
An MDE Approach to Generate Schemas for Object-document Mappers

Diego Sevilla Ruiz, Severino Feliciano Morales and Jesús Garcı́a-Molina
Faculty of Computer Science, University of Murcia, Campus Espinardo, Murcia, Spain

Keywords: NoSQL Databases, NOSQL Data Engineering, Code Generation, MDE Solution, Object-document Mappers.

Abstract: Most NoSQL systems are schemaless. This lack of schema offers a greater flexibility than relational systems.
However, this comes at the cost of losing benefits such as the static checking that assure that stored data
conforms to the database schema. Instead, developers must be in charge of this task that is time-consuming
and error-prone. Object-NoSQL mappers are emerging to alleviate this task and facilitate the development of
NoSQL applications. These mappers allow the definition of schemas, which are used to assure that data are
correctly manipulated. In this article, we present an MDE approach that automatically generates schemas and
other artefacts for mappers. As proof of concept, we have considered Mongoose, which is a widely used map-
per for MongoDB, but the solution is mapper-independent. Firstly, the schemas are inferred from stored data
by using an approach defined in a previous work. Then, NoSQL schema models are input to a two-step model
transformation chain that generates schemas, validators and updating procedures, among other Mongoose arte-
facts. An intermediate metamodel has been defined to ease the implementation of the transformations. This
work shows how MDE techniques can be applied in the emerging “NoSQL Data Engineering” field.

1 INTRODUCTION

Interest in NoSQL (Not only SQL) databases has
steadily grown over the last decade. Modern appli-
cations (e.g., social media, Internet of Things, mo-
bile apps, and Big Data) have evidenced the limi-
tations of traditional relational systems to meet the
scalability and performance demands of these ap-
plications. A large number of companies have al-
ready embraced NoSQL databases, and the adop-
tion will rise considerably in next years, as reported
in (Dataversity, 2015; NoSQL-Market, 2016). The
“nosql-database.org” website shows a list of 225 ex-
isting NoSQL systems. Actually, the NOSQL term
refers to a varied set of data modelling paradigms
aimed to manage semi-structured and unstructured
data. The major NoSQL categories are: document,
wide column and key-value stores, and graph-based
databases. Except for graph databases, the paradigms
aim to represent semi-structured data using reference
and aggregation (Sadalage and Fowler, 2012). Mon-
goDB (MongoDB, 2016) is the most widely used
NoSQL system (NoSQL Ranking, 2016).

Most NoSQL systems are schemaless. This is a
significant difference with respect to relational sys-
tems which need the definition of a schema to store
data. Schemaless provides flexibility to manage data,
for example, different versions of a data entity can be

stored, and migrations are easier (Fowler, 2013). This
characteristic is probably considered the most inter-
esting and attractive of NoSQL systems. However,
it should be noted that a data schema is often con-
venient, because database applications require know-
ing the data organization in order to manage data effi-
ciently. In schemaless databases, the schema is in the
minds of developers, and implicitly represented in the
code and stored data. Therefore, two alternatives are
emerging for NoSQL database applications: (i) com-
bining the schemaless approach with mechanisms that
guarantee a correct access to data (e.g. data valida-
tors) (Fowler, 2013), and (ii) using mappers which
converts NoSQL data into objects of a programming
language. Most current mappers are for document
stores (Object-document mappers, ODMs), and Mon-
goose (Mongoose, 2016) is the most widely used
ODM, created for MongoDB and Javascript. How-
ever, ODMs for other languages, such as Java and
PHP, are also available.

Some recent works have drawn attention to the
need for NoSQL tools just as they exist for relational
databases. A Dataversity report (Dataversity, 2015)
has remarked that data modeling will be a crucial
activity for NoSQL databases. The authors identi-
fied three main capabilities to be offered by NoSQL
modelling tools: model visualization, metadata man-
agement, and code generation. The emergence of a

220
Sevilla D., Feliciano S. and GarcÃ a-Molina J.
An MDE Approach to Generate Schemas for Object-document Mappers.
DOI: 10.5220/0006279102200228
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 220-228
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



NoSQL data engineering, which would be a R&D
area similar to relational data engineering, was sug-
gested in (Sevilla Ruiz et al., 2015b).

