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Abstract: We propose an integrated system for vehicle detection and distance estimation for real-time autonomous 
emergency braking (AEB) systems using stereo vision. The two main modules, object detection and 
distance estimation, share a disparity extraction algorithm in order to satisfy real-time processing 
requirements. The object detection module consists of an object candidate region generator and a classifier. 
The object candidate region generator uses stixels extracted from image disparity. A surface normal vector 
is computed for validation of the candidate regions, which reduces false alarms in the object detection 
results. In order to classify the proposed stixel regions into foreground and background regions, we use a 
convolutional neural network (CNN)-based classifier. The distance to an object is estimated from the 
relationship between the image disparity and camera parameters. After distance estimation, a height 
constraint is applied with respect to the distance using geometric information. The detection accuracy and 
distance error rate of the proposed method are evaluated using the KITTI datasets, and the results 
demonstrate promising performance. 

1 INTRODUCTION 

Recently, driving safety has become more important 
and interest in intelligent vehicle systems has 
increased. For this reason, the technology for the 
Advanced Driving Assistant System (ADAS) and 
autonomous cars has undergone continual develop-
ment. In particular, the demand for Autonomous 
Emergency Braking (AEB) systems is increasing as 
the Euro NCAP has mandated their installation from 
model year 2018 onwards. 

Many studies on AEB systems have suggested 
technologies using various sensors to find obstacles 
and measure the distance to them. Radar and 
LiDAR-based approaches achieve good performance 
with high quality point clouds. However, these 
systems cost thousands of dollars and require 
periodic maintenance at least every three years. It is 
also difficult for these approaches to distinguish 
different types of obstacles. Therefore, studies in 
recent years have focused on image sensors using 
camera-based technologies. The advantage of a 
camera-based approach is that it can obtain detailed 
obstacle information so that the proper decision can 
be made with respect to the type of obstacle. 

Although development of monocular camera-based 
ADAS has been attempted, the distance error rate is 
too high to be commercialized. A stereo camera is 
more commonly used in order to take advantage of 
the detailed information available through the 
disparity between the two images. 

It is difficult to process whole images in real-
time because image processing is a pixel-wise 
computation. Thus, the processing time increases 
exponentially as the complexity of the algorithm and 
input image size increase. We propose a new 
integrated object detection and distance estimation 
method based on the stereo camera for real-time 
AEB systems. The main novelties of our proposed 
method are as follows: 

▪ We introduce real-time integration for AEB 
systems by using algorithmically generated, low 
complexity regions of interest (ROIs). 

▪ We apply a surface normal vector (SNV) 
validation process to minimize errors in the 
candidate regions caused by low quality stereo 
matching. 
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Figure 1: Hypothesis ROI generation flow chart (a) Input 
image (b) Disparity and V-disparity (c) Removing Ground 
(d) Height Constraint (e) Stixel Extraction (f) Stixel 
Segmentation. 

▪ We use a convolutional neural network (CNN) 
with efficiently reduced input data for 
classification. 

 

Many vehicle detection algorithms based on 
stereo vision have been developed in recent years. 
Vehicle detection using sparse density stereo 
matching with image features (Cabani et al., 2005) 
and geometry (Chang et al., 2005) was mainly used 
in the mid-2000s. Some studies used additional 
motion information like optical flow (Franke et al., 
2005) to find differences between the object and the 
background. In the late-2000s, mid-level 
representation methods (Elfes, 1989, 2013; Badino 
et al. 2009; Qin, 2013) appeared and became widely 
used. The main approach in these methods was to 
design algorithms to cluster pixels into a hypothesis 
segments (Barrois et al., 2013; Barth et al., 2009; 
Broggi et al., 2010). To overcome the technical 
limits of processing only image pixel values, motion 
from object tracking has been used and yielded great 
progress since 2010 (Danescu et al., 2011; Erbs et al., 
2011).  

As the parallel processing capability of hardware 
has improved, CNN-based visual processing 
algorithms have showed outstanding performance in 
many visual recognition and detection challenges 
(Everingham et al., 2012; Russakovsky et al., 2015).  

 

Figure 2: Stixel clustering. 

For this reason, CNN detection algorithm 
development has exploded (Ren et al., 2015). A 
single shot object detection approach has also 
appeared, and revealed the possibility that CNN can 
be used in real-time systems (Redmon et al., 2015; 
Liu et al., 2015). 

