
High Availability and Performance of Database in the Cloud
Traditional Master-slave Replication versus Modern Cluster-based Solutions

Raju Shrestha
Oslo and Akershus University College of Applied Sciences, Oslo, Norway

Keywords: High Availability, Performance, Cloud, Database Replication, Master-slave, Galera Cluster, MariaDB.

Abstract: High availability (HA) of database is critical for the high availability of cloud-based applications and services.
Master-slave replication has been traditionally used since long time as a solution for this. Since master-slave
replication uses either asynchronous or semi-synchronous replication, the technique suffers from severe
problem of data inconsistency when master crashes during a transaction. Modern cluster-based solutions
address this through multi-master synchronous replication. These two HA database solutions have been
investigated and compared both qualitatively and quantitatively. They are evaluated based on availability
and performance through implementation using the most recent version of MariaDB server, which supports
both the traditional master-slave replication, and cluster based replication via Galera cluster. The evaluation
framework and methodology used in this paper would be useful for comparing and analyzing performance of
different high availability database systems and solutions, and which in turn would be helpful in picking an
appropriate HA database solution for a given application.

1 INTRODUCTION

In computing, high availability (HA) refers to a
system or service or component that is continuously
operational for a desirably long length of time.
Availability is often expressed as expected system
uptime (in percentage) in a given period of time (such
as in a week or a year). 100% availability indicates
that the system is “always on” or “never failing”. For
instance, 90% availability (one nine) in a period of
one year means the system can have up to 10%, i.e.,
36.5 days of down time.

There are basically three principles, which can
help achieve high availability. They are (a)
elimination of single point of failure (SPOF) by
adding redundancy, (b) reliable crossover from a
failed to a standby component, and (c) detection of
failures as they occur (Piedad and Hawkins, 2001).

In today’s always-on, always-connected world,
high availability is one of the important quality
attributes of a cloud-based application or service.
High availability of all the system components
such as the application itself, storage, database
etc. contributes to the high availability of the
entire application. Since most of the cloud-based
applications and services, in general, are dynamic
database-driven web-based applications, database

plays an important role in the system’s high
availability. Therefore, the focus of this paper is on
high availability database.

Traditionally, master-slave (single master,
multiple slaves) based database replication
techniques (Ladin et al., 1992; Wiesmann et al.,
2000; Earl and Oderov, 2003; Wiesmann and
Schiper, 2005; Curino et al., 2010) is being used
as a solution for high availability databases since
more than 15 year. Most recently, multi-master
cluster-based database replication techniques such
as MariaDB Galera cluster (Galera Cluster, 2016),
MySQL cluster (MySQL, 2016) have been made
available as more effective alternatives.

In this paper we have studied and evaluated
master-slave and cluster-based HA database solu-
tions, qualitatively as well as quantitatively. In our
study, the most recent version of MariaDB server
at the time (v10.1) that has built-in Galera cluster
support is used. MariaDB was chosen because it is not
only free, open and vibrant, but also has more cutting
edge features and storage engines, compatible with
MySQL, performs better, and easy to migrate (Seravo,
2015). Performance comparison has been made
based on the benchmark results obtained on an
OpenStack/DevStack cloud platform.

Shrestha, R.
High Availability and Performance of Database in the Cloud - Traditional Master-slave Replication versus Modern Cluster-based Solutions.
DOI: 10.5220/0006294604130420
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 385-392
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

385

2 TWO MAJOR HIGH
AVAILABILITY DATABASE
SOLUTIONS

HA databases use an architecture which is designed to
continue working normally even in case of hardware
or network failures within the system and end users
do not experience any interruption or degradation of
service. HA database aims not only for reduced
downtime, but also for reduced response time and
increased throughput (Hvasshovd et al., 1995). HA
database cannot be retrofit into a system; rather it
should be designed in the early stages to provide
minimal downtime, optimal throughput and response
time, in order to maximize customer satisfaction.