Models and model transformations are key ele-
ments in data engineering. Data schemas are mod-
els, and operations on them can be implemented using
model transformations. Therefore MDE techniques
can be very useful to develop NoSQL tools which as-
sist developers. In this article, we will present a MDE-
based solution to automate the usage of ODMs when
the database already exists. We have defined a chain
of model transformations that generate some of the
main artefacts involved in any ODM: schema defini-
tion, and validators, among others. This chain has as
input schema models inferred by means of the strat-
egy presented in (Sevilla Ruiz et al., 2015a). These
schema models are transformed into models that con-
form to a EntityDifferentiation metamodel, defined in
this work to facilitate the generation of code. Finally,
the EntityDifferentiation models are used to generate
mapper code. Our solution deals with the existence
of more than one version for data entities, which im-
poses an additional complexity; conversely, it cap-
tures all the variability in the data base.

Therefore the contribution of our work is twofold.
We present an application of the inference process de-
fined in (Sevilla Ruiz et al., 2015a), and we show how
MDE techniques are useful in the “NoSQL data en-
gineering” area, more specifically in automating the
usage of ODM mappers.

This article has been organized as follows. The
following Section presents an overview of the pro-
posal and introduces some basic concepts. Section 3
explains how schema models are transformed into En-
tityDifferentiation models. Section 4 describes the
generation of Mongoose schemas in detail. Section 5
shows the DSL defined to create parameter models
and describes the generation of more Mongoose arte-
facts. Finally, related work, conclusions, and further
work are discussed.

2 OVERVIEW OF THE
APPROACH

NoSQL Schemas for Aggregation-oriented Data
Models. As indicated above, most NoSQL database
systems do not require the definition of an explicit
schema, but it is implicit in the data. In the case of
NoSQL databases that are based on an aggregation-
oriented data model, the schema is basically formed
by a set of entities connected through two types of
relationships: aggregation (a.k.a. part of) and ref-
erence. Each entity has one or more attributes that

are specified by their names and data types. These
data types can be either a primitive data type (number,
boolean, char, string) or some kind of collection (e.g.
tuples in MongoDB) that stores primitive type values.
A remarkable feature of these schemas is the possible
existence of several versions of an entity, as the ab-
sence of an explicit schema allows the non-uniformity
of the stored data. These versions can arise due to the
need of having different variants of an entity or due
to changes made during the evolution of data. Since
this article focuses on MongoDB, we will use the term
document to refer to the instances of an entity, and
field to refer to properties (attributes, aggregates, and
references).

Entities (and therefore entity versions) can be
of three kinds: (i) root of a aggregation hierarchy;
(ii) aggregated to a root or other aggregated entity,
and (iii) leaf that are does not aggregate any entity.

An entity version is characterized by a set of fields
that can be of three kinds: (i) Common to all entity
versions (i.e. they are part of the all documents of
the entity); (ii) Shared with other entity versions; and
(iii) specific to particular entity version.

The Proposed Solution. In (Sevilla Ruiz et al.,
2015a) we presented an MDE approach that imple-
ments a reverse engineering strategy to infer the im-
plicit schema in NoSQL databases, and we outlined
how the inferred model could be used to develop
database utilities. Figure 1 shows the metamodel de-
fined to represent NoSQL schemas. Compared with
the related work (Wang et al., 2015; Klettke et al.,
2015), the main novelty of our approach is discover-
ing all the versions of the inferred entities and their
relationships (i.e. composition and reference). Here,
we shall show how the inferred schemas are useful
to automate the usage of object-document mappers.
We have considered Mongoose for MongoDB, but
the solution presented is applicable to other object-
document mappers.

We have defined a two-step model transforma-
tion chain which has as input an inferred NoSQL
schema model, and generates Javascript code of Mon-
goose artefacts. The generated artefacts are mainly
the database schema and validators. Figure 2 shows
this generation process, which will be explained in
detail in the next Sections. The first step of the
chain is a model-to-model (m2m) transformation that
represents the properties of entity versions in a way
that facilitates the code generation. The model ob-
tained conforms to the EntityDifferentiation meta-
model which will be explained in Section 3. The sec-
ond step is a model-to-text (m2t) transformation that
generates Mongoose code from the model obtained

An MDE Approach to Generate Schemas for Object-document Mappers

221



Figure 1: NoSQL Schema Metamodel.

in the previous step. The first transformation has
been implemented in Java, while the model-to-text
has been written in Xtend (Xtend, 2016). They can
be downloaded from https://github.com/catedrasaes-
umu/NoSQLDataEngineering.

