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Abstract: Malware targeting Android platforms is growing in number and complexity. Huge volumes of new variants
emerge every month and this creates the need of being able to recognize timely the specific variants when
encountered. Several approaches have been developed for malware detection. Recently the research commu-
nity is developing approaches able to detect malware variants. Among all, two approaches demonstrated high
performances in detecting malware and assigning the family it belongs to: one based on machine learning and
one on formal methods. In this paper we compare the results achieved by two methods in terms of Precision,
Recall and Accuracy. We highlight points of strength and weakness of two methods.

1 INTRODUCTION

Mobile devices are spreading at an impressive pace,
and as reported by the Worldwide Quarterly Mobile
Phone Tracker, in the second quarter of 2016 Android
kept the greatest market share of mobile OS1.

This record has boosted the community of mal-
ware writers to devote efforts towards mobile plat-
forms. According to Internet Security Threat Report2,
the number of Android malware families added in
2015 grew by 6 percent,compared with the 20 per-
cent growth in 2014. The volume of Android malware
variants increased by 40 percent in 2015, compared
with 29 percent growth in the previous year, while
there were more than three times as many Android
apps classified as containing malware in 2015 than in
2014, an increase of 230 percent.

Smartphones are also largely used for building
botnet, as a recent DDOS attack has demonstrated
where 1 TB per second of traffic has been conveyed
by just using infected smartphones remotely con-
trolled3. These facts suggest that it is urgent to find
techniques of detection that are able to detect malware
targeting mobile platforms, contrasting the evasion

1http://www.idc.com/prodserv/smartphone-os-market-
share.jsp

2https://www.symantec.com/content/dam/symantec/
docs/reports/istr-21-2016-en.pdf

3http://thehackernews.com/2016/09/ddos-attack-
iot.html

techniques whose current malware makes large use
of. Different and diverse methods have been proposed
to detect mobile malware and classify variants. Ma-
chine learning base classification is one of the most
investigated. The main limit stands in the fact that
the effectiveness of the classifier depends on the kind
of malware (and the number) that is included in the
training set. A malware that is not represented by the
training set will not be detected. This limit is not triv-
ial, if we consider the huge number of variants and
new kinds of malware that are released in the wild
each month. Formal methods have the capability to
assess with a very high precision whether a rule is
verified by a piece of code. The immediate advan-
tage of this technique is that if the specific behaviors
represented by the rules are shown by the malware,
they will be surely recognized. The second advan-
tage is that if a categorized behavior is implemented
in the program, the formal methods are able to locate
it in the code. In this paper we compare the two ap-
proaches, the one based on machine learning (Can-
fora et al., 2016) and the one based on formal method
(Mercaldo et al., 2016a; Mercaldo et al., 2016c), in
order to characterize the points of strength and weak-
ness of the techniques. The paper proceeds as fol-
lows: section 2 discusses the related literature, sec-
tion 3 provides the background for the compared ap-
proaches, while section 4 describes the approaches in
detail. Section 5 presents the experimentation and the
obtained results. Finally, section 6 draws the conclu-
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sion of the work.

2 RELATED WORK

Authors in (Alam et al., 2016) use clone detection for
recognizing malware variants for Android. Authors
applied the method to a smaller and older data-set
than ours (166 Andorid malware). The main limi-
tation of this technique is that if a variant is not a
clone of the representative family members it is not
recognized. (Faruki et al., 2015) explores the homo-
geneity of bytes distribution for capturing similarity
among programs’ variants. This technique can be sen-
sitive to obfuscation. (Zhang et al., 2014) proposes an
approach that classifies Android malware via depen-
dency graph. The authors build programs semantics
with contextual API.They are able to detect correctly
the 93% malware instances.

