
Towards User-centric DSLs to Manage IoT Systems

Moussa Amrani, Fabian Gilson, Abdelmounaim Debieche and Vincent Englebert
University of Namur, PReCISE Research Center, Namur, Belgium

Keywords: Model-driven Engineering, Internet of Things, Domain-specific Language, Rule-based Semantics.

Abstract: Hidden behind the Internet of Things (IoT), many actors are activelly filling the market with devices and
services. From this profusion of actors, a large amount of technologies and APIs, sometimes proprietary, are
available, making difficult the interoperability and configuration of systems for IoT technicians. In order to
define and manipulate devices deployed in domestic environments, we propose IoTDSL, a Domain-Specific
Language meant to specify, assemble and describe the behaviour of interconnected devices. Relying on a
high-level rule-based language, users in charge of the deployment of IoT infrastructures are able to describe
and combine in a declarative manner structural configurations as well as event-based semantics for devices.
This way, language users are freed from technical aspects, playing with high-level representations of devices,
while the complexity of the concrete implementation is handled in a dedicated layer where high-level rules are
mapped to vendor’s API.

1 INTRODUCTION

Facing the explosion of available connected devices,
many vendors are jumping into the market, propos-
ing a large spectrum of products ranging from con-
nected devices to associated end-user services (Lee
and Lee, 2015). This results in a wide heterogeneity
in software and hardware implementations, as well as
an ever growing list of concerns and opportunities in
terms of interoperability, data management, privacy
and scalability (Chaqfeh and Mohamed, 2012).

As the Internet of Thigs (IoT) infiltrates many as-
pects of people’s life through their cars, heating sys-
tems, phones and so forth, a critical challenge is to
provide end-users the possibility to benefit from the
plethora of connected devices and configure them for
their particular needs. From the recent research con-
ducted at the University of Namur, we identified how
difficult it is to make things cooperate, and describe
things configurations, because of the major influence
of distinct technologies. In order to hide vendor-
specific implementation details, we target a dedicated
technology-agnostic environment to adapt and com-
bine IoT solutions.

Model-Driven Engineering (MDE) has been
recognised during the last decade as a software en-
gineering technique dedicated to the design, man-
agement and evolution of computer languages en-
abling automatic generation of production code, di-
verse types of analysis and early verifications. Fol-
lowing this trend, we introduce IoTDSL, a prototype

Domain-Specific Language (DSL) meant to capture
IoT devices capabilities and their deployment config-
urations, while providing a declarative way to end-
users, letting them achieve their own scenarios.
Outline. We start in Section 2 by presenting archety-
pal scenarios of IoT devices usage to motivate why
and how it becomes important to bring end-users back
in control of the devices in their own domestic envi-
ronment. We then extract the main crucial IoT chal-
lenges specific to the use of DSLs and MDE tech-
niques to realise this vision. In Section 3, we intro-
duce IoTDSL, our prototype DSL to specify and in-
terconnect devices in an intuitive and general way,
and illustrate its use through a typical example. We
overview in Section 4 the use of DSLs for IoT, com-
paring existing approaches with ours and assessing
them against the challenges we identified; then con-
clude in Section 5 and present the main lines of work
ahead to transform our prototype in a fully functional
DSL.

2 CONTEXT & CHALLENGES

Domestic IoT devices could be used in many differ-
ent situations for many purposes. Consider these two
examplars for smart homes:

1. Alice lives in a house equipped with a number
of devices: door and window lock detectors, de-
vices controlling the lights, temperature and hu-

Amrani M., Gilson F., Debieche A. and Englebert V.
Towards User-centric DSLs to Manage IoT Systems.
DOI: 10.5220/0006285405690576
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 569-576
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

569

midity, security devices for detecting smoke and
carbon dioxide, as well as a plethora of entertain-
ment devices for TV, music, and sport. She is
an active workwoman, so she often reconfigures
her home devices to accommodate her changing
lifestyle: for example during winter, she’s staying
inside, mainly teleworking, and needs her bath-
room and living room to stay warm enough, but
not too much, while during summer, she spends
more time outside expecting her home to stay safe
and being notified of any intrusion.

