two following con-
straints:

Zh,t ≥ yh,t − yh,t−1 ∀h, t (10)

Zh,t ≤yh,τ

∀h, t,τ ∈ {t, · · · ,min(t + τMIN − 1, f)}.
(11)

Note, the switching variable 0 ≤ Zh,t ≤ 1 is a boun-
ded continuous variable. Therefore by using these
time constraints, the introduction of new binary va-
riables is not required. More binary variables would
result in a larger branch and bound tree and thus in a
more complicated problem. As a result, the complex-
ity of the problem decreases by using the inequality
constraints proposed in (10) and (11).

3.2 The Optimization Algorithm

As discussed in Section 2, the objective of the DSM
here proposed is to minimize the power peaks in the
grid. To achieve this target, Quadratic Programming
(QP) could be used to minimize the squared power
resulting on the monitored network over all the time
periods. However, if binary variables are included in
the problem, QP approaches lead to very high compu-
tational burden and execution times. For this reason,
in the proposed approach, the objective function has
been linearised as presented in the following. This,
together with the linear constraints defined in Section
3.1, allows obtaining a linear problem that can be sol-
ved more easily through a Mixed Integer Linear Pro-
gramming (MILP) formulation. In this way, execu-
tion times can be reduced, which is an essential as-
pect when dealing with large optimization problems
(in this scenario, when optimizing the heat pump ope-
ration of a large number of houses).

The basic idea used here to linearise the objective
function is to discretize the power consumption at
time t through a given number of blocks b and to as-
sign increasing weights to blocks associated to hig-
her levels of power (see Figure 3); in this way, the
minimization of the weighted blocks leads to avoid
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Figure 3: The weight αb of the energy ∆Eb,t in box b.

the allocation of flexible load consumption in periods
where power peaks are occurring. These blocks can
be interpreted as boxes that can be filled with energy
up to their respective capacity εUB

b . Each energy box
b is thus a continuous variable (indicated in the follo-
wing with ∆Eb,t) that is lower bounded by 0 and upper
bounded through this inequality constraint:

∆Eb,t ≤ εUB
b ∀t (12)

where εUB
b is the maximum capacity of the energy

box, which, in general, can be different for each block
b.

For each time step t, the sum of all the energy
boxes is related to the power consumption in that pe-
riod by means of:

∑
b

∆Eb,t ≥∑
h

∆tPHP
h,t + εGD

t ∀t (13)

where εGD
t is the energy consumption at time t given

by all the non-scheduled loads in the grid and PHP
h,t is

the already mentioned power consumption of the heat
pumps for each house h.

Given the above definition of the energy boxes
and considering all the constraints introduced in the
problem, the optimization used to schedule the heat
pumps is a centralized algorithm with the following
objective function:

minimize
yh,t ,∆FHP

h,m,t

∑
t

∑
b

αb ∆Eb,t

s.t. Eqs. (1)− (13).

where the optimization decisions are the binary va-
riables yh,t and the continuous variables ∆FHP

h,m,t . As
it can be observed, the designed algorithm is thus a
centralized approach where the heat pumps of each
house included in the problem are scheduled within
the same DSM optimization procedure. Similarly
to the case of the additional air mass flows, for the

Table 1: Parameters of the heat pump.

Mode m m0 m1 m2

βHP
m (Whkg−1) 0.939 1.86 3.70

∆ΦUB
m (kgh−1) 426 264 178

proper functioning of the method it is crucial that
the weight αb is increasing (αb1 ≤ αb2 ≤ αb3 . . . ).
In this case, indeed, the boxes will be selected (or
’filled with energy’) by the solver in the order b =
{b1,b2,b3 . . .}. The box approach is reasonable since
the target is only the cut of the highest peak. This
approach allows to be tailored to the considered sce-
nario. For example, the discretization in the energy
level can be modified, or any arbitrary strong functi-
ons (e.g., exponential to the power x, etc.) can be
linearized by setting the values of the weights αb ac-
cordingly. Differently from other proposals available
in literature and, in general, from price-based DSM
schemes, the proposed centralized approach also al-
lows avoiding that possible high power peaks are sim-
ply shifted from a time to another due to the similar
response of the customers to the DSM inputs.