Database Example. JSON is the format commonly
used to store/read data into/from document databases.
Figure 3 shows the JSON documents of the Movie
database example used in this article to illustrate
our process. This database includes two collections:
Movie and Director. We have supposed that ini-
tially a Movie document had four mandatory fields:
title, year, director and genre, and an optional field
prizes. The field criticisms was added later. Each Di-
rector document has the mandatory fields name and
director-movies, and the actor-movies optional field.
The Criticism documents have the mandatory fields
content, journalist, media, and the url optional field.
The Prize documents have the fields year, event, and
name.

According to the terminology introduced above,
the schema is formed by two root entities (Movie and
Director), and two aggregated entities which are leaf
entities (Prize and Criticism). Three entity versions
are identified for movies: Movie1 (has prizes and crit-
icisms), Movie2 (has criticisms but not prizes) and
Movie4 (neither prizes nor criticisms). Note that ti-
tle, year, director, and genre are common fields for
Movie documents. We can observe two entity ver-
sions for Director and Criticism and a single version
for Prize.

Figure 4 shows the schema inferred for the Movie1

root version entity by using a notation similar to
UML class diagrams. It is worth noting that we
have implemented a m2t transformation to generate
these diagrams that show the properties (attributes,
aggregations, and references) of a root entity. This
transformation traverses an input NoSQL schema
model and generates the corresponding PlantUML
code for all the entities involved. PlantUML (Plan-
tUML, 2016) is a generator of UML diagrams built
on GraphViz (GraphViz, 2016); it provides a simple
and intuitive textual language to express UML dia-
grams. In the case of relationships, the possibility of
a recursive composition have been considered by our
m2t transformation.

Object-document Mappers: Mongoose. When
database systems (e.g. relational systems) require
the definition of a schema that specifies the struc-
ture of the stored data, a static checking assures that
only data that fits the schema can be manipulated
in application code, and mistakes made by develop-
ers in accessing data are statically spotted. However,
schemaless databases entail developers to guarantee
the correct access to data. This is an error-prone
task, more so when the existence of several versions
of each entity is possible. Therefore, some database
utilities are emerging in order to alleviate this task.
Object-NoSQL mappers are probably the more use-
ful of these new tools. Like object-relational map-
pers, these mappers provide transparent persistence
and perform a mapping between stored data and ap-
plication objects. This requires that developers de-
fine a data schema, e.g. by using JSON (Mongoose,

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

222



Schema
inference

NoSQL
Schema

metamodel

NoSQL
Schema
model

Version
differentiation

Entity
Differentiation

model

Mongoose
artefacts

generation

Entity
Differentiation

metamodel
- Database schema
- Data validators
- Discriminators
- Update functions

<<conforms>>

<<conforms>>

ODM Parameter
model

ODM Parameter
metamodel

<<conforms>>

<<m2t>>

Database

<<m2m>>

Figure 2: Overview of the Proposed MDE Solution.

[{
"movie": [

{
"type": "movie",
"title": "Citizen Kane",
"year": 1941,
"director_id": "123451",
"genre": "Drama",
"_id": "1",
"prizes": [

{
"year": 1941,
"event": "Oscar",
"names": [

"Best screenplay",
"Best Writing"

]
},
{

"year": 1941,
"event": "NY Film Critics",
"names": ["Best Screenplay"]

},
],
"criticisms": [

{ "journalist": "R. Brody",
"media": "The New Yorker",
"color": "green"

}
]

},
{

"type": "movie",
"title": "The Man Who Would Be King",
"year": 1975,
"director_id": "928672",
"genre": "Adventures",
"_id": "2"

},

{
"_id": "4",
"type": "movie",
"title": "Truth",
"year": 2014,
"director_id": "345679",
"genre": "Drama",
"criticisms": [

{
"journalist": "Jordi Costa",
"media": "El pais",
"url": "http://elpais.com/",
"color": "red"

}
]

}],
"director": [

{
"name": "Orson Welles",
"directed_movies": ["1", "5"],
"actor_movies": ["1","5"],
"type": "director",
"_id": "123451"

},
{

"type": "director",
"directed_movies": ["4"],
"name": "James Vanderbilt",
"_id": "345679"

},
{

"type": "director",
"directed_movies": ["2"],
"name": "John Huston",
"_id": "928672"

}
]

}]

Figure 3: JSON Documents in the Database Example.

