Unikernels for Cloud Architectures: How Single Responsibility can
Reduce Complexity, Thus Improving Enterprise Cloud Security

Andreas Happe', Bob Duncan® and Alfred Bratterud?
' Dept. Digital Safety & Security, Austrian Inst. of Tech. GmbH, Vienna, Austria

2Computing Science, University of Aberdeen, Aberdeen, U.K.

3Dept. of Computer Science, Oslo and Akershus University, Oslo, Norway

Keywords:

Abstract:

Cloud Security and Privacy, Attack Surface, Compliance, Complexity.

Unikernels allow application deployment through custom-built minimal virtual machines. The authors inves-

tigate how unikernels and their inherent minimalism benefit system security. The analysis starts with common
security vulnerability classes and their possible remediation. A platonic unikernel framework is used to de-
scribe how unikernels can solve common security problems, focusing both on a micro- and macro level. This
theoretical framework is matched against an existing unikernel framework, and the resulting mismatch is used
as a starting point for the research areas the authors are currently working on. We demonstrate how using a
single responsibility unikernel- based architectural framework could be used to reduce complexity and thus

improve enterprise cloud security.

1 INTRODUCTION

There is a commonly held view in security circles
that software complexity is the enemy of security.
Virtualisation is often employed to split up applica-
tions into manageable isolated parts. Figure 1 gives
a rough overview about different virtualization tech-
niques. Unikernels combine lightweight virtualisa-
tion while placing limitations upon potential applica-
tion code. These limitations yield solutions that heed
the single responsibility principle, which, by reducing
complexity, ensures security is more easily achieved.

In previous work [Duncan et al., 2016a], we out-
lined how a new approach to cloud security and pri-
vacy might provide a better solution to the challenges
of good cloud security and privacy. In that work, we
identified 10 key management challenges, and sug-
gested how a unikernel could assist in addressing 7
of these challenges to ensure good cloud security and
privacy can be achieved. The defining theme was that
complexity is the natural enemy of security; unikernel
systems with their enforced minimalism can help pre-
vent common security problems. In [Bratterud et al.,
2017], we looked at the technical solution in much
more depth, defining and demonstrating how uniker-
nels work. We took a detailed look at how the ap-
proach is likely to work in the real world, considering
how unikernels fit into a larger software project, what
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capabilities are currently lacking and how those can
be incrementally added to a unikernel framework.

Our contributions for this paper are to map the
OWASP Top 10 towards idealized unikernel environ-
ments; to compare unikernels to serverless architec-
tures; to identify unikernel’s shortcomings in devel-
opment environments; and to lay the groundwork for
a multi-unikernel framework.

We base this work on empirical security findings
from real-world security breaches. We start by dis-
cussing currently exploited vulnerabilities for web ap-
plications in Section 2, analyzing which vulnerabili-
ties will be prevented by the use of unikernels in Sec-
tion 3. Unikernels are part of an overall software ar-
chitecture, and in Section 4 we examine patterns for
that architecture that can aid secure software devel-
opment. In Section 5, we examine how an existing
unikernel framework—UniK—fits our proposed ideal
framework. Following this, in Section 6 we clarify
how a future framework might improve on the status
quo. In Section 7, we discuss our conclusions, cur-
rently performed research and potential future steps.
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A) Virtual Machines B) Containers

C) Virtual Machines
with shared Apps

D) Unikernel

Figure 1: A) Traditional virtual machines offer the highest level of service isolation but introduce high overhead as each
application should—theoretically—be placed within a virtual machine of its own. B) Containers improve efficiency by reusing
large parts of the host operating system and kernel, but are thus not able to provide the security guarantees of fully separated
virtual machines, e.g., resource starvation as well as kernel-level exploits can have cross-container impact. C) A new trend
is to encapsulate one or more containers into virtual machines on their own. This improves security and service isolation
but introduces the overhead of virtual machine based solutions. D) Unikernels, in contrast, are minimal virtual machines thus
yield the high security assumptions of virtual machine based approaches while improving efficiency through their minimalism.

2 THE OWASP TOP 10

Security breaches have a negative monetary and pub-
licity impact on companies, thus are seldom pub-
licly reported. This limits the availability of em-
pirical study data on actively exploited vulnerabili-
ties. The OWASP Foundation Top 10 report [OWASP,
2013], is a rare exception: it provides a periodic list
of exploited web-application vulnerabilities, ordered
by their prevalence. OWASP focuses on deliberate
attacks, each of which might be based on an under-
lying programming error, e.g., an injection vulnera-
bility might be the symptom of an underlying buffer-
overflow programming error.

The current 2013 report lists these vulnerabilities:

Table 1: OWASP Top Ten Web Vulnerabilities —
2013 [OWASP, 2013].

Code Threat
Al  Injection Attacks
A2  Broken Authentication and Session
Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6  Sensitive Data Exposure
A7  Missing Function Level Access Control
A8  Cross Site Request Forgery (CSRF)
A9  Using Components with Known
Vulnerabilities
A10  Unvalidated Redirects and Forwards

Based on software development impact, different
vulnerabilities can be grouped into three classes:

1. low-level vulnerabilities can be solved by apply-
ing local defensive measures, e.g., using a library
at a vulnerable spot;

2. high-level vulnerabilities cannot be solved by
local changes but need systematic architectural
treatment; and

3. application specific vulnerabilities cannot be
solved in a generic manner but depend on thought-
ful developer intervention.