4 TESTS AND RESULTS

4.1 Tests Setup

The proposed optimization algorithm has been tested
considering different scenarios where the DSM pro-
vider wants to minimize the power peak of the grid
using the flexibility provided by 60 residential houses
endowed with electric heat pumps. The time horizon
for the scheduling is one day. The initial time of the
scheduling problem is midnight and the day is separa-
ted in 96 time periods resulting in a discretization time
step of ∆t = 15min. For the sake of simplicity, in the
simulation it is assumed that all houses have the same
heat pump that can continuously operate in 3 different
modes. However, the algorithm obviously allows for
the implementation of heat pumps with different cha-
racteristics for each house h. The parameters of the
heat pump model are stated in Table 1 and are derived
from (De Angelis et al., 2013). It is worth reminding
that mode m0 is the operating start point, while the
linear operating segments m1 and m2 offers continu-
ous operation of the heat pump as depicted in Figure
2. The output temperature of the heat pump has been
chosen as ΓHP = 30◦C and the minimal time period
the heat pump has to run is τ = 2 (corresponding to a
minimal operation time of 30min).

As shown in Figure 4, in the proposed DSM
scheme, the inputs needed for the optimization algo-
rithm are:
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• a forecast of the inflexible load in the grid

• a forecast of the outdoor temperature

• the thermal comfort required by the customers, to-
gether with heat pumps and building characteris-
tics.

As for the inflexible load profile in the grid, statis-
tical data are often available (for example at substa-
tion level) regarding the aggregated power consump-
tion in different periods of the year and for different
types of day (e.g. working or weekend day). In the
following simulations, the aggregated profiles of re-
sidential houses have been taken from the standard
load profile of 2012 (Bundesverband der Energie- und
Wasserwirtschaft) using an average consumption of
2000 kWh/year per customer. Two different periods
of the year, namely a working day in May and one in
December, have been simulated, and the correspon-
ding load profiles have been assumed as inflexible
load for the residential customers. In addition, the
presence of industrial consumers has been also consi-
dered. This contributes to give the final shape of the
forecast inflexible load, as it will be shown in the next
subsection when presenting the simulated scenarios.

For the forecast of the outdoor temperature, the
actual temperature of a day in May is used in a first
simulation, while the actual temperature of a day in
December is used to simulate a second scenario. The
used temperature profiles are presented in Figure 5.
The thermal comfort of the 60 houses differs from
house to house and individual parameter sets (as des-
cribed in the previous section) have to be taken into
account. For the case studies presented here, the re-
levant parameters are sampled based on 5 different
temperature profiles and 12 different building charac-
teristics. Figure 5 shows the 5 different temperature
profiles (the reference temperature is always the mean

Figure 4: Overall model of the designed DSM scheme.
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value of the upper and lower bound). As starting point
for the simulation, the initial indoor temperature ΓINI

h
is assumed to be equal to the reference temperature of
the first time period. The 12 building types differ in
the indoor air mass and the heat loss factor (Figure 6).
The parameters are calculated based on the geometric
dimensions of the house (De Angelis et al., 2013).
As an example, let us consider a house having the
length ξHS

1 = 20m, ξHS
2 = 20m, the height ξHS

3 = 4m,

a roof pitch of σHS = 40◦ and ηW I = 6 windows,
each one with an area of ΛW I = 1m2. The ther-
mal transmittance for walls and windows are assumed
νWA = 0.15Wm−2 K−1 and νW I = 1Wm−2 K−1, re-
spectively. The heat loss factor in this example house
is calculated as follows:

κHS = νWA
(

2 (ξHS
1 + ξHS

2 ) ξHS
3 −ηWI ΛW I

)

+ηWI νW I ΛWI = 191.16kJh−1 ◦C
(14)

By using the density of the air ρAR = 1.2041kgm−3

at standard conditions, the total air mass is:

µHS = ρAR

(
ξHS

1 ξHS
2 ξHS

3 +0.25 ξHS
1

(
ξHS

2

)2
tan(σHS)

)

= 3946 kg.
(15)

For all the 60 residential houses, the indoor air
masses and heat loss factors are presented in Figure
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Figure 6: Indoor air masses and heat loss factors of the re-
sidential houses.
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6. The set of houses used in the simulation has been
obtained using all the possible combinations between
the 5 thermal comfort profiles (Fig. 5) and the 12 dif-
ferent house characteristics (Fig. 6).

During the presentation of the test results, the be-
nefits provided by the proposed DSM model are ana-
lyzed by comparing the results of the described op-
timization algorithm to those of two different simu-
lations. In the first case, the term of comparison is
given by a simulation where the target of the internal
control system of the heat pump is to keep the ind-
oor temperature as close as possible to the reference
temperature ΓRF

h,t for all the time periods. This simu-
lation has been run separately for each HP h by using
a QP approach that minimizes the squared difference
of the indoor temperature of the house with respect to
the reference temperature selected by the customer,
according to:

minimize
yh,t ,∆FHP

h,m,t

∑
t

(
T IN

h,t −ΓRF
h,t

)2 ∀h

s.t. Eqs. (1)− (11)

(16)

This comparison aims at highlighting the advantages
offered by the proposed DSM scheme with respect to
a scenario in which no DSM is applied. In the follo-
wing, this operation mode of the HP will be referred
to as “internal HP control”.