2016), annotations (Doctrine, 2016), or a domain spe-
cific language (Mandango, 2016). Most of these map-
pers are Object-document mappers (ODM) because
document-based databases (mainly MongoDB1) are
the most widespread NoSQL systems. It is worth not-
ing that developers have two alternatives in building

1Actually MongoDB uses BSON (Binary JSON), a vari-
ation of JSON with optimized binary storage and some
added data types.

NoSQL database applications. They can work in a
schemaless way or use an ODM mapper, by decid-
ing on the trade-offs between flexibility and safety:
they could prefer not having the restrictions posed by
schemas or either avoid the data validation.

Mongoose is the de facto standard for defining
schemas for MongoDB when writting Javascript ap-
plications. With Mongoose, database schemas can be
defined as Javascript JSON objects, and then applica-
tions “can interact with MongoDB data in a structured

An MDE Approach to Generate Schemas for Object-document Mappers

223



Figure 4: Version Schema for the Movie1 Entity Version.

and repeatable way” (Holmes, 2013). Since JSON is
a subset of the object literal notation of JavaScript,
the Mongoose schemas are really Javascript code. We
will show some examples of schema definitions in
Section 4.

3 GENERATING ENTITY
DIFFERENTIATION MODELS

Generating artefacts to manage the different entities
and entity versions often have to differentiate between
the properties common to all entity versions and other
properties specific of a given entity version, as de-
scribed in Section 2.

This may seem a trivial task, but some subtleties
that will be addressed in this Section made it easier to
take this process as separate of the artefact generation
process, and also made the generation process itself
easier. Thus, the Entity Differentiation Metamodel
(shown in Figure 5) was created. Instances of this
model are obtained via a model-to-model transforma-
tion from the NoSQLSchema metamodel. Note that
the Entity Differentiation metamodel has references
to the elements of the NoSQLSchema metamodel.

Figure 5: Entity Differentiation Metamodel.

The rationale behind this metamodel lies in two
facts of the inference process:

1. The inference process is complete, that is, all doc-
uments in the database are considered, and their
different entity versions recorded. Each document
of the database belongs exactly to one entity ver-
sion.

2. In order to differentiate between versions of a
given entity, only properties specific of the given
entity version need to be considered.

As seen in the NoSQLSchema metamodel, each
entity has a set of entity versions. Each entity ver-
sion has a set of properties, that in turn have a name
and a type.

The transformation generates several set of inter-
esting properties: For each Entity, an EntityDiffSpec
model element is generated. This specification holds
a set of common properties across all the versions,
commonProps, and a set of differentiation set of prop-
erties for each version, entityVersionProps.

Common properties are those properties that are
present (with the same name and type) in all the entity
versions of a given entity. Conversely, the set of spe-
cific properties (entityVersionProps) for a given entity
version is composed of the properties that are present
in this entity version, but are not present in all other
entity versions.

Properties in the Entity Differentiation metamodel
are linked through the PropertySpec class. This class
includes an attribute, needsTypeCheck, to signal when
a discrimination cannot be made just using the name
of the property. For instance, if two entity versions
share a property with the same name but with different
type, the fact that a document has a property with that
name cannot be used to discriminate between these
two entity versions: a type check must be performed.
So, the needsTypeCheck attribute is set for the prop-
erties that appear in any other entity version with the
same name but with different type.

An excerpt of the generated model for the
database example can be seen in the Figure 6.

4 GENERATING MONGOOSE
SCHEMAS

A Mongoose schema defines the structure of stored
data into a MongoDB collection. In document
databases, such as MongoDB, there is a collection for
each root entity. In our database example there would
be two collections: Movie and Director. Therefore, a
Mongoose schema should be defined for each of the
two collections. Such schemas are the key element of
Mongoose, and other mechanisms are defined based
on them, such as validators, discriminators, or index

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

224



Figure 6: Excerpt of the EntityDifferentiation Model for the Example.

building. In this Section, we shall explain the process
of generating schemas by means of the m2t transfor-
mation indicated in Section 2. Figure 7 shows the
generated schemas for the example database.