2. Bob is 68 years old and leaves alone at home,
since his children have their own family lives on
the other side of the city. As many elderly, Bob
suffers from ageing diseases, but prefers to stay in
a familiar environment rather than leaving in an
dedicated institution. His house is equipped with
devices monitoring potential falls that can have
tragic consequences for him. It is also equipped
with nowadays entertainment devices such as a
smart TV and phone. He wants to feel safe at
home: if he falls and cannot stand up in the bath-
room, he would like to warn his family and notify
daycare nurses to rescue him quickly.

These typical configurations share two common-
alities. First, both houses integrate common con-
nected devices fulfilling the same functionalities, e.g.,
monitoring the temperature, or sending messages af-
ter the detection of an abnormal situation, but are
likely different in terms of vendors, communication
protocols and detailed properties. For example, a tem-
perature sensor could be paired with a heating sys-
tem to maintain a given temperature inside the house,
while in other configurations, both devices are clearly
separated. Second, the way these devices interact
with each others highly depends on the end user, and
more likely for the same user, on the actual context.
On the one hand, in Alice’s situation, different actions
on the same devices are required throughout the year.
On the other hand, Bob’s situation can be replicated
to another house, but with different sets of concerns
related to ageing diseases.

We argue that a good way of capturing those po-
tential variations of devices and situations is to pro-
vide to end-users, i.e. home inhabitants like Alice, or
technicians equipping houses like Bob’s one, a DSL
that provides the following features:

Device Description. A precise inventory of the de-
vices used in a specific deployment as well as the
high-level capabilities of these devices, described
in terms that are immediately understandable by
end-users, as opposed to conveying technical de-
tails about how those devices precisely operate;

Network Description. A way to capture where each
device is located and how it is possible to commu-
nicate with it, in order to receive or send data to
it;

Dynamics. A way to describe the interactions wished
by end-users, i.e. how to leverage the function-
alities of the devices to effectively realise one or
several scenarios that are convenient for the end-
users.

Those features are obviously not sufficient to obtain a
fully-fledged solution that becomes adaptable to any
situation, but they still represent necessary steps to
provide end-users the capacity to manipulate a collec-
tion of devices without relying on specific technolo-
gies. Though, the definition of such DSLs raises some
questions directly related to the hypotheses assumed
by those features, that we explore and relate to each
other in the rest of this section.

Capability Discovery. Providing the ability to drive
interconnected devices assumes the capacity of auto-
matically discovering devices’ capabilities in a stan-
dardised and uniform way (Chaqfeh and Mohamed,
2012). Similar processes exist for other technologies,
like USB devices plugged into computers that auto-
matically expose their natures and capabilities (e.g., a
pointing or video device). Classifying such capabili-
ties could be useful to build an ontology of normalised
functions that could result in powerful APIs to manip-
ulate devices.

Complex Event Processing (CEP). Letting end-
users deal with devices through their low-level
capability interfaces could lead to confusion and stiff
complexity for defining usage scenarios (Ma et al.,
2013). Rather, providing a way of reifying low-level
device computations into high-level events could
help end-users leverage the complexity of devices
networks and pave the way to manipulate them freely
and transparently (Cugola and Margara, 2012). Since
CEP consists of deriving meaningful conclusions
from a stream of events occurring within a system
and responding to them as quickly as possible, it
provides a solution to extract meaningful events from
low-level computations. However, for a solution to be
complete and useful, the reverse operation should be
addressed: high-level actions should be adequately
translated into low-level actuations.

Protocol Interoperability. A domotic solution with
heterogeneous devices would often integrate elements
from various providers, thus communicating through
multiple protocols. In order to make them interact ef-
ficiently, without forcing end-users to stick with one
vendor that can dictate costs and restrictions, a pow-
erful DSL should provide ways for interoperability

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

570

over multiple communication protocols, without re-
quiring end-users to understand the protocols’ intrica-
cies, versions and technical restrictions (Gubbi et al.,
2013).