Different applications can have very different
requirements for high availability. For instance, a
mission critical system needs 100% availability with
24x7x365 read & write access while many other
systems are better served by a simpler approach with
more modest high availability ambitions. Adding
high availability increases complexity and cost.
Therefore, an appropriate solution needs to be chosen
for a given application at hand.

Various techniques and solutions have been
proposed and used for HA databases. Widely
used open-source databases such as MariaDB and
MySQL has an array of high availability solutions
ranging from simple backups, through replication and
shared storage clustering all the way up to 99.999%
availability (i.e. 5mins. of downtime per year), shared
nothing, geographically replicated clusters.

In general, HA database solutions can be broadly
categorized into two types: master-slave (master-
replica) architecture and multi-master cluster-based
architecture. The two architectures offer different
guarantees on Brewer’s CAP theorem, which states
that it is impossible for a distributed system
to simultaneously provide more than two out of
three guarantees among consistency, availability,
and partition tolerance (Brewer, 2012). The two
architectures are described in the following two
subsections.

2.1 Master-slave Architecture

Master-slave architecture is a traditional solution,
which is commonly used since long time in the
database world, where one master handles data writes
and multiple slaves are used to read data. In many
applications, a large number of end users use services,
which require data reading from the database and
small number (mostly by system administrators) does
data writing for database updates. Such systems use

read-write splitting mechanism whereby a primary
database server (master) is used for data writing
while slave multiple database servers (slaves) are load
balanced for data reading. The architecture thus
supports read scalability as the number of slaves can
be scaled out easily in a cloud according to needs
at a given time. Figure 1 illustrates a master-slave
architecture. Most of the popular databases such as
MariaDB, MySQL, Microsoft SQL Server support
master-slave architecture.

Slave 1 Master Slave 2

Web server

Data read

Data write

Figure 1: Master-slave architecture.

Whenever there is a change in the master database,
the change is applied in all the slaves, the process
known as database replication. The replication
process is normally asynchronous (Wiesmann et al.,
2000; Elnikety et al., 2005), which means the
master does not check to confirm if slaves are
always up-to-date. Asynchronous replication does
not guarantee about delay between applying changes
on master node and propagation of changes to
slave nodes. Therefore, slave databases are always
bit outdated. Moreover, as the delay could be
short and long, some latest changes may be lost,
when the master crashes. This may cause data
inconsistencies when something goes wrong in the
master in the middle of a transaction. Newer
versions of widely adopted open-source databases
such as MariaDB and MySQL provide support for
semi-synchronous replication, which makes sure at
least one slave is synchronized with the master.
After committing a transaction, master waits for an
acknowledgment from that slave. However, this
still does not prevent from data inconsistencies in
other slaves. Therefore, according to the CAP
theorem, master-slave replication provides guarantee
of availability and partition tolerance at the sacrifice
of consistency.

Master-slave replication does not provide high
availability of the master itself. It is used along
with a tool such as MariaDB replication manager
(MRM) (MariaDB, 2016) and master high availability
(MHA) (Matsunobu, 2016) in order to promote a

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

386

slave to a master (automatic failover) when master
fails. These tools keep monitoring master and if
the master server goes down, it quickly promotes
a slave as the new master. It will also switch the
IP of the old master to the new master, so that
applications do not need to be reconfigured. In
theory, master-slave HA database solution looks quite
simple and straightforward. However, in practice, the
transfer of the master role during failover might result
in some downtime.

2.2 Cluster-based Multi-master
Architecture

This is a relatively new solution where HA database
is often achieved through a multi-master architecture
that uses clustering, in which multiple servers (called
nodes) are grouped together. Any node within a
cluster can respond to both read and write requests.
Change of data in a node is replicated across
all nodes in the cluster instantly, thus providing
system redundancy and minimizing the possibility
of downtime. Figure 2 illustrates a cluster-based
architecture.

Master 1

Master 3

Master 2

Web server

Figure 2: Cluster-based multi-master architecture.