The authors in (Suarez-Tangil et al., 2014) present
Dendroid, a text mining based approach. Suarez-
Tangil et al. base their approach on the code struc-
tures and they use a real data-set of Android mal-
ware families4. They measure similarity between
malware samples, and than they use this similarity
to automatically classify the malware into families.
Their approach uses a data-set of 1260 malware col-
lected in 2010 and it has a smaller number of sam-
ples for each family if it is compared with the data-
set used by (Mercaldo et al., 2016a; Mercaldo et al.,
2016c; Canfora et al., 2016). The researchers in
(Feng et al., ) present a semantics-based approach
(called Apposcopy) to identify Android malware. Ap-
poscopy specifies semantic characteristics of malware
families using signatures. The signature matching al-
gorithm of Apposcopy uses a combination of static
taint analysis and a new form of program representa-
tion called Inter-Component Call Graph to efficiently
detect Android applications that have certain control-
and data-flow properties. Apposcopy in evaluated
on the Malgenoma data-set, as Dendroid (Suarez-
Tangil et al., 2014). The authors in (Battista et al.,
2016; Mercaldo et al., 2016b), using a model check-
ing based approach, identify the malicious payload in
repackaged Android applications. The logic rules de-
fine the malicious payload. As preliminary evalua-
tion the authors only investigate DroidKungFu, Op-
fake and FakeInstaller families. Another behavioural
based approach is described in (Bose et al., 2008).
Bose and his colleagues specify common malware be-
havior using temporal logic formulas. This approach
is partially dynamic and it uses mobile viruses and

4Android Malware Genome Project available at
http://www.malgenomeproject.org

worms targeting the Symbian OS. The frequencies of
ngrams of opcodes to identify Android malware fam-
ily is used in (Canfora et al., 2015). The authors use
a data-set composed of 5560 malware belonging to
several different families. The results show on the av-
erage an accuracy equals to 97%.

3 PRELIMINARIES

In this section we introduce some preliminary con-
cepts related to the two techniques compared in this
work. In particular the first one is a classification real-
ized with a Machine Learning engine (Canfora et al.,
2016), while the second one is a formal technique that
uses the model checking for verifying the presence
of certain malicious behaviors in the code (Mercaldo
et al., 2016a; Mercaldo et al., 2016c). Both the meth-
ods are static.

3.1 Machine Learning

The classification based on machine learning consists
of identifying some features to be extracted from a
source code that allow the distinction between mal-
ware and goodware. This process is made of two main
steps:

1. Training: in this phase the classifier is built, by
applying algorithms of data mining. The engine
evaluates which are the features that better distin-
guish the two classes of objects, in this case mal-
ware and goodware. The learning could be su-
pervised or not supervised. The learning is super-
vised if the training data-set is labeled with the
name of the belonging class. The methodology
under analysis is based on the supervised learn-
ing, because it’s known in advance whether the
application is malicious or not.

2. Prediction: this is the phase of evaluation. The
aim of this step is to evaluate the effectiveness of
the classifier constructed in the previous phase. At
this stage the capability of the classifier to pre-
dict the class a data-set’s member belongs to is
assessed. When detecting malware this stage eval-
uates whether the classifier can discriminate cor-
rectly a malware from a goodware.

It should be underlined that a good classification
is performed only with a selection of an appropriate
set of features. One of the main limit of a machine
learning classifier is that the performance depends on
how much the training set is representative of the two
class examples.
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3.2 Model Checking

Model Checking is a type of formal technique. For-
mal Methods are usually used to specify and verify
complex systems. Model checking technique requires
three steps: (i) to define the systems with a precise
notation; (ii) to specify the properties with a precise
notation; (iii) to verify the properties on the system
with a model checker tool.
Define the System
The system behavior is represented as an automaton.
There are a set of labeled edges and a set of nodes.
The nodes are the system states while an edge rep-
resents a transition from a state to another state (pre-
cisely the next state). The edges are labeled. An edge
means that the system can evolve from a state s to a
state s′ performing an action a (the label of the edge).
This transition is indicated as follows: s a−→s′. The
initial state of the system is the root of the automa-
ton. It is often convenient to algebraically represent
the automaton in the form of processes. Usually the
process algebras have been used as precise notation
to describe complex computer systems. The method-
ology under analysis uses Milner’s Calculus of Com-
municating Systems (CCS) (Milner, 1989) as process
algebra. In CCS process algebra the systems are rep-
resented through processes and actions, which respec-
tively correspond to states and transitions. For more
details on CCS the reader can refer to (Bruns, 1997;
Milner, 1989).
Specify the Properties
A property that a system should satisfy can be defined
using a temporal logic. In temporal logics there are
constructs allowing to verify in a formal way that a
particular event will eventually happen or that a prop-
erty is verified in every state. The methodology under
analysis uses the logic named mu-calculus (Stirling,
1989).
Model Checker Tool
Finally, to verify the properties defined in the tem-
poral logic, the Model Checker is applied to the sys-
tem (modeled as transition system). This is a tool that
takes two inputs: the system model and the property.
The output of the Model Checker is binary. It returns
true whether the property is verified on the model
or false otherwise. The check is performed as an ex-
haustive state space search that is guaranteed to termi-
nate since the model is finite. The methodology under
analysis uses as formal verification environment the
Concurrency Workbench of New Century (CWB-NC)
(Cleaveland and Sims, 1996). While model checking
was originally developed to verify the correctness of
systems, recently it has been also proposed in other
fields such as clone detection (Santone, 2011), biol-