Scalability. As the number of application domains
increases, the amount of connected devices is ex-
pected to rise exponentially. When updating exist-
ing IoT configurations, current solutions may not col-
lapse when adding more elements (Mukhopadhyay,
2014). Furthermore, a DSL must provide a way to
absorb scalability problems, hiding as much as possi-
ble purely technical constraints regarding increases in
size and complexity of operating configurations.

Data Management. Analogously to scalability is-
sues, the massive increase in connected devices will
produce more and more data to be processed, stored
and, for some of them, post processed (Lee and Lee,
2015). More data means seemingly more storage ca-
pabilities and the required space to handle such flow
of information will be at its highest ever. Further-
more, the multiplication of available (sensors) sources
is creating a whole new world of data processing and
mining possibilities, but also a profusion of diver-
gent concrete data types that sooner or later must be
mapped to equivalent concepts.

Non-Functional Properties. A powerful DSL
should encompass typical non-functional properties
of device networks to ensure long-life and secure
realisation of scenarios. Performance is crucial, and
depends both on the devices capabilities but also
on the quality of the communication network: any
source of latency could have dramatic impacts that
can lead to critical situations. Resource availability,
both in terms of computation and memory capabil-
ity, but also in terms of energy, is another crucial
bottleneck for the adoption of DSLs as a solution for
defining scenarios. The code generated from the DSL
should not overload the devices with repetitive com-
munications or unnecessary computations that would
drain the device’s battery. Security is yet another
concern with respect to two aspects. First, sensitive
data could be exposed through the communication
network, endangering users privacy. Second, some
functionalities could be locked and only accessible to
authorised users (Tan and Wang, 2010).

3 IoTDSL

Building a well-calibrated DSL is known to be diffi-
cult and error-prone. It usually requires a broad ex-
pertise on a domain before a consensus emerges on
which concepts are first-class citizens and how to ef-

fectively represent them. Fortunately, MDE technolo-
gies operated substantial breakthrough over the past
decade, allowing language designers to define their
own DSL structures and user interfaces more eas-
ily. Visual syntax is often a needed feature to any
language, allegedly to simplify its understanding and
manipulation. However, in order to rapidly obtain a
functional prototype, we chose to start from a textual
syntax, way easier to manipulate and evolve for lan-
guage designers. At last, we plan to propose a vi-
sual syntax: the transition should be facilitated since
our DSL is developed under GeMoC (Bousse et al.,
2016), a MDE framework that supports both visual
and textual representations as concrete syntaxes and
maintains a full synchronisation between them.

Based on the challenges identified in section 2,
we now introduce IoTDSL, our DSL devoted to fa-
cilitate the high-level manipulation of IoT systems.
At the heart of IoTDSL are two governing principles.
First, we promote a clean separation of concerns for
all aspects the DSL has to handle, embedding several
sublanguages. We believe this approach to be scal-
able, and to support independent evolutions of each
concern without impacting the other aspects, since
those aspects are composed through well-defined in-
terfaces. Second, our DSL relies on events, a natu-
ral paradigm for specifying various models of inter-
actions that is widely used in embedded and critical
systems, and where a clear separation between the
system and its environment is performed, further em-
powering the separation of concerns.

Despite its early stage of development, IoTDSL

shows its ability to capture the definition of small-
scale IoT systems appropriately. We first extract a
simple scenario from our project at the University of
Namur to demonstrate typical usages of IoT systems
deployed inside a house. We then simultaneously ex-
plain each part of the definition of IoTDSL through
dedicated examples.

