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Abstract: One of the most challenging goals of the modern Intelligent Transportation Systems comprises the accurate 
and real-time short-term traffic prediction. The achievement of this goal becomes even more critical when the 
presence of atypical traffic conditions is concerned. In this paper, we propose a novel hybrid technique for 
short-term traffic prediction under both typical and atypical conditions. An Automatic Incident Detection 
(AID) algorithm, based on Support Vector Machines (SVM), is utilized to check for the presence of an 
atypical event (e.g. traffic accident). If such an event occurs, the k-Nearest Neighbors (k-NN) non-parametric 
regression model is used for traffic prediction. Otherwise, the Autoregressive Integrated Moving Average 
(ARIMA) parametric model is activated for the same purpose. In order to evaluate the performance of the 
proposed model, we use open real world traffic data from Caltrans Performance Measurement System 
(PeMS). We compare the proposed model with the unitary k-NN and ARIMA models, which represent the 
most commonly used non-parametric and parametric traffic prediction models. Preliminary results show that 
the proposed model achieves larger accuracy under both typical and atypical traffic conditions. 

1 INTRODUCTION 

Nowadays, the interest in developing Intelligent 
Transportation Systems has grown significantly with 
respect to the need for providing qualitative 
transportation services, either for individuals or fleets 
of vehicles. In this context, the ability to accurately 
predict traffic in various steps ahead in time is of 
paramount importance. 

The main reason, for which the traditional traffic 
prediction models fail to accurately predict traffic in 
real conditions is the presence of atypical conditions. 
These may include severe weather conditions, car 
accidents, road maintenance works and traffic 
congestion, due to special cultural events (e.g. 
concerts or sport games). These atypical conditions 
often result in steep spikes in the traffic time series 
that the standard traffic prediction models fail to 
accurately represent, as these models are based on big 
traffic data with insignificant abnormalities.  

Also, atypical events are difficult to classify 
because they vary in type, duration, severity, effect on 

the state of the traffic network, etc. On the other hand, 
incidents may occur that do not cause observable 
effects on traffic. Similarly, the occurrence of spikes 
in a traffic time series does not necessarily correspond 
to atypical conditions. These cases render the 
problem of traffic prediction in atypical conditions as 
a non-trivial one. 

In this paper, we present a novel pattern transition 
model for short-term traffic prediction for typical, as 
well as (and more importantly) atypical conditions.  
We use an SVM-based automatic incident detection 
model to automatically detect the presence of an 
atypical situation. When this case occurs, the non-
parametric k-NN regression model is fetched to 
calculate the predicted traffic value. Otherwise, the 
ARIMA parametric model is activated.   
In summary, our main contributions can be outlined 
as follows: 

1. We propose a novel pattern transition model 
for short-term traffic prediction under both 
typical and atypical conditions. Our model 
automatically recognizes the presence of an 
atypical situation and activates the most 

Theodorou, T-I., Salamanis, A., Kehagias, D., Tzovaras, D. and Tjortjis, C.
Short-Term Traffic Prediction under Both Typical and Atypical Traffic Conditions using a Pattern Transition Model.
DOI: 10.5220/0006293400790089
In Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2017), pages 79-89
ISBN: 978-989-758-242-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

79



 

appropriate prediction model, based on the 
outcome of an incident detection algorithm. 

2. The proposed model incorporates the 
incident information for more accurate 
prediction. 

3. We evaluate the functionality and 
performance of our model against real data 
that includes both traffic and incident 
information. 

The rest of the paper is organized as follows. 
Section 2 summarizes related work. Section 3 
describes the data used for training our prediction 
model and for its evaluation, whereas Section 4 
provides a detailed description of the implemented 
model. Section 5 presents the evaluation framework, 
including the process of setting up the various 
experiments, the selection of the various datasets, the 
metrics used for the evaluation of both the incident 
detection and traffic prediction models and also the 
experimental results. Finally, Section 6 concludes the 
paper, reviewing the main contributions and 
suggesting future directions. 

2 RELATED WORK 

The research problem of short-term traffic prediction 
has been extensively studied in the last ten years. The 
various relevant techniques can be roughly classified 
into the following four major categories: naïve, 
parametric, non-parametric and hybrid. 

The naïve methods are the most cost-effective 
prediction models and are mainly used as benchmark 
against more sophisticated methods. They are 
characterized by the absence of any advanced 
mathematical model. Some of the most common 
naïve methods for traffic prediction include the use of 
the last observed value, the simple moving average 
with a predefined time window T and the cumulative 
moving average of all past traffic values. 