Replication in a cluster-based architecture is per-
formed synchronously, which unlike asynchronous
replication, guarantees that if any change happens on
one node of the cluster, the change is applied in other
nodes as well at the same time. Therefore, even when
a node fails, the other nodes continue working and
hence the failure has no major consequences. The
data gets replicated from the existing nodes when
the failed node joins the cluster again later. It thus
maintains data consistency. However, in practice,
synchronous database replication has traditionally
been implemented via the so-called2-phase commit

or distributed locking, which proved to be very
slow. Because of low performance and complexity
of implementation of synchronous replication, asyn-
chronous replication has long been remained as the
dominant solution for high availability database.

MySQL cluster (MySQL, 2016) stores a full copy
of the database in multiple servers so that each
server will be independently function as the master
database. But this method results in data conflicts
when there is a network connection problem. Galera
cluster addresses this problem through conditional
updates whereby each server accepts new updates
only if it can reach a majority of other servers.
It uses active eager replication based on the
optimistic approach (Gautam et al., 2016) to ensure
local consistency, and handles data write conflicts
using certification-based replication based on group
communication and transaction ordering techniques
(Pedone et al., 1997; Pedone, 1999; Kemme and
Alonso, 2000) to enforce global consistency. Galera
cluster replication combines these techniques to
provide a highly available, transparent, and scalable
synchronous replication solution. According to the
CAP theorem, Galera cluster guarantees consistency
and availability of the database. We have used
MariaDB Galera cluster in our study.

2.3 Selection of a Database Server

In both master-slave and cluster-based replication
setups, there should be a way to determine which
database server is to be selected for a database access
(or transaction). In general, scaled-out database
servers are load balanced. There are mainly two ways
database selection is implemented. First method is to
handle the selection mechanism at the application tier,
and the second method is to handle it separately using
a database proxy.

An example of the first method is to handle the
database selection using the PHP MySQL Native
driver (PHP-MySQLnd) and its master-slave plugin
MySQLnd MS (Shafik, 2014). This is applicable
for master-slave architecture only, and MySQLndMS
is so far not yet available for newer versions of
PHP including the current version 7. Load-balancing
and failover strategies are defined in MySQLndMS
configuration. The plugin redirects database query
to a database server based on read-write splitting,
where all write access is directed to master and
all read statements to a slave selected based on a
load balancing strategy. Automatic master failover
is done based on failover strategy defined in the
configurations. An advantage of this method is
that it does not require any additional hardware.

High Availability and Performance of Database in the Cloud - Traditional Master-slave Replication versus Modern Cluster-based Solutions

387

However, there are several disadvantages with this
method. A conceptual drawback of this method is that
handling database selection in the application side
(or tier) blurs the separation between application and
database. Read-write splitting with MySQLndMS
is naive as it assumes all queries starting with
SELECT as read statements, but there could be
write statements starting with SELECT. Master
failover is not instantaneous as it takes some time
(which might be several minutes) to determine
if the master is failed before promoting a slave
to master, and this causes database unavailability
for that time. Since all the web servers (PHP
servers) needs to be configured for MySQLndMS
plugin, this could be annoying when one need to
change environment, for example when adding a
new slave. A possible solution to minimize the
changes that need to be done on the PHP-MySQLnd
configuration file is to use a proxy server such as
HAProxy between PHP driver and database together
with PHP-MySQLnd (Severalnines, 2016). Proxy
server provides a single point database access to
the application. Since HAProxy is not SQL-aware,
MySQLnd MS is required to understand the type of
SQL statement.

A better approach is to use a SQL-aware proxy
server such as MaxScale, which not only provides a
single point access to the application but it also fully
decouples application and database processes. The
proxy server redirects a SQL query to an appropriate
database server/node. The method is applicable for
both master-slave and cluster-based database setups.
MaxScale, which is considered a next generation
database proxy, is an open source project developed
by MariaDB. It can load balance both connections and
individual database requests, filter requests according
to a set of defined rules, and monitor availability,
utilization, and load on back-end servers to prevent
requests from going to overburdened and unavailable
resources (Trudeau, 2015; MaxScale, 2016). We
use database proxy method using MaxScale in our
implementation.