3.1 Running Example

To illustrate our proposal, we consider a smart home
equipped with several devices illustrated in Figure 1.
At the entrance, the door is equipped with a lock de-
tector, checking when the door is opened or closed.
The hallway contains presence detectors, so that the
lights in the hallway as well as in the living room au-
tomatically switch on when Alice gets back home.
Furthermore, the living room also contains a pres-
ence detector because Alice wants the temperature
to be automatically monitored when she’s occupying
the room, being maintained between 20°C and 22°C.
Otherwise, when she is not home, the temperature

Towards User-centric DSLs to Manage IoT Systems

571

Figure 1: Alice’s smart home equipped with various de-
vices, interacting through a centralised gateway.

may not drop below 16°C. For security reasons, Al-
ice’s kitchen contains a smoke detector and a temper-
ature monitor. When she cooks, it happens that she
burns something; but she wants to make sure to de-
tect any departing fire: she considers a critical situa-
tion when the temperature remains above 40°C con-
sistently during five minutes while there is also smoke
in the kitchen.

3.2 Type Definition

In this section, we define IoT devices’ types, i.e.
which capabilities are available to the users in terms
of environment sensing and actuating. In our sce-
nario, type definitions either come from an advanced
user who is able to reason properly about a partic-
ular device and extract the relevant information, or
from a preexisting devices database, either being an
repository the system is connected to, or a library of
devices-off-the-shelf.

The concepts dedicated to type definition are
shown in Figure 2 (green background). This part is
similar to the notion of Classifier in MOF-like lan-
guages: a Type is either a PrimitiveType, or a user-
defined DeclaredType. We distinguish between gen-
eral Gateways, which centralise information and pro-
cessing, and Nodes deployed in the environment, hav-
ing capabilities and transfering data to Gateways. A
Capability is basically a MOF-like operation with a list
of Parameters that either captures data from the envi-
ronment, or acts on it. A Node can mix both kinds
of capabilities, allowing us to represent complex be-
haviour in a uniform fashion.

For now, types are defined in specific files that can
be imported and combined easily within IoT specifi-
cations. We plan to propose a graphical interface to
facilitate the browsing and integration of library com-
ponents into IoT systems.

1 gateway Central
2 device DoorLock {
3 sensing opened()
4 sensing closed()
5 }
6 device LightBulb {
7 actuating on()
8 actuating off()
9 actuating blink()

10 }
11 device TempSensor {
12 sensing getTemp()
13 }
14 device SmokeDetector

{
15 sensing smoke()
16 }

17 device Heater {
18 actuating warm(in delay:

Int)
19 actuating stop()
20 }
21 device Alarm {
22 actuating sound()
23 }
24 device Timer {
25 actuating set(in delay:

Int)
26 sensing timeout()
27 }
28 device PresenceDetector {
29 sensing detected()
30 actuating isPresent(out p

:Bool)
31 }

Listing 1: Type declarations in IoTDSL: sensing or actuating
capabilities as high-level events.

Listing 1 illustrates how devices are declared in
IoTDSL. Each device is introduced by the keyword de-
vice, has a name and capabilities that correspond to
reporting events (sensing) or operating over the en-
vironment (actuating). A special device, introduced
by the keyword gateway, centralises data from all de-
vices connected to it (cf. Section 3.3). Note that this
is the visible part of IoTDSL: in the background, events
declared for all devices need to be mapped to concrete
low-level APIs events using a dedicated mapping lan-
guage that is not detailed here for space reasons.

3.3 Network Configuration

The configuration-related constructs are specified in
the purple-part of Figure 2. A concrete device is mate-
rialised by a NodeInstance and is typed by an abstract
Node, e.g. a Device or a Gateway. Instances may
communicate with other IoT devices through prede-
fined CommunicationPaths. Such paths define, among
others, one or more protocols used to interact. We
actually rely on existing platforms, such as OpenRe-
mote1 or SmartThings2 to handle the intricate details
of the protocols since such details are, from an end-
user point of view, technical aspects rather than es-
sential matters. By knowing which protocols are used
between each pair of devices, we can automatically
perform data conversion in the proper format required
by the protocols: most of those protocols are already
implemented in General-Purpose Programming Lan-
guages (GPLs), like Java or C.

1http://www.openremote.org
2https://www.smartthings.com/

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

572

Figure 2: Metamodel of IoTDSL, separated in three concerns: Type Definition captures devices’ capabilities (top green part),
Network Configuration details how device instances are connected to each others (middle purple part), Business Rules defines
the functionalities expected from the IoT installation (bottom yellow part).