Parametric models are the ones, which involve the 
estimation of predefined parameters using historical 
traffic data. These methods mainly originate from 
time series analysis. Most of the works in this class 
are based on the classic Box & Jenkins 
Autoregressive Integrated Moving Average model 
(Box and Jenkins, 1971). In their work, Stathopoulos 
and Karlaftis presented a multivariate state-space 
ARIMA approach for modelling and predicting 
traffic flow, showing that different model 
specifications are more appropriate for different 
periods of the day (Stathopoulos and Karlaftis, 2003). 
Moreover, Kamarianakis and Prastacos developed a 
Space-Time ARIMA model with robust behavior 

(Kamarianakis and Prastacos, 2005) which was 
extended by Min and Wynter in an effort to deal with 
the supposed stationarity of the process and the 
constant relationship between the neighbor road 
segments in a traffic network (Min and Wynter, 
2011). More recently, an Auto-Regressive Moving 
Average with an eXogenous input (ARMAX) model 
with an optimal multiple-step-ahead predictor of 
traffic demand was proposed by Wu et al. (Wu at al, 
2014). In the same class, Mu et al. proposed a method 
that utilizes heterogeneous delay embedding (HDE) 
to extract an informative feature space for regression 
analysis of traffic data (Mu et al., 2012). Additional 
similar approaches include the works of (Guo and 
Williams, 2010, Kamarianakis et al., 2012, Ghosh et 
al., 2009). 

The non-parametric models are mainly originated 
from the machine learning field and are based on k-
NN regression, Artificial Neural Networks (ANN) 
and Support Vector Regression (SVR) techniques. 
The k-NN in short-term traffic prediction was 
introduced by Smith and Demetsky who claimed that 
it performs better than both the historical average and 
parametric ARIMA model in terms of robustness 
against variable data sets (Smith and Demetsky, 
1996). The k-NN non-parametric regression 
algorithm was utilized by several other researchers 
for building accurate traffic prediction models (De 
Fabritiis et al., 2008, Kindzerske and Ni, 2007, 
Myung et al., 2012, Zheng and Su, 2014). Regarding 
the use of ANNs, Vlahogianni et al. introduced the 
auto- and cross-correlated effect of the traffic flow 
time series in a neural network model in the form of 
external information (Vlahogianni et al., 2003). 
Finally, Wu et al. (Wu et al., 2003) and Hu et al. (Hu 
et al., 2015) used the SVR algorithm for increasing 
the accuracy of prediction. 

Noticeable research effort has been given on the 
development of hybrid traffic prediction techniques 
that try to exploit the strong characteristics of both 
parametric and non-parametric approaches. These 
include e.g. a model that combines ARIMA and ANN 
processes (Zhang, 2003), but also the combination of 
Non-linear Autoregressive Moving Average with 
exogenous inputs (NARMAX) that involves fuzzy 
systems with ANN (Gao and Er, 2005). Similarly, 
Quek et al. presented a special case of a fuzzy neural 
network for short-term traffic prediction that shows 
high adaptation to the input and high prediction 
capacity (Quek et al., 2006). 

Despite the multitude of proposed models for 
short-term traffic prediction, very few of them deal 
with the problem of traffic prediction under atypical 
traffic conditions, such as rapid weather changes, 
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traffic incidents, road maintenance works, and special 
events (e.g. concerts or sport events) etc. These 
abnormalities lead to traffic conditions that the 
traditional traffic predictions models are difficult to 
capture. To this end, relevant research efforts are 
quite limited. Amongst those, Castro-Neto et al. 
proposed the Online Support Vector Regression (OL-
SVR) model for short-term traffic prediction under 
both typical and atypical conditions (Castro-Neto et 
al., 2009). They compared their model with well-
known models including Gaussian Maximum 
Likelihood (GML), Holt exponential smoothing and 
ANN and have proved that even if the GML model 
shows the best performance in terms of prediction 
accuracy under typical traffic conditions, the OL-
SVR model performs even better under non-recurring 
atypical traffic conditions. Another example is the use 
of three different prediction models, each with a 
different configuration of the explanatory traffic 
variable (Guo et al., 2010). 