In the second case, the DSM model has been ap-
proximated by using the same model presented in
Section 3 but excluding multiple HP modes m. Thus,
HP operation is only valid in mode m = {m0} (by
using the equality constraint Equation (7)) and Equa-
tion (8) is not required any more in the optimiza-
tion. In this comparison, the binary operation of the
heat pump is selected to have an air mass flow of
∆PhiUB

m0 = 647kgh−1 and a power per air mass flow

βm0 = 1.25Whkg−1. This value is the mean air mass
flow of the continuous heat pump model. This sce-
nario allows showing the different results achievable
when considering a more realistic (continuous) ope-
ration mode of the heat pump rather than a simplified
binary version.

4.2 Simulation Results

To assess the benefits provided by the proposed DSM
scheme, a first simulation scenario, using as input the
outdoor temperature of a day in May (see Fig. 5),
has been considered. In this test case, it is assumed
that the optimization has to be performed in a portion
of a LV grid where all the 60 houses are equipped
with an electric heat pump. In addition, an indus-
trial load is also taken into account, which operates
at {1.5kW,8kW} and switches with a period of 4h,

starting with 8kW at midnight. This scenario can be
representative, for example, of a distribution feeder
that supplies the simulated 60 houses.

At the household level, the results for an example
house are presented in Figure 7. The comparison of
the scheduled powers of the heat pump, for the case
of internal HP control and for the DSM with binary
and continuous HP operation mode, is presented in
the upper part of the figure, while the respective ind-
oor temperatures are presented in the bottom part. In
the case of temperature minimization in the internal
control system of the heat pump, obviously the ind-
oor temperature follows closely the reference tempe-
rature. It can be observed that more power is requi-
red in the morning, when the desired reference tem-
perature increases, and that the heat pump works re-
gardless of the loading conditions of the grid. With
the DSM, since the optimization algorithm fosters the
power consumption in some time periods more than
in others, the full range of the specified temperature
bounds is used. However, it is possible to observe that
the temperature always falls within the range accepted
by the customer. In particular, morning hours (when
the loading of the grid is lower) are used to store ther-
mal energy in the house, while during peak hours the
operation of the heat pump is minimized in order not
to aggravate the situation in the grid (while providing
to the customer the required comfort).

The main differences between the binary and the
proposed continuous HP operation mode are from an
energy consumption perspective. Indeed, it is possi-
ble to see that the continuous model leads to operate
the heat pump at lower power levels and for a longer
time during the day. This allows better modulating the
power before peak hours, when the storage of ther-
mal energy is needed, and during peak hours, when,
while respecting the customer thermal requirements,
the operation of the heat pump has to be minimized.
In addition, operating the HP at its lower bound also
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Figure 7: Heat pump consumptions and temperature profi-
les for one example house in the first simulation scenario.
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Table 2: Results on the daily energy consumption, first si-
mulation scenario.

case HP consumption increase
(kWh) (%)

Example household
DSM - continuous HP 4.19 -

DSM - binary HP 5.88 + 40.2
internal HP control 5.46 + 30.2
Overall scenario

DSM - continuous HP 333.6 -
DSM - binary HP 459.4 + 37.7

internal HP control 439.8 + 31.8

allows using the most efficient operation points of
the HP, and this implies a significant reduction in the
overall energy consumption for the end-user. Table 2
shows the results related to the energy consumption
for both the example household presented in Fig. 7
and for the overall scenario. It is possible to see that
a simplified binary model of the HP clearly leads to a
larger energy consumption, which may be not accep-
table for the final customers.

The results obtained at the grid level are shown in
Figure 8. Whereas for all the cases the inflexible in-
dustrial and residential loads are the same, the flexible
parts differ depending on the HP scheduling. In this
scenario, all the houses are equipped with heat pumps,
so a large amount of flexible energy is available. As
a consequence, the final curve of aggregated power
is mainly determined by the allocation of this flexible
energy, rather than by the shape of the fixed load. In
the case of temperature minimization using the inter-
nal control of the HP, large power peaks are obtained.
The reason for these peaks is the presence of simi-
lar comfort profiles for many customers (see Fig. 5),
which leads to the simultaneous operation of the heat
pumps. Even though these peaks are originated by the
particular thermal requirements used for the test, this
kind of problem is likely in a scenario with large pe-
netration of electric HPs managed in a decentralized
way. In fact, end-users can have same requirements
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Figure 8: Aggregated power in the grid for the first simula-
tion scenario.

