Implications for stroke clinical trials a literature 
review and synthesis. Stroke, 38, 1091-1096. 
Breiman, L. 1996. Bagging predictors. Machine learning, 
24, 123-140. 
Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. 
1984. Classification and regression trees, CRC press. 
Brott, T., Adams, H., Olinger, C. P., Marler, J. R., Barsan, 
W. G., Biller, J., Spilker, J., Holleran, R., Eberle, R. & 
Hertzberg, V. 1989. Measurements of acute cerebral 
infarction: a clinical examination scale. Stroke, 20, 
864-870. 
Brown, A. W., Therneau, T. M., Schultz, B. A., Niewczyk, 
P. M. & Granger, C. V. 2015. Measure of functional 
independence dominates discharge outcome prediction 
after inpatient rehabilitation for stroke. Stroke, 46, 
1038-1044. 
Etemad-Shahidi, A. & Mahjoobi, J. 2009. Comparison 
between M5′ model tree and neural networks for 
prediction of significant wave height in Lake Superior. 
Ocean Engineering, 36, 1175-1181. 
Gialanella, B., Santoro, R. & Ferlucci, C. 2013. Predicting 
outcome after stroke: the role of basic activities of 
daily living predicting outcome after stroke. European 
journal of physical and rehabilitation medicine, 49, 
629-637. 
Hall, M., Frank, E., Holmes, G., Pfahringer, B., 
Reutemann, P. & Witten, I. H. 2009. The WEKA data 
mining software: an update. ACM SIGKDD 
explorations newsletter, 11, 10-18. 
Henninger, N., Lin, E., Baker, S. P., Wakhloo, A. K., 
Takhtani, D. & Moonis, M. 2012. Leukoaraiosis 
predicts poor 90-day outcome after acute large 
cerebral artery occlusion. Cerebrovascular Diseases, 
33, 525-531. 
Keith, R., Granger, C., Hamilton, B. & Sherwin, F. 1987. 
The functional independence measure. Adv Clin 
Rehabil, 1, 6-18. 
Kohavi, R. 1995. A study of cross-validation and 
bootstrap for accuracy estimation and model selection. 
IJCAI. 
Marini, C., De Santis, F., Sacco, S., Russo, T., Olivieri, L., 
Totaro, R. & Carolei, A. 2005. Contribution of atrial 
fibrillation to incidence and outcome of ischemic 
stroke results from a population-based study. Stroke, 
36, 1115-1119. 
McCullagh, P. 1980. Regression models for ordinal data. 
Journal of the royal statistical society. Series B 
(Methodological), 109-142. 
Moonis, M., Kane, K., Schwiderski, U., Sandage, B. W. & 
Fisher, M. 2005. HMG-CoA reductase inhibitors 
improve acute ischemic stroke outcome. Stroke, 36, 
1298-1300. 
Moore, D. S. 2007. The basic practice of statistics, New 
York, WH Freeman  
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., 
Blaha, M. J., Cushman, M., Das, S. R., de Ferranti, S., 
Després, J.-P. & Fullerton, H. J. 2016. Heart Disease 
and Stroke Statistics-2016 Update: A Report From the 
American Heart Association. Circulation, 133, 447. 
Nakayama, H., Jørgensen, H., Raaschou, H. & Olsen, T.  
 
  1994. The influence of age on stroke outcome. The 
Copenhagen Stroke Study. Stroke, 25, 808-813. 
Nogueira, R. G., Liebeskind, D. S., Sung, G., Duckwiler, 
G., Smith, W. S. & Multi MERCI Writing Committee 
2009. Predictors of good clinical outcomes, mortality, 
and successful revascularization in patients with acute 
ischemic stroke undergoing thrombectomy pooled 
analysis of the Mechanical Embolus Removal in 
Cerebral Ischemia (MERCI) and Multi MERCI Trials. 
Stroke, 40, 3777-3783. 
Quinlan, J. R. 1992. Learning with continuous classes. 5th 
Australian joint conference on artificial intelligence. 
Singapore. 
Quinlan, J. R. 1993. C4. 5 Programs for Machine 
Learning, San Francisco, Morgan Kauffmann. 
Raffeld, M. R., Debette, S. & Woo, D. 2016. International 
Stroke Genetics Consortium Update. Stroke, 47, 1144-
1145. 
Rankin, J. 1957. Cerebral vascular accidents in patients 
over the age of 60. II. Prognosis. Scottish medical 
journal, 2, 200. 
Rodgers, J. L. & Nicewander, W. A. 1988. Thirteen ways 
to look at the correlation coefficient. The American 
Statistician, 42, 59-66. 
Tan, P.-N., Steinbach, M. & Kumar, V. 2005. Introduction 
to data mining, Boston, Addison-Wesley. 
Van Swieten, J., Koudstaal, P., Visser, M., Schouten, H. & 
Van Gijn, J. 1988. Interobserver agreement for the 
assessment of handicap in stroke patients. Stroke, 19, 
604-607. 
Wang, Y. & Witten, I. H. 1996. Induction of model trees 
for predicting continuous classes. European 
Conference on Machine Learning. University of 
Economics, Prague. 
Willmott, C. J. & Matsuura, K. 2005. Advantages of the 
mean absolute error (MAE) over the root mean square 
error (RMSE) in assessing average model 
performance. Climate research, 30, 79-82. 
Yong, M. & Kaste, M. 2008. Dynamic of hyperglycemia 
as a predictor of stroke outcome in the ECASS-II trial. 
Stroke, 39, 2749-2755.