3 EXPERIMENTAL SETUP

Experiments are performed in a single machine
OpenStack cloud setup using DevStack. DevStack
is installed in a VMware virtual machine (VM) on
a MacBook Pro machine. VMware was chosen as
it supports nested virtualization. The specification of
the computer and the VM used is given below.

Specification of the computer:

• CPU: Intel(R) Core i7 3.1GHz processor
• Memory: 16GB
• OS: MacOS Sierra

Specification of the VMware VM:

• CPU: 2 processor cores
• Memory: 9GB
• Hard disk: 50GB
• Network: two Network Interface Cards (NICs),

one with NAT to get access to the Internet via host
machine and one with vmnet2 which is used as a
public network interface for accessing VMs from
outside

• Advanced options: VT-x/EPT and code profiling
enabled

• OS: Ubuntu 16.04 LTS (Xenial Xerus)

Eight servers were provisioned in the OpenStack
cloud for a widely used LAMP stack (Linux, Apache,
MySQL, PHP) based cloud service (Infrastructure as
a Service-IaaS) architecture for a high availability
dynamic database-driven web application, which
consists of two Apache2 web servers that are load
balanced with two HAProxy 1.6 load balancers, three
MariaDB database servers, and a MariaDB MaxScale
server, all running Ubuntu 16.04 (Xenial Xerus) from
the cloud image available on the web (Ubuntu, 2016).
Figure 3 depicts the cloud system setup. All the
three database servers are installed with MariaDB
server v10.1, which comes with built-in Galera cluster
support. MaxScale v2.1 server is installed and used as
a database proxy server in both the master-slave and
Galera cluster setups.

In the master-slave database replication setup,
one server is used as the master and the other
two servers are used as slaves. Global transaction
id (GTID) based replication is used as it has
many benefits compared to the traditional bin-log
based replication (Combaudon, 2013). Automatic
master failover mechanism is implemented with
MariaDB replication manager (MRM). In the Galera
cluster-based setup, MariaDB 10.1 installed in the
three database servers are configured to use Galera
cluster. The three servers then act as three nodes of a
cluster. If there is any change in one node, the changes
will be updated in the other two nodes synchronously.
Synchronization method is set to use rsync. In both
setups, slaves are load balanced with equal server
weights.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

388

Database

server 1

Database

server 2

Database

server 3

Database proxy

(MaxScale)

Web server 1

(Apache 2)

Web server 2

(Apache 2)

Load balancer 1

(HAProxy)

Load balancer 2

(HA Proxy)

Database

server 1

Database

server 2

Database

server 3

Database proxy

(MaxScale)

Database er

Internet

Figure 3: Cloud setup used in experiments.

A widely used open source benchmark suite,
Sysbench (Sysbench, 2016), specifically OLTP
(Online Transaction Processing) benchmark, is used
to evaluate and compare performance of the two
setups under intensive loads, using the same set of
parameters. Sysbench v0.5 is installed and executed
from the DevStack VM. All database is thus accessed
through the MaxScale proxy server.

4 EXPERIMENTAL RESULTS

Test database is prepared with 50 tables of size
10000, Pareto distribution for an OLTP test using
Sysbench. Then test runs are executed for readonly
and read-write with different number of threadsn
(which corresponds to concurrent clients), forn =
1,8,16,32,64,72,80. The three Sysbench commands
used for test database preparation, read-only tests, and
read-write tests respectively are given below. OLTP
read-write benchmark simulates a real-world usage
consisting of 70% read (SELECT) and 30% write
(INSERT, UPDATE, DELETE) operations.

sysbench --test=/usr/share/doc/sysbench/tests/
db/oltp.lua --oltp_tables_count=50 --
oltp_table_size=10000 --mysql-host=
maxscale --mysql-user=root --rand-type=
pareto --rand-init=on prepare

sysbench --test=/usr/share/doc/sysbench/tests/
db/oltp.lua --oltp-read-only=on --oltp-
reconnect=on --oltp-reconnect-mode=random
--num-threads=n --mysql-host=maxscale --
mysql-user=root --max-requests=5000 --rand
-type=pareto --rand-init=on run

sysbench --test=/usr/share/doc/sysbench/tests/
db/oltp.lua --oltp-read-only=off --oltp-
test-mode=complex --oltp-reconnect=on --
oltp-reconnect-mode=random --num-threads=n
--mysql-host=maxscale--mysql-user=root --
max-requests=5000 --rand-type=pareto --
rand-init=on run