 In this approach, it is shown empirically that k-
NN in conjunction with the third configuration of the 
explanatory variable outperforms the ANN under all 
conditions. Also in an extension of the previous work, 
it is proven that the k-NN and SVR non-parametric 
regression models have similar prediction accuracy 
under typical traffic conditions but k-NN outperforms 
SVR during atypical ones (Guo et al., 2012). By 
enhancing the previous k-NN model with data 
smoothing and de-noising components an even better 
accuracy can be achieved (Guo et al., 2014). Hybrid 
approaches have been also developed, such as the 
Online Boosting Non-Parametric Regression 
(OBNR), consisting of two parts: (a) a typical non-
parametric regression model for typical conditions, 
and (b) a boosting part activated when atypical traffic 
conditions occur and deactivated when the traffic 
state turns back to normal. Real data experiments 
prove that the OBNR model performs better than the 
classic non-parametric regression and SVR models 
during atypical traffic conditions (Wu et al., 2012).  

Finally, an alternative approach was proposed by 
Ni et al. which, in addition to traffic, it also uses data 
from social networks (Twitter) in order to predict 
traffic, prior to major sport game events. By fusing 
both tweet rate and semantic features into the typical 
prediction model, improved prediction accuracy can 
be achieved (Ni et al., 2014).  

A closer look on the current literature, does reveal 
that in none of the aforementioned models traffic data 
with atypical incidents is used for training. On the 
contrary, training is based solely on data from typical 

 
1 Available at: http://pems.dot.ca.gov/ 

conditions, whereas data from both typical and 
atypical conditions is used for testing. Hence, the key 
characteristic that distinguishes our work from the 
current literature, is that in our model we incorporate 
traffic data with atypical condition into the training 
process of our proposed model. This is expected to 
produce more accurate traffic prediction models. 

3 DESCRIPTION OF DATA 

The Caltrans Performance Measurement System 
(PeMS1), was used for building and evaluating our 
model. PeMS is an Archived Data User Service that 
collects over ten years of data for historical analysis. 
The traffic data is coming from over 39,000 Vehicle 
Detection Stations (VDS) scattered on the freeway 
system of all major metropolitan areas of the State of 
California, USA. They include flow, occupancy and 
speed values, as well as meta-information about the 
VDS, e.g. the identification numbers of the district 
and the freeway, in which the VDS is located, the 
coordinates of the VDS, etc. Traffic data is sampled 
every 30 seconds and aggregated into 5-minute and 
1-hour time intervals. The user can select to acquire 
the data either in raw or aggregated format. 

 

Figure 1: PeMS Caltrans map.  

PeMS also provides incident data collected by the 
California Highway Patrol (CHP). This dataset 
contains information about the incidents occurred on 
the Caltrans network, such as location of the incident 
(latitude, longitude), timestamp, type (e.g. car 
accident, road maintenance works etc.), duration (in 
minutes), etc. The incidents are reported by network 
users to CHP, which maintains logs. The map of the 
overall area that provides traffic and incident data in 
PeMS is shown in Figure 1. 

For the purpose of our research we have used a 
small part of the above dataset for training and 
evaluating our model. In particular, our dataset 
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includes speed probes recorded in the areas of San 
Jose, Oakland, California (district 4 in Figure 1) and 
covers a total time period of 123 days, from May 1 to 
August 31, 2015. We acquired data in their 
aggregated form in 5-minute intervals. Also, the 
dataset contains only incident data in the same area 
and time period. 

4 PATTERN TRANSITION 
ALGORITHMS  

In this section, we present the pattern transition model 
we have developed for traffic prediction under both 
typical and atypical conditions. We use a SVM-based 
AID model to detect the occurrence of atypical 
conditions. On detection of an atypical situation by 
the AID, the k-NN non-parametric regression model 
is activated. Otherwise, the ARIMA parametric 
model is used. The flow chart of the Figure 2 shows 
the whole process. 

 

Figure 2:Flow Chart of the proposed method. 

In the following subsections, we present all 
modules that comprise the proposed model. 

4.1 Automatic Incident Detection  

In order to create our AID model, we used a 
supervised machine learning algorithm. Specifically, 
 

2 https://en.wikipedia.org/wiki/Support_vector_machine 
 

we chose the Support Vector Machines algorithm, 
which is fairly robust to irrelevant features (Gakis et 
al. 2014). The basic idea of SVM is to generate a 
hyperplane that divides the data set into classes. Our 
problem is a binary classification one, thus we have 
two classes, which represent the presence or absence 
of an incident at a specific time interval and road of 
the traffic network. 