ogy (De Ruvo et al., 2015), secure information flow
(De Francesco et al., 2003), and mobile computing
(Anastasi et al., 2001). In the last years, model check-
ing has been successfully applied also in the security
field, as explained in the following sections.

4 THE TWO APPROACHES
APPLIED

The paper compares the performance of two ap-
proaches, one based on Machine Learning, and the
other one based on Model Checking which are now
detailed. The Machine Learning based approach
is presented in (Canfora et al., 2016). The Model
Checking based approach is presented in (Mercaldo
et al., 2016a; Mercaldo et al., 2016c).

4.1 Machine Learning based
Methodology (ML)

The methodology based on machine learning (Can-
fora et al., 2016) uses two different techniques to de-
tect Android malware families: the Hidden Markov
Model (HMM) (Rabiner, 1989; Annachhatre et al.,
2015) and the Structural Entropy (Baysa et al., 2013).
HMM models certain sequences of opcodes belong-
ing to the app under analysis that could characterize
the eventual malicious behavior. The structural en-
tropy evaluates the distribution of bytes in the phys-
ical file for characterizing it in terms of malware (or
goodware). These two techniques are used to extract
four features ( f1, f2, f3, f4). The first three capture
the HMM while the last one evaluates the Structural
Entropy. In detail the extracted features are: (i) f1 is
a HMM score with 3 hidden states; (ii) f2 is a HMM
score with 4 hidden states; (iii) f3 is a HMM score
with 5 hidden states; (iv) f4 is a measure of the struc-
tural entropy.

The classification process aim is to establish
whether the features correctly classify the malware
family. In this approach six classification algorithms
are used: J48, LabTree, NBTree, RandomForest,
RandomTree and RepTree.

The HMM-based features are composed starting
from the sequence of instructions of the application.
In particular the authors consider the sequence of op-
codes in the smali5 code of the application. Start-
ing from the entry point of each application (i.e., the
Main Activity), the authors reconstruct the sequence

5http://pallergabor.uw.hu/androidblog/dalvik opcodes
.html
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Table 1: An example of logic rule.

ϕ1 = µX = 〈pushCOMMANDS〉ϕ11 ∨〈−pushCOMMANDS〉X
ϕ11 = µX = 〈pushCommands〉ϕ12 ∨〈−pushCommands〉X
ϕ12 = µX = 〈pushT gZzeroLHwIICkoa〉ϕ13 ∨〈−pushT gZzeroLHwIICkoa〉X
ϕ13 = µX = 〈pushACT IVAT ION〉ϕ14 ∨〈−pushACT IVAT ION〉X
ϕ14 = µX = 〈pushActivation〉ϕ15 ∨〈−pushActivation〉X
ϕ15 = µX = 〈pushT gOottoHBgY f BVoM〉 tt∨〈−pushT gOottoHBgY f BVoM〉X

of opcodes of every called method, jumping to the in-
structions of the called method whenever there is an
invoke instruction. This reconstruction ends whether
there is a class belonging to the Android framework
or when the recursion level is equal to 4. On these
sequences the HMM detector is trained. The authors
used a number N of hidden states equal to 3, 4 and 5,
according with the features f1, f2, f3.

Regarding the Structural Entropy method, the au-
thors estimate the structural entropy of the Android
executable (.dex file). Starting from blocks of dif-
ferent size, belonging to the .dex file, the method
computes the Shannon entropy for each block. The
wavelet transform is used to represent the segments
of the file. Finally a similarity score, based on Lev-
enshtein distance, is computed. The authors compare
the segments of two files to compute this score. At
the end of this process the feature f4 is computed.

4.2 Model Checking based
Methodology (MC)

The methodology based on model checking (Mer-
caldo et al., 2016a; Mercaldo et al., 2016c) is com-
posed of two main steps:

• to build the model through a translation of Byte-
code instructions in form of process;

• to specify the properties related to malicious be-
haviours.