2 INTEGRATED MODULE FOR 
AUTONOMOUS EMERGENCY 
BRAKING SYSTEM 

The detection and distance estimation modules share 
a disparity map extraction algorithm, which accounts 
for half of the entire processing time for the real-
time integrated system. Each module uses this 
disparity map as needed. The stereo matching 
method used for generating the disparity map is a 
local matching with low computational cost. The 
details of the stereo matching algorithm will not be 
covered in this paper because the algorithm can be 
replaced as necessary. 

The vehicle detection algorithm consists of two 
sequential parts. One is the hypothesis ROI 
generator based on stixels, and the other is a 
classifier based on CNN. In region-based CNN 
detection algorithms, blob detection is commonly 
used as a region proposal method (Van de Sande et 
al., 2013; Matas et al., 2004). However, this usually 
requires a lot of time because there are hundreds of 
different blobs in an image, and various scales of 
blobs should be considered. Therefore, we replaced 
this algorithm with our ROI generator, which only 
requires a few milliseconds when using a disparity 
map, to enable our integrated system to run in real-
time. 

2.1 Stixel Hypothesis ROI Generation 

The main concept behind our hypothesis ROI 
generation is to use a low cost stereo matching 
algorithm, though the resulting disparity map quality  
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Figure 3: Example of hypothesis ROI generation flow. 

is poor. In order to remedy the disparity map errors 
caused by low quality stereo matching, we use 
surface normal vectors (SNV) to validate the object 
candidate regions. Figure 1 shows a flow chart for 
the stixel ROI generating algorithm.  

The stixel is one of the mid-level representation 
methods, which uses an occupancy grid and digital 
elevation map (Elfes, 1989, 2013; Qin, 2013). We 
borrow the basic concept of the stixel by using the 
distance and height information of objects. 

Ground estimation is important for extracting a 
high quality stixel. Because the stixel is 
perpendicular to the ground, the ground information 
has great influence on the stixel estimation result. 
Here, we assume the ground is flat to simplify the 
situation. V-disparity is a graph of the frequency of 
disparity values along the v-axis. This is used to 
estimate the ground. The dominant line which 
represents the ground is estimated using RANSAC, 
which is an efficient model estimator. After finding 
the ground, we can remove it from the disparity 
image and constrain the height. A stixel is obtained 
by drawing a line from top to bottom such that the 
disparity pixel value is greater than 0. The stixels are 
then clustered to generate the object bounding box 
ROIs. We adopt the clustering method (Ester et al., 
1996) to cluster stixels into ROIs. This method first 
select a seed which is the closest and the leftmost. 
After that, the stixels within the radius threshold are 
clustered into one object candidate as shown in 
Figure 2. We assumed that a car size could not over 
2.5 meters. 

2.2 Surface Normal Vector Validation 

In section 2.1, we introduced the algorithm for ROI 
generation. The ROIs obtained through local 
matching are not always reliable because of the 
disparity error. For example, wet ground and a field  
 

 

 

Figure 4: Example of surface normal vector. 

that reflects light are incorrectly recognized as 
objects as shown in Figure 3. The SNV is applied to 
solve this problem. The SNV can be calculated using 
the formula below with 3 points, A, B and C, which 
lie on the plane of the image as shown in Figure 4. ܰ = ሬሬሬሬሬԦܤܣ ൈ ሬሬሬሬሬԦ (1)ܥܣ

For this method, the selection of A, B and C 
affects performance. Thus, we heuristically select 
pixels with the distance interval, double of the 
disparity resolution, using the best result from the 
experiment to determine value change. We 
determine the dominant normal vector by using the 
adaptive mean shift. While the original mean shift 
searches for the mean value with a fixed kernel 
range, the adaptive mean shift uses a dynamic kernel 
range. Finally, errors are removed by examining the 
direction of the dominant normal vector in the ROI. 

2.3 CNN Vehicle Classification 

In order to separate the candidate regions into the 
foreground and background, we adopt the CNN as a 
classifier. Our base CNN network is constructed 
using only basic 3x3 convolutional filters (Simonyan 
et al., 2014), which are optimized on the NVIDIA 
embedded board using their SDK. All fully 
connected layers in the final section of the network 
are replaced with convolutional layers to reduce 
processing time (Lin et al., 2013).  
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Figure 5: Classifier network model. 