In the linear SVM, we are given a training data set 
with n points of the form (x1, y1), …, (xn, yn) where yi 
indicates the class and takes either 1 or -1 as a value, 
and xi is a p-dimensional real vector, called feature 
vector. In our case the number of features is five, 
hence xi is a 5-dimensional vector. The objective is to 
find the maximum-margin hyperplane that divides the 
group of points xi for which yi = 1, from the group of 
such points that yi = -1, so that the distance between 
the hyperplane and the nearest point xi from either 
group is maximized. Any hyperplane can be written 
as the set of all vectors x that satisfy:  

0w x b⋅ − =  (1) 

where w is the normal vector to the hyperplane and 
b/|w| a parameter that defines the offset of the 
hyperplane from the origin, along the normal vector 
w as shown in Figure 2. 

 

Figure 3: Maximum-margin hyperplane and margins on 
linear SVM kernel2. 

In the feature extraction process, we tested both 
speed and occupancy values in order to select the best 
features. Initially we used only speed values to create 
the features, and then we added features derived from 
occupancy values. When the occupancy values 
were included to the feature extraction process, the 
accuracy of the AID model was reduced and as a 
consequence the traffic prediction accuracy. Finally, 
different types of data (e.g. weather data) could be 
used in the feature extraction process, but this remains 
to be examined as future work. 
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For this reason, we used only speed in order to 
detect the incidents occurred in a highway. Therefore, 
we extracted two features based on the speed of the 
road of interest and its adjacent roads. In addition to 
the current time interval, the speed values of previous 
intervals are also taken into account.  

The first extracted feature F1 is taken as the 
difference between the speed of the road of interest 
and the average speed of its adjacent roads, in the 
direction that the vehicles travel, at current time. This 
value was normalized by the speed of the road of 
interest at the same time. 
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In (2), S represents speed, whereas index ar refers to 
the adjacent road, roi refers to the road of interest, k 
is the total number of adjacent roads and t is the 
current interval.  

We also extracted the following three features 
(based on F1) for three time intervals prior to the 
current one: 
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The selection of the optimal number of previous 
intervals, was made after experimentation with 
various numbers.  

The selection of the above features is based on the 
observation that when an incident occurs on a road, 
the average speed of this road and its neighbouring 
ones, in the same direction, decreases. However, 
taking into account only the values of these features, 
results in a biased model, prone to error, as it becomes 
capable of detecting low speeds, and especially much 
lower than the speed of the adjusted roads. Therefore, 
the selection of one more feature was necessary. To 
this end, we used as an extra feature the average 
absolute deviation of the real speed of the road of 
interest at current time with respect to its average 
value of all previous intervals up to the current one 
(including this).  
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where S is the speed of the road of interest, p is the 
number of past intervals, over which we calculate the 
average value m(S). As a fifth feature, we also tested 
the squared deviation from the mean of the speed. 
This resulted in reduced classifier’s accuracy. These 
are the five feature that comprise the vector space 
model for each road of interest. Based on the feature 
vectors produced in this way, a different SVM-based 
AID model is built for each road of interest. 

Finally, we experimented with various values for 
the C parameter of the SVM algorithm, using one-out 
cross validation, in order to estimate those that fit 
better to our case. Using a grid search on C = 2-5, 2-3, 
…, 215 with step 2, we concluded that the most 
appropriate value is C = 1.1. 

4.2 Traffic Prediction 

For the task of traffic prediction, we used two models: 
(a) the ARIMA parametric model and (b) the k-NN 
model, in order to predict traffic under typical and 
atypical conditions, respectively. Based on the 
relevant literature regarding traffic prediction under 
atypical conditions (Section 2), the time series models 
fail to capture the abnormalities on the values of the 
examined traffic variable, that are generated during a 
traffic incident. On the other hand, the non-parametric 
models and specifically the non-parametric 
regression (e.g. k-NN regression) can follow these 
abnormalities especially when these models have 
been fitted using data from similar past abnormal 
conditions. 

4.2.1 Autoregressive Integrated Moving 
Average  

The Auto Regressive Integrated Moving Average 
(ARIMA) family of models is the most widely 
deployed approach for vehicular traffic prediction 
and for time series prediction in general. ARIMA is a 
generalisation of the Auto-Regressive Moving 
Average (ARMA) model, which is applied strictly to 
stationary time series. 
 