Performance is measured in terms of throughput
(transactions per second [tps]) and response time
(or latency), for both read-only and read-write tests.
For statistically robust results, tests are repeated for
twenty times. Figure 4 and 5 show plots from the
test results of the readonly and read-write tests on
both HA database solutions. Figure 4 shows the
performance in terms of throughput, whereas Figure 5
shows the performance in terms of response time.
Mean and standard error of the mean (SEM) are
computed from the twenty tests. The plots show
the mean values, along with the lower and the upper
bounds of the 95% confidence intervals shown as
vertical lines bounded by shaded areas. Confidence
intervals are computed asMean − 1.96× SEM and
Mean + 1.96× SEM (assuming normal probability
distribution), where SEM is given byStd./

√
N;

Std. being the standard deviation andN the sample
size (Moore et al., 2010).

From the performance plots, we see that in
readonly tests, throughput increases sharply when the
number of threads increases from 1 to 16, then the
increment slows down and drops on further increasing
the number of threads beyond 64. This trend is
similar in both the master-slave and Galera cluster
based implementations. The trend also follows in
read-write tests but changes occur at different number
of threads (8 and 16). Drop of performance after
certain number of threads in general occurs because
of internal contention and row locks. Average
response time increases with more or less linearly
with the increase in the number of threads, indicating
a consistent increase in latency under an increasing
load. Both HA solutions have similar performance
in readonly tests. However, master-slave setup shows
better performance both in terms of throughput and
response time in read-write tests.

High Availability and Performance of Database in the Cloud - Traditional Master-slave Replication versus Modern Cluster-based Solutions

389

1 8 16 32 64 72 80
Number of threads

0

20

40

60

80

100

120

140

160

180

T
hr

ou
gh

pu
t (

tp
s)

Galera cluster (Readonly)
Master slave (Readonly)
Galera cluster (Read/Write)
Master slave (Read/Write)

Figure 4: Throughputs from tests with different number of
threads.

1 8 16 32 64 72 80
Number of threads

0

500

1000

1500

2000

2500

3000

3500

R
es

po
ns

e
tim

e
(m

s)

Galera cluster (Readonly)
Master slave (Readonly)
Galera cluster (Read/Write)
Master slave (Read/Write)

Figure 5: Response time from tests with different number
of threads.

Next, the two setups were investigated for
their behaviors under various failure scenarios. In
master-slave setup, when one or both the slaves were
down, the system continued to work as expected as
both data read and write was provided by the live
master. When the two slaves were working but the
master was crashed, it took significant time (more
than one minute) for MariaDB replication manager
to check if the master is down and then promote a
slave to the new master. However, in Galera setup,
the system worked smoothly without showing any
failure-related symptoms even when one or two nodes
were crashed.

5 COMPARATIVE ANALYSIS
AND DISCUSSION

In this section, we analyze, compare and discuss
the two HA database solutions, qualitatively and
quantitatively.

Qualitative Analysis: Because of loosely coupled
master-slave nature in asynchronous replication, slave
can be arbitrarily behind the master in applying
changes, and hence read on a slave can give old
data. More seriously, upon the master’s failure,
slave may not have latest committed data resulting
in data loss. This might stall failover to a slave
until all transactions have been committed as it
is not instantaneous. This is true in the case of
semi-synchronous replication as well even though
it guarantees one slave to be synchronized with
the master. Read scale-out is straightforward, in
master-slave setup, but write scale-out is not.

Synchronous replication in a cluster-based setup
guarantees all slaves to receive and commit changes
in the master and this in turn guarantees latest
data to be read from any slave. Master failover
to a slave is integrated and automatic, which
makes sure data writes to continue on new master
almost instantaneously. Therefore, this high
availability solution is more effective compared to the
master-slave replication based solution. Moreover,
the setup supports both read and write scalability.