Two of the top three vulnerabilities (A1, A3) can
be categorized as “low-level” and are directly related
to either missing input validation or output sanitiza-
tion, which can be mitigated by consistently using
defensive security libraries. Another class of attacks
that can similarly be solved is A8. In contrast, “high-
level” vulnerabilities must be solved on an architec-
tural level. Examples are A2, A5 and A7. The soft-
ware architecture should provide generic means for
user authentication and authorization, and should en-
force validations for all operations. Examples for the
final class can be seen in A4, A6 and A10: these di-
rectly depend on application workflow and can only
be solved through application-dependent changes.

Some vulnerabilities can be prevented by con-
sistently using security libraries while others can be
reduced by enforcing architectural decisions during
software development. Recent years have given rise
to opinionated software development frameworks,
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e.g., Ruby on Rails [37signals, ]. Those frameworks
guide software development by providing a sensi-
ble collection of support libraries (including defen-
sive security libraries) as well as strongly favouring a
given architectural programming style, e.g., Ruby on
Rails favouring the MVC pattern [Burbeck, 1992], in
combination with the ActiveRecord data-access pat-
tern [Fowler, 2002]. Software security is commonly a
non-functional requirement and thus hard to get fund-
ing for. Opinionated frameworks allow software de-
velopers to focus on functional requirements while
taking care of many security implications.

Those security frameworks have grown in size and
functionality, and being software themselves, can in-
troduce additional security problems into otherwise
secure application code. While the Ruby on Rails
framework, when properly used, prevents many oc-
currences of XSS-, SQLi- and CSRF-Attacks, prob-
lems with network object serialization recently in-
troduced remotely exploitable injection attacks [Cli-
mate, 2013]. This capability was not commonly used,
but was included in every Ruby on Rails installation.
Similar problems have plagued Python and its Django
framework [Blankstein and Freedman, 2014]. This is
further aggravated as software frameworks are by de-
sign generic: they introduce additional software de-
pendencies not used by the application code at all.
Their configuration often focuses on usability includ-
ing easy debug infrastructure—from a security per-
spective everything that aids debugging aids penetra-
tion. In its 2013 report OWASP acknowledged this
problem by introducing A9, to address “the growth
and depth of component based development has sig-
nificantly increased the risk of using known vulnera-
ble components” [OWASP, 2013].

Another recent security battleground is the
Internet-of-Things (IoT). Recent examples are the
ITB/sec attack against “Krebs on Security” or the
DDoS Attack taking out Dyn in October 2016!.
While the generic security landscape is already com-
plex, IoT adds additional problems such as hard de-
vice capability restrictions, manifold communication
paths and very limited means of updating already de-
ployed systems. In addition, software is often an
after-thought. This leads to a situation where security
updates are scarce in the best scenario.

3 UNIKERNELS

While Madhavapeddy provides an in-depth review
of unikernels in [Madhavapeddy and Scott, 2013],

https://www.theguardian.com/technology/2016/oct/25/
ddos-cyber-attack-dyn-internet-of-things
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[Madhavapeddy et al., 2013], we can use a simpler
definition. From a security perspective, the most in-
triguing aspect of unikernels is their capability as a
minimal execution environment. We view unikernels
as black-boxes providing the following attributes:

e a minimal execution environment for a service;
e provides isolation between different services;

o the unikernel image is immutable, i.e., no data al-
teration can be persisted within the unikernel it-
self;

e asingle-execution flow in a single-process names-
pace, i.e., neither multi-tasking nor multi-
threading. The unikernel is the synthesis of an
operating system kernel and the application.

Cloud computing consolidates processing power
within data centres to achieve maximum utilization
and high energy efficiency. Multiple applications run
on the same computing node. Control on node place-
ment or concurrently running applications is seldom
possible, making isolation between different applica-
tions, users, or services, critical for security. A com-
mon but inefficient solution is to place each applica-
tion or service within a virtual machine [Jithin and
Chandran, 2014]. This is very similar to the initial us-
age of virtualization within host-based systems; Mad-
nick gives a good overview of the impact of virtual-
ization in [Madnick and Donovan, 1973]. Containers
offer a more efficient approach [Soltesz et al., 2007],
but originally developed to improve deployment, their
security benefits are still under debate [Bui, 2015].

Go programs [Pike, 2009], are statically compiled
and linked, thus creating a single binary including all
needed dependencies for execution. While this is con-
ceptually similar to unikernels, Go programs still de-
pend on a shared operating system kernel—impacting
negatively on service isolation and security.