An ARIMA (p, d, q) process is expressed as: 
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where p is the order of the autoregressive model, d is 
the degree of differencing and q is the order of the 
moving average model. In our case, we used an 
ARIMA (3, 1, 0) model with three previous terms and 
1st degree of differencing for reaching stationarity. 
The resulted model is show in equation: 
 

' ' ' '
, 1 , 1 2 , 2 3 , 3roi t roi t roi t roi tS S S Sϕ ϕ ϕ− − −= ⋅ + ⋅ + ⋅  (8)

 
where 
 

'
, , , 1roi t roi t roi tS S S −= −  (9)

 
is the differenced S’ process, which is wide-sense 
stationary. According to Pfeifer and Deutsch, the best 
estimate of parameters φ are the maximum likelihood 
estimates (Pfeifer and Deutsch, 1980). As without a 
priori knowledge of their initial values, these 
estimates cannot be exactly computed, a close 
approximation via ordinary least squares (OLS) is 
used. In particular, for every training sample an 
equation of the form of (9), is constructed where φ are 
the unknown parameters. This forms a linear 
overdetermined system of equations of the form: 
 

y X β= ⋅  (10)

 
The system given by the aforementioned equation can 
be re-written by the use of normal equations, as: 
 

( )
^

T TX X X yβ⋅ = ⋅  (11)

 
Using the OLS method we take the following 
solution. 
 

( )
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−
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When the model is built (the φ parameters have been 
estimated) we use the following equation for 
calculating the predicted value: 
 

' ' ' '
1 2 1 3 2t h t t tS S S Sϕ ϕ ϕ+ − −= ⋅ + ⋅ + ⋅  (13)

 
where, h is the prediction horizon. 

4.2.2 k-Nearest Neighbors 

For the prediction of the speed values under atypical 
conditions we have chosen the k-NN regression 
model which appears to be a suitable algorithm for 
atypical traffic prediction, using an atypical historical 
dataset. k-NN is a non-parametric algorithm that 
stores all available cases and predicts the numerical 
target based on a similarity measure and an averaging 
scheme. The k-NN algorithm has been used in 
statistical estimation and pattern recognition tasks, 
already since the beginning of 1970’s as a non-
parametric technique. 

k-NN prediction is based on the current state 
vector (at current time interval t), of the form: 

 

, , , 1 , 2 ,, , , ,roi t roi t roi t roi t roi t py S S S S− − − =    (14)

 
where S is the traffic variable (in our case speed) and 
p the number of past intervals. As shown, the current 
state vector of a road of interest depends on the values 
of speed at the current and previous p time intervals. 
In order to make prediction, the k-NN algorithm 
creates vectors of the form (14), y1,t, y2,t, … , yN,t for N 
other roads of the network. When a prediction for the 
road of interest for h intervals ahead in time is 
requested, the algorithm compares yroi,t, with y1,t, y2,t, 
… , yN,t using a distance metric (usually Euclidean 
distance) and keeps the k vectors with the shortest 
distances.  
Then, it calculates the value Sroi,t+h using an averaging 
scheme on the estimated k neighbors, which in the 
simplest form is given by (15). 
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In our implementation, we used the inverse 

distance weighted average as the averaging scheme, 
as shown in (16). 
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We chose the optimal value for k via one-out cross 
validation in our data set, based on the prediction 
accuracy results. By this process, we concluded that 
the most optimal value of k in our case was 6.  

5 EVALUATION 

In this section, we present the set-up of the evaluation 
framework, including the construction of the traffic 
time series and their enrichment with incident 
information, the choice of a specific part of the 
Caltrans road network as case study and the 
separation of the training and test data. Finally, the 
preliminary evaluation results are presented. 

5.1 Constructing Traffic Time Series 
with Incident Information 

In order to build and evaluate our model the first step 
was to pre-process the initial data (both traffic and 
incidents) in order to create traffic time series that will 
include incident information. For this reason, we 
discretized time into 5-minute intervals and we 
aggregated the speed values that belong to each 
interval. We used this formulation in order to both fit 
our model and to make predictions for a number of 
steps ahead in time. In the case of short-term traffic 
prediction, the predictions are made for up to 1 hour 
ahead in time, i.e. 12 5-minutes intervals. 