Aggregations and references can be specified in
Mongoose schemas. An aggregation is expressed as
an nested document which defines the schema of the
aggregated entity. A reference is expressed by means
of the ref option in the definition of the type of an at-
tribute. In addition to the type (i.e. a primitive type
as ObjectID, Number or String), the ref option is
used to indicate the name of a model of the referenced
schema. In Figure 7, the Movie schema aggregates
schemas for Prize (prizes field) and Criticism (criti-
cisms field), and includes a reference to Director doc-
uments stored in the Director collection (director id
field). The ref option is used by Mongoose to ease
the use of references in queries.

Note that we are assuming a scenario in which
a company wants to use Mongoose for an existing
database in order to take advantage of its facilities
to check that data are correctly managed. Then, our
tool would infer the database schema and generate
code facilitating the use of the mapper. In generating
schemas, we had to consider the existence of entity
versions. For this, we have used the require valida-
tor that Mongoose provides to specify that a value
for a particular field must always be given to save
documents of a schema. Specifications of fields that
are common to all the versions of an entity includes
the validator requires:true to guarantee that any docu-
ment stored of the entity will include these attributes.

To work with a particular entity version, developers
should add to the schema require restrictions for each
of the specific fields of the version. In the schema of
Figure 7, the Movie schema includes the require for
the four common fields. Once the schema is defined,
two require restrictions are added for the prizes and
criticisms fields, which are specific to the Movie1 en-
tity version.

The transformation works as follows to generate
database schemas: A schema is generated for each
EntityDiffSpec connected to a root entity. For each
of them, its common and entity version properties are
added to the generated schema, but the require option
is added only for common properties. For each aggre-
gate property, an external declaration of type is added
to improve the legibility of the schema. A model is
created for schemas referenced from other schemas,
which is needed to add the ref option in the declara-
tion of the reference property. Note that this strategy
will recursively operate because the existence of ag-
gregate and reference properties.

5 GENERATING OTHER
MONGOOSE ARTEFACTS

In addition to the schema definitions and the manage-
ment of references between documents, Mongoose
provides functionality to facilitate the development of
MongoDB applications, such as validators, discrimi-
nators, and index specification. To automatically gen-

An MDE Approach to Generate Schemas for Object-document Mappers

225



// Movie Schema

var criticismsSchema = {
color: {type: String,

enum:[’green ’, ’yellow ’, ’red’],
required: true},

journalist:{type: String, unique:true,
required: true},

media:{type: String, required: true},
url: String

}
var prizesSchema = {

event:{type: String, required: true},
names:{type: [String], required: true},
year: {type: Number, required: true}

}
var movieSchema = new mongoose.Schema({

title:{type:String, maxlength:40,
unique:true, required:true},

_id: {type:String, index:true,
required:true},

year: {type:Number, index:true,
required:true},

type: {type:String, required:true},
director_id: {type: String, required: true,

ref:’Director ’},
genre: {type:String,

enum:[’drama ’,’comedy ’,’children ’],
required:true},

criticisms: {type:criticismsSchema},
prizes: {type:prizesSchema}

},{collection:’Movie ’});

// add required for Movie1 entity version

movieSchema.path(’criticisms ’).required();
movieSchema.path(’prizes ’).required();

var Movie = mongoose.model(’Movie ’,movieSchema);

// add Director1 schema referenced by Movie1

var directorSchema = new mongoose.Schema({
_id: {type:String, index:true,

required:true},
name: {type:String, unique: true,

required:true},
type: {type:String, required:true},
actor_movies: {type:String,

ref:’Movie ’},
directed_movies: {type:String,

required:true,
ref:’Movie ’}

},{collection:’Director ’});

// add for Director 1 entity Version
directorSchema.path(’actor_movies ’).required();

var Director = mongoose.model(’Director ’,
directorSchema);

Figure 7: Generated Mongoose Schema.

erate Mongoose code involved in all these mecha-
nisms, we have created a domain-specific language
(DSL) aimed to specify the information needed for
such generation. This DSL is named ODM Parameter
Language and it is independent of a concrete mapper
technology. Figure 8 shows an example of specifi-
cation for the entities of our database example. This
DSL has been created with the Xtext (Xtext, 2016),
and models are obtained by means of the parser gen-
erated by this tool. These DSL models are input to
the m2t transformation that generates Mongoose arte-
facts from EntityDifferentiation models, as shown in
Figure 2.