Minimization is performed during unikernel
building, meaning the system image only includes
required software dependencies: implying no bina-
ries, shell or unused libraries are included within the
unikernel image. Further, even unused parts of li-
braries should not be included in the image at all.
This radically reduces included functionality and thus
— if that functionality was network-accessible — re-
duces the network attack surface tremendously?. Also
this can loosen the need for updates after vulnera-
bilities have been discovered in included third-party

2We use OWASP’s definition of attack surface, which
includes the sum of all paths for data/commands into and
out of the applications as well as all valuable data used by
the application. In addition, all protection mechanisms are
included within the attack surface [OWASP, ].
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components — if the vulnerable function was not in-
cluded within the set of used functions, an update
can be moot. A similar theme can be found with
the ongoing Gnome Flatpak [Flatpak, ], and Ubuntu
Snap [Ubuntu, ], projects: both provide packaging for
application containers. Flatpak can police the allowed
access to system resources (processes, file system)
from within the application container, but by their
own definition, is not intended to be used for servers.
Another benefit of the applied minimalism is a
reduced memory footprint [Bratterud and Haugerud,
2013], [Bratterud et al., 2015], and quick start-up time
of unikernel-based systems. Madhavapeddy et al.,
used this for on-demand spin-up of new virtual im-
ages [Madhavapeddy et al., 2015], allowing for higher
resource utilization and improved energy efficiency.
Minimalism also benefits next-generation
hardware-supported memory protection tech-
niques. Intel Secure Guard Extensions [Anati et al.,
2013, Costan and Devadas, ], allow for protected
memory enclaves. Direct access to those enclaves is
prohibited and protected through specialized CPU
instructions; as the protection is enforced by hard-
ware, even the hypervisor can be constrained from
accessing protected memory. Rutkowska has shown
[Rutkowska, 2013], that deploying this protection
scheme for applications has severe implications: just
protecting the application executable is insufficient
as attacks can inject or extract code within linked
libraries. This leads to the conclusion that the whole
application including its dependencies must be part
of the secure-memory enclave. Simplicity leads
to a “one virtual machine per application” model.
Unikernels inherently support a single application per
unikernel. We propose unikernels are a perfect fit for
usage with advanced memory protection techniques.
With unikernels, the situation after a security
breach vastly differs to traditional systems. The at-
tacker is able to exploit a vulnerability, e.g., buffer
overflow, gaining access to the unikernel system’s
memory. Having no binaries and reduced libraries,
writing shell [Arce, 2004], code is complicated3.
Pivot attacks that depend on shell-access are thwarted.
On the other hand, all direct attacks against the appli-
cation, e.g., data extraction due to insecure applica-
tion logic, are still possible. A good example is the
recent OpenSSL heartbleed vulnerability [Durumeric
et al., 2014]. A unikernel utilizing OpenSSL would
also be vulnerable, allowing an attacker to access sys-
tem memory, including the private SSL key. We ar-

3Shellcode is machine code that is used as a payload
during vulnerability execution. Common payloads spawn
command shells or abuse existing libraries to give attackers
unintended possibilities.

gue that functionality should be split between multi-
ple unikernels, compartmentalizing breaches.

The lack of shell access requires mental read-
justment for many UNIX-period system administra-
tors. On the other hand, the growing DevOps move-
ment [Bass et al., 2015], abolishes the traditional sep-
aration into software development and system admin-
istration, but places high importance on the commu-
nication between and integration of those two areas.
Unikernels offer an elegant deployment alternative:
the minimized operating system implicitly moves sys-
tem debugging to application developers. Instead of
analysing errors through shell commands, developers
can utilize debuggers to analyse the whole system,
which might be beneficial for full-stack engineering.

Returning to the theme of “software development
frameworks provide sensible defaults but get bloated,
and thus vulnerable over time”, unikernels provide an
elegant solution: while the framework should include
generic defence measures, the resulting unikernel will
only include needed parts to reduce the attack surface.

3.1 Influence of Language Selection

In contrast to general purpose operating systems,
most unikernels are written with a target program-
ming language in mind.* As the application code will
be implemented with this language, the language se-
lection has enormous impact on application security.

An especially error-prone area is memory-safety
and memory management. Flexible programming
languages such as C [Kernighan et al., 1988], or
C++ [Stroustrup, 2015], allow direct manipulation
of memory areas, e.g., pointer arithmetic, casting
and manual memory allocation. While necessary for
high-performance applications this introduces vari-
ous potential security problems such as buffer over-
flows, dangling pointers, use-after-free, typecast er-
rors, etc. Many high-level languages disallow pointer
arithmetic and exchange manual memory manage-
ment with a garbage collector.

Strongly-typed languages allow detection of com-
mon programming errors during compile time, pre-
venting vulnerabilities that could potentially be ex-

4Please note, that the unikernel itself might be written in
multiple different programming languages. Memory-safe
and type-safe languages lack the flexibility of raw memory
access/type-casting and thus are too limited for kernel im-
plementation [Duncan et al., 2016b]. This commonly yields
a combination of unsafe languages for low-level memory
interactions and safe high-level languages interfacing the
application code, for example, Microsoft’s Verve [Yang
and Hawblitzel, 2010], combines C++ and managed C#,
HalVM uses C/Assembler and Haskell, MirageOS is based
on C and OCaml.
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ploited by runtime attacks, thus a strongly typed
language is preferable. Determining the strong-
typedness of a language is not easy. Strongly typed
languages such as C or C++ allow unsafe explicit type
conversions. Languages such as Java are based on
type erasure [Bracha et al., 1998]: they perform type
checking during compilation but remove details dur-
ing run-time, thus preventing dynamic type checking.