In the examined area, there are 350 VDS in total, 
from which 112 were not taken into account because 
they provided only zero values. The traffic data from 
the remaining 238 VDS were matched to road 
segments of the Caltrans network (based on their 
coordinates). This process resulted into 55 road 
segments having traffic data. As we described above, 
the features of our AID model take into account not 
only the speed of the road of interest, but also the 
speed of its adjacent roads. For this reason, we kept 
only the road segments for which, their spatial 
neighbors traffic data exist.  

Concerning incident data, there were 4,193 
incidents in the area and time period concerned. 
These incidents where matched to the aforementioned 
55 road segments, for which traffic data is available. 
For each day of the total examined period and each of 
these 55 road segments, a speed time series was 
constructed from speed values occurred in the 
specific 5-minute interval of this day and road 
segment. In this way 6,765 (55 road segments times 
123 days of traffic data for each road segment) speed 

were constructed. These time series, in addition to 
traffic information, include typical and atypical 
intervals, indicated by 0 and 1, respectively. The 
value 1 indicates presence of an incident in the 
specific time interval and 0 its absence. For instance, 
for the road segment with identification number 76 on 
May 21, 2015 on time interval 01:10-01:15 the 
corresponding value of the speed time series is 
‘66.55;0’. This means that the speed was 66.55 mph 
and no incident situation was present. 

5.2 Case Study: A Part of US101 
Highway 

One of the main difficulties when trying to predict 
traffic under atypical conditions, is that the effect of 
abnormalities on traffic time series is not easily 
observable and interpretable. For instance, there may 
be an incident with specific characteristics (type, 
duration, severity, etc.) that caused a steep fall on the 
traffic time series of a road network, and another 
incident with exactly the same characteristics that 
happened on the same road at a different time of the 
day and had no effect on the traffic time series. On the 
other hand, there may be observable discrepancies 
from the typical pattern of the traffic time series that 
do not necessarily correspond to the presence of an 
incident. These situations may confuse the AID 
model. In order to overcome these difficulties, we had 
to choose road segments with observable effects on 
their traffic time series due to occurring incidents.  

5.3 Training Versus Testing Data 

The traffic time series of the aforementioned road 
segment consist the main data set. From this, the one 
that corresponds to 25 August, 2015 was selected as 
a test time series, which has both typical and atypical 
intervals. This time series was selected because it has 
spikes that corresponds to the occurrence of incidents.  

The preceding 116 time series formed the training 
data set. From this, we created three separated data 
sets in order to fit our model and the benchmarking 
methods in different traffic conditions. The first data 
set includes only the ones without atypical intervals 
(incident-free), whereas the second data set includes 
those with both typical and atypical (incident). 
Finally, the third one contains all time series (total). 

We trained the AID and the k-NN models using 
the total training data set, whereas for the ARIMA 
model the incident-free data set was used. Hence, we 
incorporate incident information to the fitting process 
of our model, as opposed to the current related work.  
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5.4 Benchmarks and Accuracy Metrics 

For the evaluation of the AID model we calculated a 
number of metrics using one-out cross validation in 
the total training data set. The first metric that we 
calculated was the accuracy: 

 
TP TN

Accuracy
TP FP TN FN

+=
+ + +

 (18)

 
where TP is the true positive, TN the true negative, 
FP the false positive and FN the false negative 
predicted classes. However, accuracy is not really a 
reliable metric for the real performance of a classifier 
when the number of samples in different classes vary 
greatly (unbalanced target) because it will yield 
misleading results. In our case, from the total number 
of 288 intervals in the traffic time series, only in 30 
or less intervals an incident was occurred. For this 
reason, in order to evaluate our model accurately, we 
calculated two additional metrics. The first one is 
sensitivity, a measurement of the proportion of 
positives that are correctly identified, whose formula 
is shown below: 
 

TP
Sensitivity

TP FN
=

+
 (19)

 
The second additional metric is specificity, which 
measures the proportion of negatives that are 
correctly identified. Its formula is given by the 
following equation: 
 

TN
Specificity

TN FP
=

+
 (20)

 
Using the sensitivity and specificity we created the 
Receiver Operating Characteristic (ROC) curve, 
which illustrates the performance of our classifier. 

For benchmarking we used the unitary ARIMA 
and k-NN models. These models were initially fitted 
using only the incident-free training data set, as 
happens in most of the works on traffic prediction 
under atypical conditions in current literature, and 
then using different combinations of all three datasets 
(incident-free, incident and total). We assessed the 
resulted accuracies by the means of two metrics: (a) 
the Root Mean Square Error (RMSE) and (b) the 
Symmetric Mean Absolute Percentage Error 
(SMAPE).  