In both master-slave and cluster-based solutions,
replication overhead increases with the number of
nodes/slaves present in the system. Failure test results
show that cluster-based setup do not suffer from
any failure related hiccups unlike with master-slave
setup as failure situations are handled smoothly and
transparently.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

390

Quantitative Analysis: Quality of a database
system is measured quantitatively by high availability,
throughput, and response time (Hvasshovd et al.,
1995). In this paper, we compare the two HA database
solutions based on throughput and response time
under heavy database loads.

From the experimental results, we see that
throughput is much higher and response time is
much lower from readonly tests compared to those
read-write tests, in both HA setups. This is expected
as data writing takes significantly longer time than
data reading. Moreover, data needs to be replicated or
synchronized after writing in the master, which takes
some time. In the case of read-write tests, throughput
from the Galera cluster setup was lower compared
to the master-slave setup. This is because there is
significant overhead due to synchronous replication in
the former setup. This is also reflected by the higher
response time. However, both HA solutions show
similar performance for readonly tests, since there is
no synchronization required and hence no delay in
readonly tests,

Based on both the qualitative and the quantitative
analysis of the two HA database solutions, Table 1
provides a comparative summary.

Table 1: Comparison table between master-slave and
cluster-based HA database solutions. Texts shown ingreen
indicate advantageous over the one shown inred.

Master-slave HA solu�on Galera cluster-based solu�on

Replica�on type Asynchronous or semi-synchronous Synchronous

Automa�c failover Need to use a tool such as MRM, MHA Built-in

Extra hardware Can be implemented without one Required for at least one database proxy

Minimum number of servers 1 3

Failover delay Not instantaneous Instantaneous

Data loss Possible No

Data inconsistency Possible No

Scale-out Read scale-out Both read and write scale-out

Availability Lower Higher

Throughput Higher Lower

Response �me Lower Higher

It is important to note the limitations of the
experiments carried out in this work. Firstly, even
though OLTP benchmark is designed to make it
close to a common real-world scenario, it may not
truly represent real-world application. Secondly,
experiments are carried out in a single machine
OpenStack cloud setup using DevStack within a
VMware virtual machine and role of virtualization
has not been considered. However, it can be
expected that the relative results obtained reflect the
performance and behavior that is good enough to have
a general impression about the two HA solutions.

This work can be considered our first step towards
the study of major HA database solutions. Future
work could be to extend this with an extensive

study of various other major solutions as well
including database sharding techniques, which has
gain popularity over the past several years. The
study could include more testing and detailed failover
scenarios.

6 CONCLUSIONS

This paper investigated effectiveness of the two major
solutions to high availability database solutions:
traditional master-slave replication and modern
cluster-based techniques. Performance evaluation of
both solutions implemented using MariaDB 10.1 with
Galera cluster has shown that traditional master-slave
replication solution performs equal or better in terms
of throughput and response time. Because of simpler
setup and better performance, this method is still
being widely used. However, cluster-based solution
is superior when it comes to high availability, data
consistency and scalability as it offers instantaneous
failover, no data inconsistency and loss of data, and
at the same time providing both read and write
scalability. Therefore, despite some performance
lag, Galera cluster is an effective solution for
applications and services where data consistency and
high availability is critical.

REFERENCES

Brewer, E. (2012). Pushing the cap: Strategies for
consistency and availability.Computer, 45(2):23–29.

Combaudon, S. (2013). Replication in MySQL 5.6:
GTIDs benefits and limitations - Part 1 & 2.
https://www.percona.com/blog/2013/05/21/replication-
in-mysql-5-6-gtids-benefits-and-limitations-part-1/,
https://www.percona.com/blog/2013/05/30/replication-
in-mysql-5-6-gtids-benefits-and-limitations-part-2/.
Blog.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010).
Schism: A workload-driven approach to database
replication and partitioning. Proc. VLDB Endow.,
3(1-2):48–57.

Earl, L. and Oderov, S. (2003). Database replication system.
US Patent App. 10/426,467.