The formal model is written in CCS (Calculus of
Communicating Systems of Milner (Milner, 1989)).
The authors use a transformation function that trans-
lates every Bytecode instruction of the Android appli-
cation into CCS process. In particular, starting from
the apk file of an application through a reverse engi-
neering process the authors obtain the .class files.
Afterwards the authors use the Apache Commons
Bytecode Engineering Library (BCEL)6 to parse the
Bytecode in order to translate every instruction in a
CCS process. This is an automatic process. At the
end of the first step the formal model is built.

6http://commons.apache.org/bcel/

According to the model checking technique to for-
mal verification, the authors specify some properties.
The aim of step two is to investigate whether an ap-
plication is a malware and belongs to a particular An-
droid family. In order to achieve this goal, the spec-
ified formulae catch a specific malicious behavior,
which is a typical behavior allowing the family char-
acterization. The mu-calculus logic, (Stirling, 1989)
as a branching temporal logic, is used to describe a de-
termined behavior of the app. Thus, after this second
step, for every malware family there is a set of formu-
lae able to catch a specific malicious behaviour. These
are temporal logic rules and are obtained through a
manual inspection process of malware samples. Also
the specification of the property is not automatic.

Table 1 shows the logic rule related to a malicious
behaviour exposed by Plankton sample. The formula
catches some commands of the Plankton botnet. In
this formula is used the last fixpoint (µZ.φ) of the re-
cursive recursive equation Z = φ. µZ binds free oc-
currences of Z in φ. An occurrence of Z is free if it is
not within the scope of a binder µZ.

In this approach the Concurrency Workbench
of New Century (CWB-NC) (Cleaveland and Sims,
1996) is used as formal verification environment. The
CWB-NC model checker takes as input the formal
CCS model (built in the first step) and the tempo-
ral logic rules written in mu-calculus (specified in the
second step). The output of the model checker is bi-
nary: true, whether the property is verified on the
model and false otherwise. The authors assume that
a sample belongs to a particular family whether the
properties related to that particular family are verified
on the model.

It is well-known that a model checking technique
typically suffers of the state explosion problem. In
fact, it is mainly applicable to small-scale applica-
tions, but do not scale up well. However, the state
explosion problem is not a real problem when veri-
fying Android applications, since the produced CCS
specifications do not have a large number of states and
transitions.
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Table 2: Number of samples used by two methodologies.

Family (Canfora et al., 2016) (Mercaldo et al., 2016a) (Mercaldo et al., 2016c)
FakeInstaller 925 40 60
DroidKungFu 667 40 60

Plankton 625 625 60
Opfake 613 40 60

GinMaster 339 40 60
BaseBridge 330 330 60

Kmin 147 40 60
Geimini 92 0 60

Adrd 91 0 60
DroidDream 81 0 60
AnserverBot 0 187 0

DroidKungFu Update 0 1 0
Ransomware 672 0 683

5 THE COMPARISON

The experimentation aims at comparing the perfor-
mances of the two different methodologies. The per-
formances of classification are measured with the
metrics recall, precision and accuracy that evaluate
the ability of the methods to correctly detect the fam-
ily a malware belongs to. The experimentation is car-
ried out on a real world data-set of Android applica-
tions.

5.1 Metrics

The performances of the methodology are evaluated
with the following metrics:

PR =
T P

T P+FP
; RC =

T P
T P+FN

;

Acc =
T P+T N

T P+FN +FP+T N
;

(1)

which are respectively the Precision (PR), the Re-
call (RC) and the Accuracy (Acc) formulae. The first
two formulae indicate the measures of exactness and
correctness since the Precision tests the quality and
the recall tests the quantity of the detection. The Ac-
curacy evaluates the percentage of correct classifica-
tions with respect of the total number of examined
samples. The variables in the Equations 1 are the fol-
lowing: T P (True Positives) indicates the number of
malware programs that are correctly associated to the
right family, FP (False Positives) indicates the num-
ber of malware programs that are erroneously associ-
ated to a family, FN (False Negatives) indicates the
number of malware programs that are not associated
to the belonging family, and T N (True Negatives) in-
dicates the number of malware programs that do not
belong to the considered families, and the classifica-
tion does not associate them with any family.