Table 3: Technical benefits with the DSM at peak times,
first simulation scenario.

case max. peak power at 6:00 HP cut
(kW) (kW) (%)

internal HP control 95.6 95.6 -
DSM - binary HP 45.8 43.8 60.9

DSM - continuous HP 37.8 32.7 73.9

in some periods of the day (e.g. due to similar wor-
king hours or consequently to the weather conditions)
or price-based DSM programs can lead to a similar
reaction of the customers. This would bring the si-
multaneous operation of the heat pumps, thus deter-
mining a significant impact on the aggregated power
demand. The use of a centralized optimization appro-
ach leads significant benefits in this perspective, allo-
wing to achieve power peak shaving. Fig. 8 clearly
shows that a much flatter demand profile is obtained
thanks to the application of the DSM. Table 3 reports
the numeric results for the maximum power peaks ori-
ginated by each HP control. It is possible to see that a
reduction of the power peak larger than 60% is obtai-
ned for the DSM with continuous HP operation mode.
Since the actual potential of the DSM scheme is only
to manage the HP power, Table 3 also shows the re-
sults in terms of flexible energy that is shifted through
the DSM to avoid the power peaks. Considering the
power peak time for the case of internal HP control,
almost 74% of the flexible power can be reallocated
through the DSM scheme (this reduction is calcula-
ted considering only the part of the load associated
to the HP operation). The continuous HP operation
mode provides larger improvements due to its flexibi-
lity in choosing the HP operation point and its better
efficiency with respect to the binary HP.

To evaluate the potential of the proposed DSM
scheme even when less flexible energy is available,
a second test case has been run considering a scena-
rio with 240 residential houses, among which only 60
are endowed with electric HPs. This test case could
be representative, for example, of a MV/LV substa-
tion that subtends four different feeders. Due to the
assumed scenario, also the industrial load has been
scaled up to consider four feeders, and power levels
equal to {6kW,32kW} have been assumed using the
same operation cycles as the previous test. While the
same considerations as the previous case hold when
looking at the single household, different results can
be found when considering the aggregated power at
grid level. Fig. 9 shows the obtained power profi-
les for the different HP operation modes. In this case,
the level of the fixed load is relevant with respect to
the flexible power associated to the HPs, thus the pro-
file of the aggregated power is strongly affected by
its shape. Nonetheless, it is possible to observe that,
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Figure 9: Aggregated power in the grid for the second si-
mulation scenario.

when no DSM is applied, the three additional power
peaks brought by the customer thermal requirements
are still evident and give the largest power peaks over
the day. In case of DSM, a power profile as flat as
the one obtained in the previous test scenario cannot
be found due to the relatively low amount of flexible
energy. However, it is possible to note that the DSM
scheme accomplishes its task of power peak minimi-
zation by reducing the HP use at the peak hours and
scheduling the operation of the HPs during off-peak
periods. This behaviour is clearly depicted in Figure
10, which shows the distribution of the HPs operation
over the day for the two DSM schemes. It is pos-
sible to observe that, in the case of continuous HPs,
all the devices are activated in the period of lowest
power consumption (4:00 - 6:00), while only a mini-
mum set of HPs is scheduled to operate during peak
hours, like at 12:00 or at 20:00. Fig. 10 also permits
underlining once more the advantages of the continu-
ous HP mode with respect to the binary model. In the
latter case, in fact, despite a generally lower use of
the HPs (because they generally operate at higher po-
wer), the same or a larger number of HPs is running
during peak periods, which implies a larger additio-
nal power due to the fixed power chosen to represent
the binary behaviour. This is also reflected in Table
4, which shows the obtained values of power peak,
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Figure 10: Distribution of the HP operation for the second
simulation scenario.

Table 4: Technical benefits with the DSM at peak times,
second simulation scenario.

case max. peak HP power operating HPs
(kW) (kW)

internal HP control 145.1 47.2 40
DSM - binary HP 122.7 9.7 12

DSM - continuous HP 118.6 3.2 9

the corresponding quote brought by the HPs, and the
number of HPs operating at that time. Moreover, even
in this scenario, the binary HP model proves to be less
efficient than the continuous one, with an increase in
the overall energy consumption (for all the 60 houses)
larger than 36%.