The selected programming language should pro-
vide usable abstractions suitable for the intended field
of operation. If object-oriented programming is in-
tended, then the unikernel’s programming language
should support this style. Furthermore the language
should provide means of programming fluently within
the chosen paradigm, e.g., for object-oriented pro-
gramming styles SOLID [Martin, 1995], principles
should be supported, as SOLID’s principles are also
important for security. SOLID’s S — Single Respon-
sibility Principle — and I — Interface Segregation
Principle — yields software designs that depend on
multiple distinct objects, each offering minimal but
self-contained functionality. This resonates with the
unikernel paradigm.

Another important aspect for security efficiency is
tooling and library support. Recently we have seen
programming languages providing good tooling en-
joying better uptake by the community [Meyerovich
and Rabkin, 2013]. Such an example where uptake
was improved by tooling is Ruby with the Ruby on
Rails web-development framework. The Go program-
ming language goes a step further and includes its
own package management system out of the box. Li-
brary support can be security-relevant, e.g., the C lan-
guage does not provide for memory-safety with re-
spect to memory management but add-on libraries
that introduce memory-safety [Bhatkar et al., 2005],
[Cowan et al., 1998], or automated garbage collec-
tion [Detlefs et al., 1994], are available.

To summarize the impact on language selection
for unikernels:

e must support the targeted programming paradigm;

e should support usable software-development ab-
stractions;

e strongly-typed and memory-safe programming
languages yield security benefits;

e good tooling support (e.g., safety checkers, static
code analysis) can improve security and developer
efficiency.

3.2 Unikernels and Serverless Stacks

Another recent addition to the hosting repertoire
are serverless frameworks. With those frameworks,
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source code is directly uploaded to the cloud service.
Execution is triggered in response to events; resources
are automatically scaled. Developers do not have any
system access except through the programming lan-
guage and provided libraries. Most current offerings
for this software stack are highly vendor-dependent,
e.g., Amazon Lambda, Google Cloud Functions, Mi-
crosoft Azure Functions.

We do see unikernel and serverless frameworks
as two solutions to a very similar problem: reduc-
ing the administrative overhead and allowing devel-
opers to focus their energy on application develop-
ment. Serverless stacks signify the “corporate-cloud”
aspect: developers upload their code to external ser-
vices and thus invoke vendor lock-in in the long run.
Unikernels also allow users to minimize the non-
application code; in contrast to serverless architec-
tures, this approach maintains flexibility with regard
to hosting. Users can provide on-site hosting or move
towards third-party cloud offerings.

We expect serverless architecture providers to uti-
lize unikernels within their own offerings. They are
well suited to include user provided applications and
further increase security of their infrastructure.

3.3 Influence on Architecture

High-level vulnerabilities cannot be solved on a low-
level but must be re-mediated through architectural
decisions. As mentioned, we entertain a black-box
view of a unikernel as an immutable isolated single-
execution-flow execution environment. This influ-
ences both the internal architecture of applications
running within unikernels as well as the overall ar-
chitectural structure of software systems.

The single-execution-flow approach leads natu-
rally to a reactive [Bonér et al., 2014], event-driven
architecture [Fielding, 2000]. In such an architec-
ture, the application sequentially retrieves and fulfills
user requests. There is emphasis on the non-blocking
processing of incoming requests’. If no unprocessed
request is available, the application enters a sleeping
state, thus preserving system resources. No two re-
quests are processed at the same time by the same
unikernel process—this prevents race conditions, as
there can be no shared data. In addition, there is ef-
ficient operating-system support for event-loops, al-
lowing for resource efficient implementations, thus

SThis is in contrast to traditional procedural processing
where blocking function calls are common. While blocking,
the caller waits for an external entity to answer, which im-
plies network-communication or waiting on an additional
process. The latter is not allowed with our unikernel-
approach and the former is bad for efficiency.
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reducing energy consumption. If parallel process-
ing is mandatory, an additional unikernel running the
same operation can be spawned. We assume that no
state or data is shared between those unikernels, i.e.,
they can perfectly run in parallel without any locking
up on shared data. A prominent example of an event-
driven architecture is the nginx web server.

Unikernel images are immutable. This implies
that all data alteration operations cannot be executed
within the unikernel, but must be delegated to an ex-
ternal service. While initially sounding like a lim-
iting factor this actually is good architectural prac-
tice as it separates data processing from data stor-
age. Please note, that unikernels are not side-effect
free (also called “pure” within functional program-
ming languages [Wadler, 1992]) — while the data it-
self is immutable, side-effects can be introduced, e.g.,
through usage of a random number generator.