It should be underlined that the Precision value
strictly depends on the number of samples that is in-
correctly identified. A sample is not correctly identi-
fied when the prediction of its family is wrong. The
Precision depends on the number of False Positives:
increasing the number of samples belonging to differ-
ent families could increase also the number of FP.

Even if the Accuracy’s formula includes the num-
ber of FP, it evaluates the number of correct classi-
fications on the overall data-set. This makes the ac-
curacy a measure more comparable between the two
data-sets with different size.

5.2 Data-set

The two methodologies compared in this work use
in their experimentation the following two data-sets:
Drebin (Arp et al., 2014; Spreitzenbarth et al., 2013)
and a collection of freely available Ransomware sam-
ples (6727 and 118). In particular the machine learn-
ing based methodology in its experimentation (Can-
fora et al., 2016) uses the ten most numerous families
of Drebin data-set and the collection of ransomware
samples. The model checking based methodology
in (Mercaldo et al., 2016a) uses for its experimen-
tation the Android malware samples that implement
the update attack and malware from other Drebin
families. Plankton, AnserverBot, BaseBridge and
DroidKungFu-Update are the families that implement
the update attack. In (Mercaldo et al., 2016c) the au-
thors use the ransomware samples and samples be-
longing to the ten most numerous families of Drebin
data-set. Table 2 shows the number of samples used
by the two methodologies in their experimentation.
As shown in Table 2, in the cases of Plankton, Base-
Bridge and Ransomware families the two approaches

7http://ransom.mobi/
8http://contagiominidump.blogspot.it/
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use the same data-set. This is the reason why we com-
pare the results achieved recognizing these three fam-
ilies. We compare their results in terms of correctness
and in this case the comparison is perfect. In terms of
Precision and Accuracy the comparison is a bit differ-
ent since in these metrics are involved the number of
FPs. As mentioned above, False Positive is a sample
not correctly identified and when the number of sam-
ples belonging to different families increases, also the
number of FP could increase. This difference of the
data-set is considered in our comparison.

The results used in this comparison are the results
achieved by two methodologies recognizing Plank-
ton, BaseBridge anf Ransomware samples. The fam-
ilies considered present the following malicious be-
haviours:
Plankton family: the samples belonging to this fam-
ily send sensitive data of the infected smartphone to
a remote server, like IMEI and browser history. They
use the class loading (a native functionality) to per-
form the malicious actions. Furthermore, Plankton
downloads unwanted advertisements and changes the
browser homepage or adds unwanted bookmarks to it.
BaseBridge family: the samples of this family run
an embedded payload located in an external folder.
They are able to receive premium numbers from re-
mote C&C servers and dial calls or send out SMS
messages to them, incurring fees for users.
Ransomware family: The main malicious aim of the
samples belonging to the Ransomware family is to
steal all personal data stored in the phone by encrypt-
ing all the files residing in the smartphone. Alterna-
tively the malware could lock the phone: in both the
cases the user is not able to access the smartphone, so
the ransomware asks for money in order to unlock the
phone.

5.3 Results

Table 3 shows the values of Recall obtained with the
two methodologies, where:
• Family column indicates the malware family the

classification results refer to.
• Machine Learning based Approach column

contains the values of Recall reached by the
methodology based on Machine Learning tech-
nique. In particular it is composed of four sub-
columns:
– Algorithm sub-column shows the algorithms

used for the classification.
– f1 sub-column shows the Recall achieved by

the feature one with the six classification algo-
rithms. The feature f1 captures the HMM (Hid-
den Markov Models) with 3 hidden states.

– f2 sub-column shows the Recall results
achieved by the feature f2 that captures the
HMM with 4 hidden states.

– f3 sub-column shows the Recall results ob-
tained by the feature f3 that captures the HMM
with 5 hidden states.

– f4 sub-column shows the Recall results pursued
with the feature f4 that measures the Structural
Entropy of the bytes distribution.

• Model Checking based Approach column con-
tains the values of Recall reached by the method-
ology that applies the Model Checking technique.

In our comparison, the results show that the
methodology based on Model Checking outperforms
all the other techniques. This means that the Model
Checking based approach reaches the best values
of correctness in the classification. Regarding the
methodology based on Machine Learning, the best
performances are produced by the feature f4. As a
matter of fact this feature shows also the smallest vari-
ability of Recall among the six used classification al-
gorithms. This means that the feature f4 is able to cor-
rectly identify the right family the malware belongs
to. The other three features are very sensitive to the
used algorithm, as a matter of fact there are values of
Recall that widely vary.