RMSE is given by the following formula: 
 

2

1
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n

t t
t

P A
RMSE

n
=

−
=


, 
(21)

 
where n is the number of predictions, At the actual 
values and Pt the predicted values. 

SMAPE gives a percentage error that has both a 
lower and an upper bound of 0% and 100%, 
respectively. This makes its values more easily 
interpretable. The formula of SMAPE is the 
following: 

1

| |100%

| | | |

n
t t

t t t

P A
SMAPE

n A P=

−
= ⋅

+ , (22)
 

where n is the number of predictions, At the actual 
values and Pt the predicted values. 

5.5 Experimental results 

The evaluation results of the AID model are shown in 
Table 1. Additionally, the ROC curve of the classifier 
is shown in Figure 1. 

Table 1: The evaluation results of the AID model. 

AID evaluation metrics 
Accuracy 0.8986 
Sensitivity 0.6364  
Specificity 0.9091 

 

Figure 4: ROC curve of the proposed AID schema. 

We can see that although the proposed model is 
quite above the line of no-discrimination (the 
diagonal line), it is also quite far from the upper left 
corner of the ROC space (best possible classification 
prediction). This mainly happens due to the 
imbalance of the records of the classification classes 
(incident, non-incident) in the examined data set. In 
any case, the curve shows that there is enough room 
for improvement for the proposed AID model.  
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The results of the experiments regarding the 
prediction accuracy of our model are shown in Figure 
5 and Figure 6. 

 

Figure 5: Prediction accuracy results in RMSE. 

 

Figure 6: Prediction accuracy results in SMAPE. 

As shown in the aforementioned figures, in total, 
the proposed model outperforms its competitors. In 
particular, our model presents almost similar 
prediction accuracy with the ARIMA model under 
typical conditions, but it exhibits the best 
performance under atypical conditions. 

As already mentioned, the benchmarking models 
were initially trained by incident-free data. 
Subsequently, we conducted a series of experiments, 
in which the two unitary benchmarking models were 
trained using different combinations of the incident-
free, incident and total data sets. In this way, we 
incorporated the incident information not only in the 
data fitting process of the proposed model, but also in 
the fitting process of its competitors. As shown in 
Figure 7 and Figure 88, again the proposed model 
presents superior accuracy for all intervals. 
 

 

Figure 7: Prediction accuracy results in RMSE, for different 
benchmarking combinations and for all intervals. 

 

Figure 8: Prediction accuracy results in SMAPE, for 
different benchmarking combinations and for all intervals. 

 
Figure 9: Real and predicted speed time series. 

 
In Figure 9 is shown both the actual and the predicted 
time series of speed. It is obvious that the proposed 
model fits the actual values of speed. 

In order to evaluate the statistical significance of 
the improvement that our model introduces we run a 
t-test.  To this end, we examine the null hypothesis 
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that the proposed model has equal accuracy with the 
ARIMA model. Since there is no indication that the 
predicted values have normal distributions, we used 
the Wilcoxon signed-rank test. The test showed that 
at significance level of 0.05 the null hypothesis could 
be rejected for all the aforementioned benchmarking 
cases. Therefore, we can claim that the proposed 
model presents statistically significantly better 
accuracy from the ARIMA model in all cases. 

6 CONCLUSIONS 

In this paper we introduced a novel hybrid method for 
short-term traffic prediction under both typical and 
atypical traffic conditions. We introduced a SVM-
based AID model that identifies the presence of 
atypical conditions. We use the ARIMA parametric 
model or the k-NN non-parametric regression model 
if the AID identifies typical or atypical conditions, 
respectively. We evaluated our model using real open 
data from the Caltrans PeMS and showed that it 
outperforms the benchmarking models in terms of 
prediction accuracy under both typical and atypical 
conditions. 

The proposed model can be implemented using 
either speed or flow data. In this work, we selected 
speed data because speed is a traffic variable that 
provides clearly interpretable results regarding the 
traffic state of a network and also it can be easily 
converted to travel time, which is a useful metric for 
many ITS applications like vehicle routing. 

Future work involves experimenting with 
additional feature extraction techniques for 
improving the accuracy of the proposed AID model. 
Furthermore, more extensive comparison of the 
proposed model against additional prediction models 
using larger data sets is essential for further 
investigating the conditions under which the 
proposed model provides the best performance.  
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