The combination of immutable unikernel images
and event-driven execution allows for easier reason-
ing about the overall software system. Security-wise
complexity is the natural enemy of good security, thus
this change is highly appreciated. Performance-wise
this combination should allow for good scale-out be-
haviour, i.e., additional unikernels can be spawned
if increased processing throughput is needed. This
highly resembled the Lambda Architecture [Marz and
Warren, 2015], [Fan and Bifet, 2013], commonly
used for data warehousing. On the downside, a
purely event-driven programming style with a single-
execution-flow is not well-suited for interactive user
interfaces that drive application logic: here input
processing—and thus the user interface—would stall
until the submitted operation is completed.

We assume this software architecture will primar-
ily be used for network-driven request processing.
Immutability moves the need for data synchronization
outside the unikernel: the overall framework must
provide some means of persistence for shared data.
However, this implementation must be able to cope
with concurrency, i.e., provide ACID® guarantees or
deal with the CAP theorem’. Note, that “shared data”
includes audit data, session data, perhaps even caches.

As shown, the natural evolutionary step would
be separation of operations into multiple unikernels.
This allows for better security compartmentalization
as well as positively enabling scale-out operations.

6 ACID describes a set of properties (Atomicity, Consis-
tency, Isolation and Durability) desirable for data transac-
tions [Haerder and Reuter, 1983].

TThe CAP theorem describes the non-reconcile-ability
between Consistency, Availability and Partition-Tolerance
— a maximum of two of those three desirable properties
can be provided [Abadi, 2012].

Creating the communication infrastructure between
those unikernels, plus performance monitoring, must
again be provided by the surrounding framework.

4 A FRAMEWORK FOR
UNIKERNELS

The generic scenario for our framework is providing
network-connected services through an immutable
single-execution-flow unikernel. We limit ourselves
to single-execution-flow kernels to optionally allow
for parallelism optimizations within multiple uniker-
nel systems later. The immutability assumption min-
imizes requirements for targeted unikernels. The net-
work interfaces are supposed to be accessible through
HTTP over TCP/TLS. We chose HTTP due to its
ubiquitous usage within internet applications. We
assume communication between unikernels will be
message based. This will be further addressed in our
work on unikernel frameworks, in which we investi-
gate whether this would be the right approach.
Figure 2 shows a realization of such a framework.
The separation of the responsibility principle led to
the split into multiple purpose-built unikernels. A
quick description of the request flow shows the differ-
ent unikernels’ responsibilities. The initial TLS fermi-
nator accepts incoming client SSL/TLS connections.
Its implementation as a separate unikernel shows both
advantages and problems of unikernel-based designs:
the TLS/SSL-endpoint inherently needs access to the
SSL private key. Using the unikernel approach allows
us to only include this key within the TLS uniker-
nel and exclude it from all other runtime processes,
thus greatly reducing the system’s attack surface. On
the downside, the unikernel-approach will not pro-
tect against a vulnerable SSL implementation (think
OpenSSL heartbleed bug [Durumeric et al., 2014]) —
in contrast, due to the reduced memory size, a heart-
bleed attack would be performed more efficiently due
to less memory copying needed. After TLS termi-
nation the request is passed to a transparent HTTP
Proxy which caches incoming requests based on their
HTTP headers. If the request is fresh, the Router
unikernel forwards the request to the matching uniker-
nel performing the corresponding operation. Dur-
ing operation execution, the unikernel may interact
with framework-provided components: it may ac-
cess persistent data stores or provide log entries to
the audit system.® The operation’s response is then
transformed by the Encoder into the client-specified

8 A full unikernel authentication and messaging solution
is currently under development by the authors.
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Figure 2: Multi-Unikernel System consisting of connected microservices and external components: Clients connect to the
system through the incoming TLS-Connector and outgoing Encoder component — both contain state and thus are not imple-
mented as unikernels. Framework-provided components, such as the transparent proxy or message router, are implemented
as functional unikernels if possible. Application functionality is provided through user-supplied unikernels (red) which may
depend on external stateful services (blue).(©)2016 Happe, Duncan and Bratterud.

representation — e.g., “application/xml”, “applica-
tion/json” or “text/html” — and then returned to the
original client. In case of generated HTML files we
envision the usage of templating engines. Additional
administrative services are provided by the frame-
work, including unikernel monitoring and updating.
Please note, that we have not included counter-
measures against OWSAP Top 10’s top vulnerabil-
ity: injection attacks. The commonly accepted way of
dealing with this attack vector is consistent input san-
itization of all provided user input. We can provide
this within a unikernel framework on multiple levels:
on a coarse level a new “anti-injection” unikernel em-
ploying a generic sanitization library which can be
placed between the HTTP Proxy and Router uniker-
nel, thus transparently filtering the whole incoming
traffic. Sometimes filtering the whole traffic is not
feasible due to performance constraints. In this case,
the filtering unikernel might be placed directly be-
tween the Router and selected Operation unikernels,
thus only filtering a fraction of the original traffic.