The histogram in Figure 1 shows the results
of Precision achieved by the two methodologies,
grouped for malware family. We reported in the graph
only the maximum values of Precision obtained by
Machine Learning based approach for all the consid-
ered features( f1, f2, f3 and f4), as this value repre-
sents the best performance that can be reached with a
specific pair (feature, classification algorithm).

The results highlight that the Precision value
reached by the Model Checking based approach is
grater than the values achieved by the other approach.
Unfortunately, here the comparison between the two
method’s precision is just an indication of the real dif-
ferences in exactness, as previously discussed.

With regards to Accuracy in Figure 1, the Model
Checking outperforms the Machine Learning for all
the data-sets, with the only exception of BaseBridge
family where performances are equals.

5.4 Discussion

Hereafter we will refer to the two approaches by us-
ing the acronyms ML and MC,standing respectively
for Machine Learning approach and Model Checking
approach. The experimentation allowed us to charac-
terize the pros and cons of the two approaches.
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Figure 1: Precision and Accuracy values Comparison. The values of f1, f2, f3, and f4 (Precision Histogram) are the maximum
Precision values achieved by the Machine Learning based approach. The maximum is selected between the six different
classification algorithms. MCK (Model Checking) indicates the value of Precision and Accuracy reached by the methodology
based on Model Checking.

Strengths and Advantages

The ML is a completely automatic approach. It
reaches a good Recall in the malware family identi-
fication, especially using the feature f4 (as shown in
Table 3). The authors in (Canfora et al., 2016) per-
form a very large experimentation in order to vali-
date their approach. The ML has a very low execu-
tion time, especially when the samples are analyzed
using the feature f4 (Structural Entropy). In fact, the
average CPU time required is equal to 3.85 sec on a
personal computer with the following computational
profile: Intel Core i5 desktop with 4 gigabyte RAM,
equipped with Linux Mint 15. The other three fea-
tures f1, f2, and f3 are effective for discriminating
malware from goodware, but they do not perform well
in recognizing the family a malware belongs to. In
fact, the Precision and the Recall in malware identi-
fication are always greater than the 93% (as shown
in (Canfora et al., 2016)). In the light of all above,
ML obtains good result in malware family classifica-
tion when using the feature f4 with a low execution
time, while ML achieves a very good correctness and
exactness in malware detection using the other three
features.

Conversely, the MC reaches high levels of cor-
rectness (i.e. Recall) in malware families identifica-
tion (as shown in Table 3). Futhermore, since it is
based on a formal method, it is a very rigorous ap-
proach and it is able to identify the exact location of
the malicious payload in the malware code. This is

made possible by the specified formulae that describe
the malicious behaviour to be found within the mal-
ware. In particular, MC points out the method where
the payload is located. MC does not require a training
set, but for each family a set of samples must be man-
ually inspected to extract the formulae representing
the malicious behavior. In the worst case, the largest
set counted 20 samples, which is small if compared
with the average size of the training sets used in ML.
Another advantage of MC is to work also whether the
malware is obfuscated, as shown in (Mercaldo et al.,
2016a; Mercaldo et al., 2016c). It is possible since
MC is behavioural based, and trivial transformations
of the code do not change the normal behaviour of the
code. For example, when an attacker inserts in the
code some unconditional jumps (code reordering) it
changes only the form of the code but the normal exe-
cution flow of the code is preserved. MC is not pattern
matching, it looks for the malicious behaviour in the
form of malicious actions performed. Thus, MC is re-
silient to code obfuscation. Nothing we can say about
ML and its robustness to code obfuscation since the
authors in (Canfora et al., 2016) do not provide any
example.

Weaknesses and Disadvantages

The ML approach produced values of correctness that
are smaller than those obtained with the MC, even
if the f4 feature showed performances that are close
to those of MC. A further weakness of ML is the
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Table 3: Comparison of the Recall Results.