To further confirm the results achieved until now,
the last scenario has been simulated again conside-
ring as outdoor temperature a day in December (see
Fig. 5). The first consideration in this test case con-
cerns the DSM with binary HPs: in these conditions
the optimization algorithm is unable to find a feasible
solution, because with the considered operating po-
wer is not possible to fulfil the thermal comfort requi-
rements during the changes in the reference tempera-
ture. This outcome highlights once again the possible
drawbacks associated to the introduction of this sim-
plification in the HP model. Focusing on the other two
HP scheduling criteria, Figure 11 shows the results
obtained for the aggregated power at grid level. Com-
paring these results with those obtained in the same
scenario in May (Fig. 9), it is immediate to verify that
a larger amount of HP energy results on top of the
inflexible base load. This is a consequence of the col-
der outdoor temperature, which forces the HPs to run
more frequently in order to provide the required ther-
mal comfort to the customers. Looking at the schedu-
ling of the single households, in the case of DSM with
continuous HP, 5 houses out of 60 require to have the
HP running at all the time steps, and 13 houses need
an operating HP for at least 23 hours. These effects
are automatically propagated to the results of the ag-
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Figure 11: Aggregated power in the grid for the third simu-
lation scenario.
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Table 5: Technical benefits with the DSM at peak times,
third simulation scenario.

case max. peak HP power operating HPs
(kW) (kW)

internal HP control 149.8 52.5 43
DSM - continuous HP 136.5 14.9 28

gregated power. As shown in Table 5, in fact, the le-
vel of power and the number of operating HPs during
the peak time is significantly larger than in the pre-
vious simulation scenario. Nonetheless, despite this
slight degradation of the DSM performance, it is still
possible to notice as the proposed DSM scheme al-
lows optimizing the scheduling of the HPs, reducing
as much as possible the operation at the peak time and
filling the valleys during off-peak hours. In compari-
son to the case of internal HP control, a reduction of
the power peak and of the overall energy consumption
larger than 9% and 20%, respectively, is obtained also
in this last scenario.

Finally, as for the computational cost for the pro-
posed method, we can state that it is relatively low.
The test cases were solved on a standard laptop using
CPLEX 12.7.0.0 in GAMS 24.8 on an Intel i7(2.9
GHz) machine with 16 GB RAM. The termination
criteria for the DSM with binary and continuous ope-
ration mode was set to a computation time of 2400 s
and 1200 s, respectively; thus, both optimizations
were not solved to global optimality. This is reaso-
nable since sub-optimal solutions from the grid per-
spective are achieved quickly. Table 6 shows the re-
sults related to the first presented simulation scena-
rio. Note, before the relative gap is calculated all se-
parate parameters and products of multiple parame-
ters that arise in the objective function are subtracted
from the objective function. Interestingly, the more
detailed the HP model, the smaller gets the relative
gap. This means that a more realistic model (continu-
ous HP operation) decreases the computational com-
plexity of the problem. As for the internal HP control
case, where the temperature differences are minimi-
zed, a QP optimization is solved for each house (in
total 60). The termination criteria of each optimiza-
tion was set to a computation time of 300 s. The rela-
tive gap of the 60 QPs varies much, but the majority
was solved to global optimality.

Table 6: Computational results.

case time relative gap
(s) (%)

internal HP control 10922 differs
DSM with binary HP 2400 8.15

DSM with continuous HP 1200 1.33

5 CONCLUSIONS

This paper presented an optimization algorithm de-
signed to define the day ahead scheduling of heat
pumps for achieving power peak shaving in the elec-
tric grid. The conceived approach exploits the flex-
ibility given by the heating devices on the customer
side to obtain the minimization of the power peaks,
while providing the required thermal comfort to the fi-
nal users. Performed tests prove that the proposed ap-
proach allows combining the benefits for the utilities
with the service for the customer, which obtains the
required temperature over the day and a minimization
of the energy consumption. Moreover, the advantages
brought by the proposed continuous operation model
of the heat pump, with respect to the simplified case of
binary operation of the heat pump, are presented. This
work will be used as a starting point for further deve-
lopments in this field. In particular, a deeper study on
the impact of the customer flexibility on the final re-
sults and the evaluation of the possible drawbacks led
by the unavoidable uncertainties present in the used
model (e.g. outdoor temperature, knowledge of the
building parameters, etc.) will be object of future stu-
dies. The possible use of dedicated thermal storage
will be also object of future work, since it can sig-
nificantly increase the available flexibility leading to
potential improvements in the achievable results and
in the design of the DSM scheme. The integration of
additional home appliances in the proposed manage-
ment algorithm can be a further step for the design of
a complete DSM program fully exploiting the flexibi-
lity offered by residential customers.
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