4.1 High-level Concerns

The main purpose of the framework is the decon-
struction of business workflows into unikernel-based
operations. A single workflow can be implemented
through multiple chained unikernels. The surround-
ing framework is responsible for creation, monitoring
and stopping the different unikernel-services during
runtime. While unikernels themselves provide good
functional service isolation, external monitoring is
needed to prevent starvation attacks, i.e., one uniker-
nel performing a denial-of-service attack by consum-
ing all available host resources.
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The framework must take care of creating commu-
nication channels between connected unikernels. It
should provide means of validating passed messages,
i.e., deep-packet inspection. This will be utilized to
further compartmentalize potential security breaches.

Real-world use-cases require mutable data, e.g.,
temporary states, logging information or persisted ap-
plication and or user data. Unikernels are by defi-
nition immutable. To solve this mismatch, the sur-
rounding framework must provide means for persist-
ing and querying data in a race-free manner. Spe-
cialized data storage might be provided depending
on the use case. For example, log and audit data’s
special access patterns warrant special storage pro-
cedures enforcing its append-only nature. Persistent
data-storage is inherently contrary to our immutable
unikernel approach. Being pragmatic, we do not en-
force data storage within unikernels but defer this
functionality to the enclosing framework, i.e., means
of storage are provided by the environment.

The resulting framework fulfills all requirements
of Crash-Only Software described first by Candea
and Fox[Candea and Fox, 2003] during the 9th
Usenix Workshop on Hot Topics in Operating Sys-
tems. Crash-only software can safely be restarted in
case of errors. To allow for this, multiple require-
ments have to be fulfilled:

1. All important non-volatile state is managed by
dedicated state stores,

2. Components have externally enforced bound-
aries;

3. Interactions between components have timeouts;

4. All resources are leased,

5. Requests are entirely self-describing.
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Unikernel-based frameworks with their im-
mutable unikernel images automatically fulfill re-
quirements 1 and 2. This implicitly also fulfills re-
quirement 5. The missing requirements (3 and 4)
must be implemented and fulfilled by the correspond-
ing framework’s environment.

4.2 Message- vs. Stream-based
Communication

In our proposed platonic framework we have chosen
a message-based communication architecture. On a
fundamental level an incoming HTTP request uses
both stream-based as well as message-based com-
munication mechanisms: each incoming HTTP mes-
sage is encapsulated within a TCP stream. The initial
HTTP/HTTPS endpoint component is responsible for
transforming the encapsulated messages into atomic
HTTP messages. Communication between compo-
nents is then based on a message-based approach.
This allows for easy storage of in-flight messages.
This benefits hot-replacement of unikernels: after a
unikernel has been restarted—or replaced—the in-
coming message queue is triggered to replay all stored
messages and thus ensures that all incoming opera-
tions are executed. The disadvantage of message-
based processing is the inherent memory overhead.
As all messages need to be stored within memory
this architecture is not well suited for applications that
process “large” requests, such as large file delivery.

4.3 Resilience and
Zero-Downtime-Updates

In addition to security benefits, the combination of
immutable single-execution-flow unikernels also al-
lows for improved availability. An essential step dur-
ing software lifetime is updates: a new version of the
software has to be deployed “over” an existing de-
ployment, data migrated to the new version should
happen without any impact on service availability.
The combination of immutable unikernel, external
data storage and the existence of an external uniker-
nel monitoring and management framework allows
for exactly that. When a new version of an opera-
tion is available, a new unikernel is compiled and de-
ployed. Incoming messages for the old unikernel are
paused, the framework waits until the old unikernel
has finished processing. Afterwards, incoming mes-
sages are forwarded to the new unikernel and mes-
sage processing is resumed. If database alterations are
needed, those are performed after the old unikernel
has stopped and the new unikernel is receiving mes-
sages. Due to the immutable nature of unikernels this

hot-replacement of unikernels is possible.

Special consideration has to be given for the ini-
tial TLS-Terminator unikernel: TCP is a stream-based
protocol, the initial unikernel has to keep track of the
SSL/TLS-state within its volatile memory. This pre-
vents simple transparent replacement operations, but
due to the minimal provided functionality we assume
replace operations of this unikernel to be infrequent.

We assume the software system comprises multi-
ple unikernels, i.e., one unikernel per offered opera-
tion, allowing us to replace defective parts of the soft-
ware system without introducing overall downtime.

S CURRENT STATE: UNIK

We hold the benefits of a framework centred around
unikernel creation and deployment to be self-evident.
This begs the question, if such a framework already
exists, or if not, which capabilities are currently miss-
ing to achieve the desired functionality.

EMC’s UniK is the the prime unikernel compila-
tion and deployment platform. This characterization
comes easy, as it also is the only solution that supports
multiple unikernel implementations, e.g., rumprun,
IncludeOS, MirageOS, and OSv, as well as mul-
tiple deployment backends—AWS/Xen, VirtualBox,
Qemu/KVM, vSphere and Photon Controller’. Build-
ing unikernels into virtual machine images is inter-
nally delegated to the corresponding toolkits, UniK
manages those virtual machine images, instantiates
them, and provides limited runtime monitoring and

logging.