In Mongoose, the validation is defined at the
schema level. Some frequently used validators are
already built-in. The require and unique validators
can be applied to any property. As explained in pre-
vious Section, we have used require to specify what
properties are common to all the versions. The unique
validator is used to express that all the documents of
a collection must have a different value for a field
of primitive type. Other examples of validators are
min and max for Number fields, and enum, minlength
and maxlength for String fields. Indexes are also de-
fined at schema level, for instance an index can be
specified with the index option or the unique validator
(which also implies the creation of an index). Ex-
amples of use of these validators are shown in the
schema in Figure 7. For instance an enumeration is
defined for the color field of Criticism and the title
field of Movie is unique. These validators have been
generated from the information provided by the DSL

specification shown in Figure 8.
Our schema inference mechanism cannot discover

the decisions behind a version entity. As indicated
above, version variation can be caused by different
reasons, such as requirement changes, non-uniform
data, or custom fields in entities. We have used the
required validator to specify which fields are part of
a particular entity version. However, Mongoose pro-
vides the discriminator mechanism to have collections
of non-uniform data types. This mechanism would
be more appropriate than the require option for non-
uniform data. For instance, a MovieTheaters could
register two kinds of movie theaters in our Movie
database: single screen or multiplexed theaters. The
name, city, country fields would be common, but the
roomNumber field would be only part of multiplexed
theaters. Figure 8 shows how to declare a discrimina-
tor for an entity, MovieTheater in the example. The
generated code is shown in Figure 9.

Mongoose provides update() helper methods, but
they do not apply validators, so the code to perform
updating must be written following three steps (find-
update-save). We also automate the generation of this
code. For instance, in Figure 10 we show the code
generated for updating the genre field of the Movie
schema.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

226



Figure 8: Specification Example with the ODM Parameter Language.

var options = {discriminatorKey: ’kind’};

var movieTheaterSchema = new mongoose.Schema(
{name: String , city: String , country: String},
options);

var MovieTheater1 = mongoose.model(’MovieTheater1’,
theaterSchema);

var MovieTheater2 = MovieTheater1.discriminator(
’MovieTheater2’,
new mongoose.Schema({roomNumber: Number}, options));

Figure 9: MovieTheater schema using discriminator.

function update_genre(query , aGenre) {
Movie.findOne (

query ,
function (err, movie) {

if (!err) {
movie.genre = aGenre;
movie.save(function (err, user) {

console.log(’Movie saved: ’, movie);
});

}
}

);
}

Figure 10: Code generated for updating the genre field of
the Movie schema.

6 CONCLUSIONS AND RELATED
WORK

The Dataversity report (Dataversity, 2015) evidenced
the necessity of building tools to support the devel-
opment of NoSQL applications. This demands a
great effort of industry and academia in the emerging
NoSQL Data engineering field. Tools with a function-
ality similar to those offered for relational databases
are required, specially tools for (i) generating code,

(ii) model visualization, and (iii) metadata manage-
ment.

Research effort in this field has been very limited,
and it has been mainly focused on the inference of
schemas from stored data (Sevilla Ruiz et al., 2015a;
Wang et al., 2015; Klettke et al., 2015). In fact,
some existing tools for relational design are being
extended to provide NoSQL inferred schema visual-
ization (ER-Studio, 2016; DbSchema, 2016; ERWin,
2016). Moreover, NoSQL systems are offering tools
for viewing, analyzing, and querying stored data, as
Compass for MongoDB (Compass, 2016). Some kind
of data analysis is also performed in (Klettke et al.,
2015) where outliers are identified.

An MDE approach to generate code to manipulate
GraphDB graph databases from conceptual schemas
expressed in UML/OCL (Daniel et al., 2016). The
authors have defined a GraphDB metamodel for graph
databases and a mapping from UML class diagrams to
this metamodel.

It is worth noting that the existence of version
entities (and therefore versioned schemas) and rela-
tionships among entities has been only considered
in (Sevilla Ruiz et al., 2015a) and (Wang et al.,
2015). We can take advantage of this fact in build-
ing utilities from inferred schemas, as we have shown
in (Hernández et al., 2016) and in the proposal pre-
sented in this article. We have recently presented a
tool of visualization for document databases, which
offers several diagrams and perspectives to show
NoSQL versioned schemas (Hernández et al., 2016).

In our knowledge, the work presented here is
the first approach for automating the use of ODM

An MDE Approach to Generate Schemas for Object-document Mappers

227



mappers for existing databases. It is a technology-
independent solution, and as a proof of concept it has
been applied to Mongoose. We have been able to gen-
erate schemas and artefacts for the different function-
ality provided by Mongoose, such as validators, dis-
criminators, and reference management. The solution
presented has shown the usefulness of defining inter-
mediate metamodels.