Family Machine Learning Based Approach Model Checking Based
Algorithm f1 f2 f3 f4 Approach

Plankton

J48 0.608 0.698 0.696 0.694

1

LadTree 0.608 0.698 0.696 0.694
NBTree 0.202 0.178 0.211 0.694

RandomForest 0.667 0.675 0.674 0.694
RandomTree 0.683 0.681 0.68 0.694

RepTree 0.606 0.604 0.609 0.694

BaseBridge

J48 0.727 0.73 0.741 0.799

0.98

LadTree 0.024 0.018 0.015 0.841
NBTree 0.211 0.214 0.224 0.59

RandomForest 0.769 0.775 0.793 0.841
RandomTree 0.771 0.775 0.783 0.841

RepTree 0.629 0.637 0.628 0.778

Ransomware

J48 0.766 0.704 0.72 0.896

0.99

LadTree 0.545 0.655 0.654 0.879
NBTree 0.602 0.589 0.702 0.89

RandomForest 0.654 0.608 0.714 0.902
RandomTree 0.712 0.711 0.743 0.935

RepTree 0.612 0.672 0.637 0.872

Table 4: The Two Methodologies in comparison.
ML MC

Advantages & Strengths
Completely Automatic High Correctness
Low Execution Time Payload Localization

Exhaustive Experimentation Very Small Training Set

Disadvantages & Weaknesses
Not High Correctness High Execution Time

Big Training Set Analyst Involvement
No Payload Localization Small Experimentation

required large cardinality of the training set which
forces the malware analyst to have a relevant volume
of samples to hand out to the machine learning en-
gine. In fact in the ML experimentation the authors
used a training set that contains the 80% of the col-
lected samples. Furthermore the ML does not pro-
vide any information about the payload and its lo-
calization. The ML classifies only a malware in its
family. The execution time to analyze a new sample
using the features f1, f2 and f3 is in average greater
than 10 minutes, which cannot be considered conve-
nient. Finally, these features achieve a very good val-
ues of Precision and Recall only in malware detection,
while in family identification their average values of
exactness and correctness never exceed the 75%, as
shown in Figure 1. The MC is not completely au-
tomatic, since the involvement of an analyst is nec-
essary to specify the formulae. The execution time
of MC is high, which is in average equal to 60 sec-
onds to check an application; this time is computed
on a personal computer with the following computa-
tional profile: Intel Core i7 with 2 gigabyte RAM,
equipped with Linux Ubuntu 15. This execution time
is strictly dependent on the number of furmulae used,
the time to build the automaton and the verification

time. The time to build the automaton depends on the
number of the states and the number of transitions.
These two numbers are determined by the complexity
of the application’s code, i.e. the number of bytecode
instructions, the number of if statements and cycles.
The number of formulae used is proportional to the
number of different malicious behaviours that must
be caught in the code. Finally, it is worth considering
that the experimentation performed by the authors in
(Mercaldo et al., 2016a; Mercaldo et al., 2016c) is run
on a data-set that is much larger than the one used for
the validation of the MC. This hinders the comparison
of the precision of the two approaches, but allows to
have only an indication on how different the perfor-
mance of the two approaches is. For this reason we
computed also the Accuracy of the two approaches,
that provides a more reliable comparison. The accu-
racy histogram in Figure 1 shows the Accuracy values
achieved by ML and MC. It should be underlined that
FPs are involved also in the formula of Accuracy. Ta-
ble 4 shows and summarizes the advantages/strengths
and disadvantages/weaknesses of two methodologies
ML and MC. To conclude, the two approaches exhibit
several advantages and disadvantages. The malware
analyst can choose the right trade-off with agreement
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to the demands. If the analyst wants to exactly lo-
cate the payload within the malware code or wishes a
high value of correctness in the family identification,
MC should be used. However, this approach requires
a greater computational time than ML. Instead, if the
analyst is interested in achieving a high correctness in
family identification, is not looking for the payload lo-
cation, and the efficiency has a priority higher than the
effectiveness, the choice should fall on the ML with f4
feature. Finally, if the analyst wants to achieve a high
correctness in malware detection, the ML should be
employed, by using the f1, f2 or f3 features. Unfortu-
nately this will require a longer execution time.

6 CONCLUSIONS

Recognizing malware families (Zhou and Jiang,
2012) is a primary goal of malware analyst and sev-
eral approaches have been developed to face this is-
sue. In this work we have compared two static
approaches. The first one is a Machine Learning
based approach, differently the second one is a Model
Checking based approach. We have investigated
strengths and weaknesses of the two approaches. As
future work, we want to compare them with dynamic
techniques in order to have a clearer and wider pic-
ture.
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