5.1 A Comparison to the Serverless
Framework

To get a better feel of UniK’s capabilities we com-
pared it with the serverless [Serverless.com, 2016],
function-as-a-service framework. Both aim to reduce
the amount of system preparation and administration
needed to be performed by software developers. To
have a concrete test-case, we wrote a simple microser-
vice that takes Amazon S3 credentials and returns a
polynomial hash computed over a subset of an Ama-
zon S3 bucket’s contents. This operation was then
deployed to the Amazon cloud.

We started with a serverless setup. The project
consists of roughly two parts: the function’s im-
plementation and deployment metadata. We opted

As noted by https:/github.com/emc-advanced-
dev/unik, date 2016-11-06.
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for a simple Python program utilizing the Ama-
zon Boto library as well as a single custom Python
GF256 mathematical library. The metadata is used to
map an incoming HTTP requests to the correspond-
ing python function, e.g., to map the “GET /cre-
ate_hash HTTP/1.1” operation to the deployed python
function “create_hash”. Thus the framework blends
application-level logic with deployment issues. The
working example can be found on github!®. The
code was deployed using the serverless command
line interface. Additional serverless features that
were utilized during development were command-
line web-service invocation and the integrated log-
ging facilities. The latter give information about func-
tion runtime, which is important as Amazon Lambda
functions are billed based on call count and length
of function execution. All those features worked
out-of-the-box, not too surprising given that we re-
lied on Amazon-provided libraries to work within an
Amazon-provided execution environment.

Then we turned to UniK’s python support pro-
vided through a rumprun unikernel. We expected to
deploy the same code base with slight modifications!!
into the Amazon cloud as an EC2 instance. In con-
trast to serverless, where a mapping from HTTP end-
point to python methods is utilized to create HTTP
endpoints, our unikernel had to provide a web-server
on its own. We opted for the python-included web
server implementation and added a simple HTTP han-
dler that then calls our original python function taken
from our serverless code. This has the benefit, that
we were able to easily test our microservice locally
by just starting the web server. We were able to build
and deploy a unikernel image to the Amazon cloud
but alas the microservice did not work as expected
and threw an exception. UniK handles virtual ma-
chines, not functions, so no logging facilities pro-
vided any help. We manually improved the func-
tions logging and were thus finally able to deduce
that the Boto library internally uses python’s multi-
processing package. As mentioned before, unikernels
do not generally support multiple execution flows,
on which multiprocessing depends—thus producing
our microservice error. This is a deeply unsatisfying
situation as, with python being a dynamically inter-
preted language, there is no fail-safe and easy way
to detect such dependency problems prior to deploy-
ment. This makes selection of libraries for unikernel
projects risky and, in our opinion, favours statically
compiled languages for unikernel.

10repository available at
https://github.com/andreashappe/serverless-python-aws.
Hyepository available at

https://github.com/andreashappe/unik-python-aws.
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5.2 Is This Even Within UniK’s Scope?

This is not directly UniK’s fault, but happened due to
the technology stack selection we unwittingly chose.
UniK manages virtual machines, thus has no informa-
tion about exported methods and their communication
endpoints. It only provides logging on a whole VM
base, i.e., provide a virtual console that captures and
stores the virtual machine’s “TTY” output, whereas
serverless integrates on a higher application level,
thus knows about deployed functions and can provide
detailed information on this fine-granular level.

UniK creates a virtual machine that can be de-
ployed on multiple backends provided by the user.
This allows users to take back full control over the
software and hardware stack. In contrast, server-
less fully depends on the backend provider. In the
Amazon Cloud case, no information about the used
hardware or underlying software stack is available—
deeply troubling some reliability engineers, espe-
cially when sensitive data should be handled by the
deployed micro service.

6 THE VISION: THE BEST OF
BOTH WORLDS?

Compared to existing UniK compilation frameworks,
the serverless framework provides a better developer
experience. Seeing UniK and serverless as competi-
tors leads to a false dichotomy, we see both of them
as part of a potential solution to the exploding com-
plexity of software development and deployment.

6.1 Limit Unikernels and Integrate
Them with their Environment

Serverless focuses on creating an environment for
functions provided through an HTTP (web) interface
and thus can provide specialized logging and moni-
toring information tailored for this use-case. UniK
in contrast provides a compilation framework for
generic operating systems—without further special-
ization it is not possible to gather detailed information
for included services.

Unikernels provide a lean environment, focusing
on a single application. We propose the same mini-
malism when it comes to protocols and their integra-
tion. Instead of providing generic containers, we pro-
pose that a single unikernel should be tailored to pro-
vide the endpoint for a single web request. To achieve
this, additional external and internal components will
need to be devised. Externally a smart communica-
tion endpoint for HTTP traffic must be introduced.
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This endpoint will take incoming HTTP/HTTPS re-
quests, extract the encapsulated request, match it
against provided unikernels and then forward a san-
itized operation towards the encapsulated operation
within the unikernel. It will be the starting point for
additional features such as providing unikernels on
demand, i.e., starting a new unikernel if an operation
request was received. As dispatched operations are
HTTP requests, logging can be specialized towards
the needs of this protocol. As seen with our UniK
experiments, currently each unikernel has to imple-
ment a whole web server stack on its own. We pro-
pose a small library for usage within the unikernel that
would accept an incoming web request from the exter-
nal HTTP server and calls the corresponding function
within the unikernel. This library would also include
the logging interface needed for advanced data gather-
ing. As each unikernel function will always be called
on behalf of an incoming request we assume that we
can gather logging information on a per-request basis.