Concretely, we can easily imagine that network
configurations are automatically established if de-
vices follow the recommendation of discovery proto-
cols (Al-Fuqaha et al., 2015). By concentrating the
connections on a gateway in charge of centralising
joining and leaving devices, e.g., phones that enter or
leave a house, it becomes possible to gather informa-
tion on new devices and connect them appropriately
to other devices in the network according to their ca-
pabilities, communication protocols, and so on. Al-
though IoTDSL empowers Nodes to be passed as Pa-
rameters, enabling devices’ definition to be discov-
ered thanks to the Gateway.

Listing 2 shows the connection between the de-
vices presented in Figure 1. A specific device is con-
sidered as an instance of a defined type such that par-
ticular devices with the same set of capabilities may
be distinguished via identifiable references. Commu-
nications are purely declarative and only mention the
protocol type (introduced by the via keyword). Note
that we added an extra instance timer : Timer used
to simulate time periods. This pseudo device is used
to artificially set a clock time, whose behaviour is di-
rectly linked to the supporting platform of the gate-
ways for time management.

1 configuration MyHome {
2 node gw : Central
3 node livingTemp : TemperaturSensor
4 node kitchenTemp : TemperaturSensor
5 node livingHeater : Heater
6 node frontdoor : DoorLock
7 node corridorLight : LightBulb
8 node livingLight : LightBulb
9 node timer : Timer

10 node alarm : Alarm
11 node corridorDetector: PresenceDetector
12 node livingDetector : PresenceDetector
13 node smokeDetector : SmokeDetector
14
15 from livingTemperature to gw via MQTT
16 from HomeTemperature to gw via DDS
17 from livingHeater to gw via DDS
18 from frontdoor to gw via MQTT
19 from light to gw via MQTT
20 from timer to gw via DDS
21 from alarm to gw via DDS
22 from bodydetector to gw via MQTT
23 from smokeDetector to gw via MQTT
24 }

Listing 2: Network Configuration for Alice’s House.

3.4 Business Rules

This last part of our DSL is the heart of IoT systems
manipulation and is detailed in the bottom yellow part
of Figure 2. It relies on an event-based framework
consisting of a set of Rules that implement various
functionalities an end-user wants to achieve. Rules’
triggers are cyclically evaluated against the surround-

Towards User-centric DSLs to Manage IoT Systems

573

ing environment. Whenever a trigger Expression be-
comes true, it executes the appropriate reaction asso-
ciated to the rule. A trigger is defined as an expres-
sion, whose precise definition is omitted here since it
simply follows any expression language available in
GPLs for navigating nodes and evaluating boolean or
arithmetic expressions (note our DSL does not con-
tain boolean negation, since detecting the absence of
events is known in CEP as being difficult). A reaction
defines a sequential or parallel combination of capa-
bilities, enabling to sort actions by, or require data
from some identifiable devices. A typical reaction
may be to switch on all lights in a house, or only the
ones of a certain type.

For now, our approach is purely middleware-
oriented: rules are gathered into a gateway. For ef-
ficiency and resource consumption reasons, we are
also exploring how to automatically identify parts of
the business logics that can be exported to advanced
nodes with sufficient processing and power resources,
in order to lower network and gateway overuses.

We now explain how the scenario presented in
the running example is translated in business rules in
IoTDSL. We identified three different situations where
Alice needs to specify what she expects from the de-
vices of her house:

1. When Alice gets home (and thus opens the front
door), she wants the lights in the hallway and the
living room to be automatically switched on.

1 rule SwitchLightsWhenEnter:
2 when (frontdoor.opened() and after

corridorDetector.detected()) do {
3 corridorLight.on() || livingLight.on()
4 }

2. When Alice is in the living room, the temperature
inside the room should be maintained between
comfortable temperatures; whereas when she is
not, the temperature should not drop below 16°C.