We save approximately one-third of the total 
processing time by removing the fully connected 
layers. For additional performance enhancements in 
the detection rate, we applied the residual 
connection introduced in (He et al., 2015). Most 
CNN detection algorithms use an entire image as an 
input to the convolutional layers for computational 
sharing. However, in real-world driving environment 
images, objects rarely take up a huge portion of the 
image. Therefore, we only use the object regions as 
inputs. The input image should be resized to 32x32 
pixels to form the mini-batches for parallel 
processing. Figure 5 illustrates the network model 
used for our method. 

2.4 Distance Estimation 

The distance to objects is estimated from the 
disparity information in the ROI. It is determined by 
the following formula: ܼ = fBd  (2)

where Z is the distance, f is the focal length, B is the 
distance between the two lenses of the stereo camera, 
and d is the representative disparity. The 
representative disparity is selected as the maximum 
value in the disparity value histogram, which is the 
shortest distance from the object to the camera. 

 

 

 

Figure 6: Result images. 

We apply the height constraint again using the 
more precise distance to reject objects that are too 
tall to be considered.  

3 EXPERIMENTAL RESULTS 

The detection accuracy and distance error rate were 
evaluated using the KITTI dataset benchmark 
(Geiger et al., 2012). In order to use the distance 
information in the KITTI annotations, we divided 
the image set into 3712 images for the training sets 
and 3769 images of the validation sets. We followed 
the dividing policy used in the paper by (Chen et al, 
2015), which considers the correlation between 
sequential images. For the CNN training data, we 
use the ground truth, the stixel candidate regions, 
and random cropped images. We decided that the 
threshold for positive sets would be an overlap ratio 
with the ground truth above 0.5, and the negative 
sets would be any with an overlap ratio below 0.5. 

To prove that the performance of our module is 
reasonable, we conducted a comparative experiment 
on detection rate with SSD (Liu et al., 2015) which 
is the representative real-time CNN detection 
algorithm. Table 1 displays the average precision 
rate for ‘Car’ detection. The precision results for the 
stixel with SNV validation is 2.18% higher than that 
without SNV validation. In order to analyze the 
effect of our separate modules on the precision rate, 
we also evaluated detection precision on the ground 
truth regions. This result demonstrated the capability 
of the CNN classifier and we determined that the 
stixel clustering must be improved to achieve better 
detection results.  
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Table 1: Average Precision Results on Car Class. 

Method AP(%) 
Stixel + CNN 60.76 

Stixel(SNV) + CNN 62.94 
Ground Truth + CNN 91.14 

SSD 65.20 

The distance error rate was evaluated on objects 
over 5 m away, and the accuracy was 92.51%. 
Because we limit the length of the epipolar line to 
search the corresponding points, distances less than 
5 m are not reliable. 

Table 2: Distance estimation error rate. 

Constraint Error rate(%) 
> 5 m 7.49 
>  0 m 8.33 

Processing time was also evaluated across 
several platforms to validate the real-time system. 
We checked the average processing time over five 
iterations. The result on PC is 25 fps, and on the 
NVIDIA TX1 board is 11 fps, as shown in Table 3. 

Table 3: Processing Time. 

Platform Processing Time (ms) 
PC 

(Titan X/i5 4670) 
ROI generator 23 

39 
Classifier 16 

NVIDIA TX1 
ROI generator 51 

90 
Classifier 39 

4 CONCLUSIONS 

We introduced an integration of vehicle detection 
and a distance estimation algorithm for real-time 
AEB systems. Our main innovation is to share 
disparity map generation, which is the most time-
consuming algorithm, for both object detection and 
distance estimation. To reduce the processing time, 
we use local matching, which is fast, but not very 
reliable. We alleviate this problem with SNV. The 
processing time satisfies real-time requirements on 
PC, and almost reaches real-time on an embedded 
board, the TX1. The detection performance is 
reasonable when compared to the results of other 
real-time detection modules. 

Through the experimental results, we observed 
that the proposed classifier does not fully utilize its 
classification capabilities and determined that there 
is room for improvement in this aspect. Future work 
will include development of an improved stixel 
clustering method to enable the CNN classifier 
model to be fully utilized. Additionally, the CNN 

classifier model can be re-designed to achieve better 
performance. Our CNN model has very basic 
convolutional layers, which could be replaced with a 
state-of-the-art model (Szegedy et al., 2016). We 
assumed the ground is flat and is estimated from a 
straight line in the v-disparity. However, in the real 
world, the ground is not always flat. Therefore, the 
estimated line in the v-disparity should be curved to 
more accurately find the ground. 
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