The incoming (external) web-server is the perfect
place to implement SSL/TLS termination. This al-
lows for hot-plug of existing unikernels as the TLS
connection will be created between the client and the
HTTPS listener (and not between the client and the
unikernel). We have chosen the Go programming lan-
guage for implementation as this is also the program-
ming language used by the UniK project and we target
close interactions with their development community.

As communication between the external web
server and the unikernel is based on a technology
agnostic protocol (HTTP), we can couple multiple
unikernel implementations with a single external web
server. Due to this, we name the external web server
a “multi-unikernel web server”.

6.2 Tooling/Further Hardening of
Unikernels

Our tests with a python-based unikernel have shown
that tooling is of the highest importance when it
comes to successful unikernel adoption. While
dynamic programming languages commonly yield
higher developer efficiently, due to our problems with
Python, i.e., not being able to detect incompatible li-
braries during development time, we lean towards us-
age of statically compiled programming languages.
This allows us to perform all dependency and com-
patibility checks during compile time. We mandate
that the framework must provide and enforce a sensi-
ble selection of defensive libraries for input data vali-
dation and output sanitization.

When it comes to programming language selec-
tion, we assume that either the programming lan-

guage is memory-safe itself or the tooling provides
for vast amounts of static source code analysis during
compile- and run-time to mitigate potential vulnera-
bilities. In addition, a sensible selection of libraries
should be utilized to reduce negative security impli-
cations (i.e., memory management). If source code
is statically linked (which we imply), steps should be
taken to improve the resilience of code against secu-
rity attacks. There is a large repository of address
randomization [Shacham et al., 2004], and code-
execution protection [Childs Jr et al., 1984], tech-
niques which should be employed automatically.

Note, that additional security libraries might intro-
duce additional vulnerabilities. We propose that auto-
matic minimization offered by our unikernel-system
will offset this negative security impact. Static source
code analysis and defensive measures like address-
randomization do not add additional code to the com-
piled binary and thus do not increase the attack sur-
face.

6.3 Marry the Serverless Developer
Experience with Unikernels

So far, we talked about infrastructure mechanisms
that integrate unikernel compilation, deployment and
monitoring. In addition we forsee potential improve-
ments with regard to developer usability by integrat-
ing our web server/UniK stack backend with server-
less’ developer frontend.

Initially, we proposed a multi-unikernel web
server that allows for hot-plugging web-based uniker-
nels. The second step focused on improving the com-
pilation step of a single unikernel through usage of
defensive security libraries. This final step will in-
tegrate with the serverless framework. A serverless
project consists of multiple functions and attached
metadata, i.e., under which HTTP address which op-
eration should be available. We propose to take this
information and use it to create a single web-based
unikernel per exported function. Information needed
for deployment within out multi-unikernel web server
will be extracted from serverless’ meta-data. Our log-
ging subsystem will also be integrated with server-
less’ logging front-end.

7 CONCLUSION AND FUTURE
WORK

We have shown how the use of unikernel based sys-
tems can be used to reduce complexity, and thus im-
prove security. We have looked at real world empir-

39



COMPLEXIS 2017 - 2nd International Conference on Complexity, Future Information Systems and Risk

ical security findings as a foundation for this work,
and have been able to highlight how unikernels can
be used to mitigate security risks. We discussed how
unikernels will form an integral part of the overall
software architecture and examined patterns for that
architecture which can be used to aid software devel-
opment. We therefore identified the requirement for
a unikernel-enabling surrounding framework to pro-
vide better support for the unikernel approach, and to
that end we discussed how this might be achieved, and
detailed a high- level architecture. We analyzed the
current state of unikernel compilation frameworks,
identified their shortcomings and offered sensible fu-
ture paths which could support powerful and scalable
multi-unikernel systems.

We are currently analysing different static and dy-
namic hardening mechanisms that can be added dur-
ing unikernel compilation. The result of this anal-
ysis will be a paper detailing the different potential
mechanisms which could be used and their impact on
runtime performance, unikernel image size as well as
runtime memory consumption. Early indications sug-
gest this work is likely to be of benefit. In parallel we
are investigating the use of a dedicated unikernel web
server that allows for on-demand launching of uniker-
nels for scale-out. To achieve this in a developer
friendly manner, additional in-unikernel libraries will
have to be devised. This will likely take some effort,
but we believe this will greatly enhance the prospect
that a more secure approach could be achieved.

We have also carried out some preliminary work
on the use of unikernel systems to assist in deal-
ing with some of the worrying security weaknesses
in IoT technology, and we also continue with this
work. Based on the work in this, and three previ-
ous papers—|[Duncan et al., 2016a], [Bratterud et al.,
2017], and [Duncan et al., 2016b]—we are convinced
that properly developed unikernel-based solutions can
provide a vital weapon in the armoury of enterprises
for ensuring improved levels of security can be both
achieved and maintained.
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