1 rule PresentInLiving:
2 when (timer.timeout()) do {
3 livingDetector.isPresent() || presenceTimer.

set(TIMEDETECT)
4 }
5 rule MonitorLivingTempInStop:
6 when (livingDetector.detected() and livingTemp.

getTemp > IN_MAX) do {
7 livingHeater.stop()
8 }
9 rule MonitorLivingTempInStart:

10 when (livingDetector.detected() and livingTemp.
getTemp < IN_MIN) do {

11 livingHeater.warm(TIMEHEAT)
12 }
13 rule MonitorLivingTempOutStart:
14 when (timer.timeout() and before livingTemp.

getTemp < OUT_MIN) do {
15 livingHeater.warm(TIMEHEAT)
16 }

3. There is a critical fire situation when smoke is de-
tected in the kitchen while temperature is upper
40°C for at least five minutes.

1 rule AlarmWhenSmokeAndHighTemp:
2 when (kitchenTemp.getTemp() > 45
3 within 5 min from smokeDetector.smoke()) do

{
4 alarm.sound()
5 }

These rules show some particularities of IoTDSL’s
Rule language. First, it is possible to define local or
global variables and reuse them as part of parame-
ters or expressions (cf. Rules PresentInLiving or Mon-
itorLivingInStop, among others). Second, it is pos-
sible to compose reactions either in sequence (class
SeqComposition in the metamodel of Figure 2, tex-
tually represented as «;») or in parallel (class Paral-
lelComposition, represented as «||»), like Rule Pre-
sentInLiving demonstrates. Third, IoTDSL’s expression
language integrates a simple mechanism for events
time management: the before and after event mod-
ifiers check that an event happens in a reasonable
time window before/after the one it is combined to (in
Rules SwitchLightWhenEnter and MonitorLivingTem-
pOutStart, events are combined with and for checking
quasi-simultaneity); while the within...from construct
detects the occurrence of an event within a given dura-
tion after another event (cf. Rule AlarmWhenSmoke-
AndHighTemp). Fourth, because IoTDSL cannot check
the non-occurrence of events, time management is
crucial for ensuring a sound detection of interesting
non-events: for example here, Rule PresentInLiving
is used to periodically check for presence in the liv-
ing room (with the actuation isPresent()); but when
nobody is detected, we still have to maintain the tem-
perature above OUT_MIN = 16°C. By detecting that
timeout() occurred previously, we still are capable of
adjusting the living room temperature adequately.

4 RELATED WORK AND
DISCUSSION

A series of overviews have been recently conducted
on several aspects of IoT. In (Al-Fuqaha et al., 2015;
Xu et al., 2014a), the authors reviewed the applica-
tions, protocols and technologies used in the distinct
IoT layers, while (Singh et al., 2014; Gubbi et al.,
2013) focused on architectural aspects and (Tan and
Wang, 2010; Xu et al., 2014b) reviewed security ones.
Most of these contributions identify a number of chal-
lenges crossing the application domain of a DSL for
IoT, from which we identified the most relevant ones
to our contribution.

Capturing variations of a domain with explicit
constructs close to the domain concepts resides at the
essence of DSLs. In that regard, many DSLs were pro-
posed for various purposes in the IoT stack. CHAR-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

574

IOT (Pradhan et al., 2015) addresses Cyber-Physical
Systems by providing a component model that clearly
distinguishes between communication and computa-
tion, while ensuring resilience features in highly re-
configurable systems. In (Brandtzæg et al., 2012)
is presented a DSL aimed at facilitating the deploy-
ment of applications, based on a component model
of the environment used to locate the architecture
nodes where business logic can be leveraged. ALPH
(Munnelly and Clarke, 2008) is a DSL for ubiqui-
tous healthcare that focuses on three concerns: mo-
bility, by helping users to manage frequent devices
disconnections; context-awareness to adapt applica-
tion behaviour to environmental changes; and infras-
tructure, for managing the heterogeneity of commu-
nication protocols. Midgar (García et al., 2014) of-
fers a visual interface to support end-users in control-
ling interconnected devices and generate the glue ap-
plication making these devices interoperate. In (Sal-
ihbegovic et al., 2015), the authors present a visual
DSL for capturing the features and intercommunica-
tions of devices distributed in various application do-
mains spanning from smart homes to patient moni-
toring. These contributions target different applica-
tion domains at different abstraction levels, but pos-
sess every key features we identified in Section 2 in
a more or less explicit way. Since our DSL targets
end-users with no prior knowledge in programming,
we contrast with these contributions by having a tex-
tual representation for now, but by offering a more
intuitive, declarative style for expressing the system’s
dynamics through semantics rules.