Elnikety, S., Pedone, F., and Zwaenepoel, W. (2005).
Database replication using generalized snapshot
isolation. In 24th IEEE Symposium on Reliable
Distributed Systems (SRDS’05), pages 73–84.

Galera Cluster (2016). MariaDB Galera Cluster.
https://mariadb.com/kb/en/mariadb/galera-cluster/,
http://galeracluster.com/. Last access: Nov. 2016.

High Availability and Performance of Database in the Cloud - Traditional Master-slave Replication versus Modern Cluster-based Solutions

391

Gautam, B. P., Wasaki, K., Batajoo, A., Shrestha, S.,
and Kazuhiko, S. (2016). Multi-master replication
of enhanced learning assistant system in IoT cluster.
In 2016 IEEE 30th International Conference on
Advanced Information Networking and Applications
(AINA), pages 1006–1012. IEEE.

Hvasshovd, S.-O., Torbjørnsen, O., Bratsberg, S. E., and
Holager, P. (1995). The clustra telecom database:
High availability, high throughput, and real-time
response. InProceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95,
pages 469–477, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Kemme, B. and Alonso, G. (2000). Don’t be lazy, be
consistent: Postgres-R, a new way to implement
database replication. InVLDB, pages 134–143.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992).
Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360–391.

MariaDB (2016). MariaDB Replication Manager.
https://github.com/tanji/replication-manager. Last
access: Dec. 2016.

Matsunobu, Y. (2016). MySQL Master High Availability
(MHA). https://code.google.com/p/mysql-master-ha/.
Last access: Dec. 2016.

MaxScale (2016). MariaDB MaxScale. https://
mariadb.com/products/mariadb-maxscale. Last ac-
cess: Nov. 2016.

Moore, D., McCabe, G. P., and Craig, B. (2010).
Introduction to the Practice of Statistics. W. H.
Freeman, 7th edition.

MySQL (2016). MySQL Cluster. https://www.mysql.com/
products/cluster/. Last access: Dec. 2016.

Pedone, F. (1999). The database state machine and
group communication issues. PhD thesis,École
Polytecnique Fédérale de Lausanne, Switzerland.

Pedone, F., Guerraoui, R., and Schiper, A. (1997).
Transaction reordering in replicated databases. In
Reliable Distributed Systems, 1997. Proceedings., The
Sixteenth Symposium on, pages 175–182.

Piedad, F. and Hawkins, M. (2001).High availability:
Design, techniques and processes. Prentice Hall.

Seravo (2015). 10 reasons to migrate to Mari-
aDB. https://seravo.fi/2015/10-reasons-to-migrate-to-
mariadb-if-still-using-mysql. Blog.

Severalnines (2016). High availability read-write splitting
with PHP-MySQLnd, MySQL replication and
HAProxy. http://severalnines.com/blog/high-
availability-read-write-splitting-php-mysqlnd-mysql-
replication-and-haproxy. Last access: Nov. 2016.

Shafik, D. (2014). Easy read/write splitting with PHPs
MySQLnd. https://blog.engineyard.com/2014/easy-
read-write-splitting-php-mysqlnd. Blog.

Sysbench (2016). Sysbench 0.5.
http://repo.percona.com/apt/pool/main/s/sysbench/.
Last access: Nov. 2016.

Trudeau, Y. (2015). MaxScale: A new tool to
solve your MySQL scalability problems.
https://www.percona.com/blog/2015/06/08/maxscale-
a-new-tool-to-solve-your-mysql-scalability-
problems/. Blog.

Ubuntu (2016). Ubuntu 16.04 LTS (Xenial Xerus). https://
cloud-images.ubuntu.com/releases/xenial/release/.
Last access: Nov. 2016.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and
Alonso, G. (2000). Database replication techniques: a
three parameter classification. InReliable Distributed
Systems, 2000. SRDS-2000. Proceedings of The 19th
IEEE Symposium on, pages 206–215.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast. IEEE Transactions on Knowledge and
Data Engineering, 17(4):551–566.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

392