With regard to future work, we plan to consider
more mappers for MongoDB and for other databases,
and to build a generative architecture to automate the
building of Mongoose-based MEAN applications for
existing databases. Moreover, we are working on the
definition of a DSL aimed to specify the necessary
steps to convert one version of a database object to
another version. This could be used in at least two
ways: (i) A new application may require that all the
recovered objects comply with a new version; (ii) In
the case of a batch database migration, Map-Reduce
jobs could be generated to transform old version ob-
jects into new versions.

ACKNOWLEDGEMENTS

This work has been partially supported by the
Cátedra SAES of the University of Murcia
(http://www.catedrasaes.org), a research lab spon-
sored by the SAES company (http://www.electronica-
submarina.com/).

REFERENCES

Compass (2016). Mongodb Compass Web Page. https://
www.mongodb.com/products/compass. Accessed:
November 2016.

Daniel, G., Sunyé, G., and Cabot, J. (2016). UML-
toGraphDB: Mapping Conceptual Schemas to Graph
Databases, pages 430–444. Springer International
Publishing, Cham.

Dataversity (2015). Insights into NoSQL Modeling Report.
DbSchema (2016). DbSchema Web Page. http://

www.dbschema.com. Accessed: November 2016.
Doctrine (2016). Doctrine Web Page. http://docs.

doctrine-project.org/projects/doctrine-mongodb-odm/
en/latest/. Accessed: November 2016.

ER-Studio (2016). ER-Studio Web Page. https://
www.idera.com/er-studio-enterprise-data-modeling-
and-architecture-tools. Accessed: November 2016.

ERWin (2016). CA ERwin Web Page. http://erwin.com/
products/data-modeler. Accessed: November 2016.

Fowler, M. (2013). Schemaless Data Structures. http://
martinfowler.com/articles/schemaless/.

GraphViz (2016). GraphViz Web Page. http://
www.graphviz.org/. Accessed: November 2016.

Hernández, A., Sevilla Ruiz, D., and Garcı́a-Molina,
J. (2016). Visualization of Inferred Versioned
Schemas from NoSQL Databases. SiriusCon 2016.
http://www.slideshare.net/Obeo corp/siriuscon2016-
visualization-of-inferred-versioned-schemas-from-
nosql-database

Holmes, S. (2013). Mongoose for Application Develop-
ment. PACKT Publishing.

Klettke, M., Scherzinger, S., and Störl, U. (2015). Schema
Extraction and Structural Outlier Detection for JSON-
based NoSQL Data Stores. In BTW.

Mandango (2016). Mandango Web Page. https://
mandango.org/. Accessed: November 2016.

MongoDB (2016). MongoDB Web Page. https://
www.mongodb.com/. Accessed: November 2016.

Mongoose (2016). Mongoose Web Page. http://
mongoosejs.com. Accessed: November 2016.

NoSQL-Market (2016). NoSQL Market. https://
www.alliedmarketresearch.com/NoSQL-market. Ac-
cessed: November 2016.

NoSQL Ranking (2016). NoSQL Ranking. http://
db-engines.com/en/ranking. Accessed: November
2016.

PlantUML (2016). PlantUML Web Page. http://
plantuml.com. Accessed: November 2016.

Sadalage, P. and Fowler, M. (2012). NoSQL Distilled. A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison-Wesley.

Sevilla Ruiz, D., Feliciano Morales, S., and Garcı́a Molina,
J. (2015a). Inferring Versioned Schemas from NoSQL
Databases and its Applications. In ER, pages 467–
480.

Sevilla Ruiz, D., Feliciano Morales, S., and Garcı́a Molina,
J. (2015b). Model Driven NoSQL Data Engineering.
In JISBD, Santander.

Wang, L., Hassanzadeh, O., Zhang, S., Shi, J., Jiao, L., Zou,
J., and Wang, C. (2015). Schema Management for
Document Stores. In VLDB Endowment, volume 8.

Xtend (2016). Xtend Main Web Page. http://
www.eclipse.org/xtend/. Accessed: May 2016.

Xtext (2016). Xtext Main Web Page. http://
www.eclipse.org/Xtext/. Accessed: November 2016.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

228