ThingML (Harrand et al., 2016) is the closest con-
tribution to our DSL: it uses a similar device descrip-
tion with messages and communication ports attached
to devices, but describes the dynamics of devices and
systems through state machines, which appear to be
more obscure for end-users. However, the conceptual
drawbacks are similar in both paradigms: state ma-
chines need to be deterministic on their transitions,
while rules have to avoid multiple concurrent firing to
avoid executing several rules at the same time.

Other approaches, e.g. (Cheng et al., 2016; Bhan-
dari and Bergmann, 2013), relying on the Event Con-
dition Action (ECA) paradigm, share a similar view
for IoT devices orchestration through CEP, though not
having the same expressiveness for devices’definition.

All previous contributions take advantages of
MDE technologies and tools. More general MDE
framework like GeMoC (Bousse et al., 2016) or
ThingML allow to specialise the description of inter-
connected devices, for example to describe Arduino
systems specifically in ArduinoML (Mosser et al.,
2014).

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented a prototype DSL named
IoTDSL, designed for capturing the definition of de-
vices’ capabilities and their concrete deployment in
specific configurations. It provides a declarative lan-
guage based on rules where end-users may define
their own scenarios by manipulating devices through
high-level concepts. We also identified key challenges
from the literature specific to DSL engineering in the
area of IoT.

At the heart of IoTDSL is a clear separation of three
main concerns that any DSL for IoT should address.
By raising the abstraction level and offering a concep-
tual view of devices’ capabilities, IoTDSL promotes
reuse through dedicated device libraries, strongly sug-
gesting a standardisation of interfaces like the ones
already existing in other domains (for example, the
many computer devices using USB). Since IoTDSL

is developed with MDE tools, adding a visual syn-
tax is almost straightforward. The communication
between devices is a volatile domain, with new pro-
tocols emerging every year. By only declaring how
things communicate, we push the burden of translat-
ing / extracting data from low-level protocols to high-
level interfaces towards technicians in charge of defin-
ing and understanding such protocols. However, this
task is done only once per protocol, and can reuse the
experience and techniques already available in other
areas. For users, this aspect enforces live reconfigura-
tion of networks of things, as we already experience
in our daily life.

Despite promising results we experienced while
using our DSL on small examples with our industrial
partners, we acknowledge that many challenges re-
main. First, reconciling high-level device capabilities
with low-level complex communication frameworks
available for the plethora of devices will require Com-
plex Event Processing, a now mature field with pow-
erful techniques. Second, evaluating our declarative
sublanguages, for network configurations and busi-
ness rules, on large-scale deployments will provide
us insight on how to improve each sublanguage and
identify which patterns need to be integrated into li-
braries to facilitate such definitions. Finally, non-
functional properties need to be enforced through ap-
propriate code generation both in a centralised and
distributed configurations.

Towards User-centric DSLs to Manage IoT Systems

575

REFERENCES

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,
M., and Ayyash, M. (2015). Internet of things: A
survey on enabling technologies, protocols, and ap-
plications. IEEE Communications Surveys Tutorials,
17(4):2347–2376.

Bhandari, S. R. and Bergmann, N. W. (2013). An internet-
of-things system architecture based on services and
events. In 2013 IEEE Eighth International Conference
on Intelligent Sensors, Sensor Networks and Informa-
tion Processing, pages 339–344.

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T.,
Deantoni, J., and Combemale, B. (2016). Execution
framework of the gemoc studio (tool demo). In Pro-
ceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, SLE
2016, pages 84–89, New York, NY, USA. ACM.

Brandtzæg, E., Mohagheghi, P., and Mosser, S. (2012). To-
wards a domain-specific language to deploy applica-
tions in the clouds. In Third International Confer-
ence on Cloud Computing, GRIDs, and Virtualization,
pages 213–218.

Chaqfeh, M. A. and Mohamed, N. (2012). Challenges
in middleware solutions for the internet of things.
In 2012 International Conference on Collaboration
Technologies and Systems (CTS), pages 21–26.

Cheng, B., Zhu, D., Zhao, S., and Chen, J. (2016).
Situation-aware iot service coordination using the
event-driven soa paradigm. IEEE Transactions on
Network and Service Management, 13(2):349–361.

Cugola, G. and Margara, A. (2012). Complex event pro-
cessing with t-rex. Journal of Systems and Software,
85(8):1709–1728.

García, C. G., G-Bustelo, B. C. P., Espada, J. P., and Cueva-
Fernandez, G. (2014). Midgar: Generation of het-
erogeneous objects interconnecting applications. a do-
main specific language proposal for internet of things
scenarios. Computer Networks, 64:143 – 158.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of things (iot): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660.

Harrand, N., Fleurey, F., Morin, B., and Husa, K. E. (2016).
Thingml: A language and code generation frame-
work for heterogeneous targets. In Proceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS ’16, pages 125–135, New York, NY, USA. ACM.

Lee, I. and Lee, K. (2015). The internet of things (iot):
Applications, investments, and challenges for enter-
prises. Business Horizons, 58(4):431 – 440.

Ma, M., Wang, P., and Chu, C. H. (2013). Data management
for internet of things: Challenges, approaches and op-
portunities. In 2013 IEEE International Conference
on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and So-
cial Computing, pages 1144–1151.

Mosser, S., Collet, P., and Blay-Fornarino, M. (2014). Ex-
ploiting the internet of things to teach domain-specific

languages and modeling: The arduinoml project. In
Demuth, B. and Stikkolorum, D. R., editors, Pro-
ceedings of the MODELS Educators Symposium co-
located with the ACM/IEEE 17th International Con-
ference on Model Driven Engineering Languages and
Systems (MODELS 2014), Valencia, Spain, September
29, 2014., volume 1346 of CEUR Workshop Proceed-
ings, pages 45–54. CEUR-WS.org.

Mukhopadhyay, S. C., editor (2014). Internet of Things:
Challenges and Opportunities, volume 9 of Smart
Sensors, Measurement and Instrumentation, pages 1–
17. Springer, Cham.

Munnelly, J. and Clarke, S. (2008). A domain-specific lan-
guage for ubiquitous healthcare. In 2008 Third In-
ternational Conference on Pervasive Computing and
Applications, volume 2, pages 757–762.

Pradhan, S. M., Dubey, A., Gokhale, A., and Lehofer, M.
(2015). Chariot: A domain specific language for ex-
tensible cyber-physical systems. In Proceedings of the
Workshop on Domain-Specific Modeling, DSM 2015,
pages 9–16, New York, NY, USA. ACM.

Salihbegovic, A., Eterovic, T., Kaljic, E., and Ribic, S.
(2015). Design of a domain specific language and ide
for internet of things applications. In 2015 38th In-
ternational Convention on Information and Commu-
nication Technology, Electronics and Microelectron-
ics (MIPRO), pages 996–1001.

Singh, D., Tripathi, G., and Jara, A. J. (2014). A survey
of internet-of-things: Future vision, architecture, chal-
lenges and services. In 2014 IEEE World Forum on
Internet of Things (WF-IoT), pages 287–292.

Tan, L. and Wang, N. (2010). Future internet: The internet
of things. In ICACTE, volume 5.

Xu, L. D., He, W., and Li, S. (2014a). Internet of things in
industries: A survey. IEEE Transactions on Industrial
Informatics, 10(4):2233–2243.

Xu, T., Wendt, J. B., and Potkonjak, M. (2014b). Secu-
rity of iot systems: Design challenges and opportuni-
ties. In 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 417–423.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

576

