
Security Requirements Verification for Existing Systems
with Model Checking Technique and UML

Saeko Matsuura1, Shinpei Ogata2 and Yoshitaka Aoki3
1Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitma, Japan

2Graduate School of Science and Technology, Shinsyu University, Nagano, Japan
3Nihon Unisys Ltd., Tokyo, Japan

Keywords: UML, Security Requirements, Source Code Verification, Model Checking, Reverse Engineering.

Abstract: In software development, when making migration or specification changes to an existing system, it is
important to verify that the new source code meets the original specifications. We propose an effective use
of model checking techniques and a supporting tool that allows non-specialized developers to easily verify
specification conformance. In this study, we verify security requirements for an ongoing learning
management system that has insufficient specification documentation and discuss the applications and
challenges for developing the model checking technology.

1 INTRODUCTION

The model checking technique is regarded as an
effective method for improving reliability during the
early stages of software development. Model
checking tools use temporal logic to model a system
as a network of automata extended with integer
variables, structured data types, user defined
functions, and channel synchronization. A system
model and query expressions can be defined based
on these structures and be used to specify which
properties need to be checked. When the specified
properties are not satisfied, the tool provides
counterexamples to demonstrate how these
properties cannot be satisfied. The simulator then
helps detect the causes for these defects by tracing
the processes in which the counterexamples occur.

Model checking techniques automatically verify
a model by exhaustively checking all paths in the
model to detect properties that developers often
overlook. However, developers typically find it
difficult to define an appropriate model and formulas
for a given system, because items in the model
should be used to define paths and state formulas.

We have been studying a method that allows
non-specialized developers to reap the benefits of
automatic and exhaustive verification without
directly operating a model checking tool.

Figure 1 shows the relationship between the
model checking tool, the input data used to derive a

system model, and query expressions that are
inputted directly. Users directly input a target
document and a list of requirements to be satisfied.
An input document can be a requirements
specification document written in UML (OMG), or
the source code of an existing system.

The problems indicated by the red stars in Figure
1 must be solved in order to effectively use the
model checking tool without direct operation.

This paper presents a method of verifying
security requirements for an existing system based
on two different proposed approaches to verification
in the early and final stages of software development.

Figure 1: Basic principles of model checking techniques.

The rest of this paper is organized in the
following manner. Section 2 briefly summarizes our
two approaches and describes a method for solving
the two marked problems in Figure 1. Section 3
describes the process of source code verification

Matsuura S., Ogata S. and Aoki Y.
Security Requirements Verification for Existing Systems with Model Checking Technique and UML.
DOI: 10.5220/0006267105290535
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 529-535
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

529

used for the existing system. Finally, we discuss our
results, conclusions, and future research possibilities.

2 VERIFICATION METHOD

2.1 Requirements Specification
Verification

Figure 2 presents an overview of the proposed
method (Aoki et al., 2013 and September 2014) for
verifying Security Function Policies (SFPs) of UML
requirements analysis models (RA Model) with the
model checking tool UPPAAL (UPPAAL).

Figure 2: Method for requirements specification.

In this case, the target document is an RA Model
using the UML-based requirements specification
developed in (Ogata et al., 2008) and based on a use
case analysis, which is known to be an effective
method for clarifying functional requirements. This
model defines a use case in the form of an activity
diagram that consists of several action flows as well
as object nodes with a class classifier.

Furthermore, the requirements to be satisfied are
SFPs. In the proposed security requirements analysis
method (Aoki et al., September 2014), we define
security requirements as SFPs by relating them to
RA Models, according to the Common Criteria
(Common Criteria) guide. The Common Criteria for
Information Technology Security Evaluation is an
international standard (ISO/IEC 15408) for
computer security certification.

The first problem can be solved by using a
mapping rule between a model for SFPs and RA
models, as shown in Figure 3. The mapping rule
combines the SFPs with data and actions from the
UML RA model, defined through activity diagrams
and a class diagram. A rule in SFPs is defined by the
relationship between a subject, an operation, and a
target object with the subject performing the
operation on the target. An RA model consists of
actors, use cases (activity diagrams), classes, and
actions in the activity diagram. Figure 3 illustrates

the mapping rules; a subject corresponds to an actor,
an object corresponds to a class, and an operation
corresponds to an action in a use case. Some new
security attributes need to be defined for both the
assets needing protection from malicious users and
the subjects who carry out controlled operations.
This is because SFPs control action flows through
rules based on security attributes. Table 1 shows that
SFPs can be defined by actions and data in the target
system, according to the relationship between the
two. Using these added security attributes from an
object, the policy was defined in a state machine
diagram.

This correspondence allows the target UML-
based requirements specification to define properties
that need to be satisfied.

Figure 3: Mapping rule between SFPs and RA model.

To solve the second problem, we developed the
automatic translation tool UML2UPPAAL (Aoki et
al., 2013) to translate from an RA model to the
required system model. The details of this tool are
described in (Aoki et al., September 2014). The RA
models and the added state machine diagrams were
translated into a system model that consisted of
processes related to each other by the channel
synchronization mechanism in UPPAAL. As
detailed in Section 3, SFPs can be translated from
the logical expressions between attributes of classes
into query expressions.

2.2 Source Code Verification

Figure 4 presents an overview of the proposed
method (Aoki et al., May 2014, Matsuura, 2014) for
verifying defects caused by an infinite loop, or by
the user-defined business rules of certain system
functions in the source code, with the model
checking tool UPPAAL.

In this case, the target document is some source
code written in Java. To verify a defect caused by an

Security attribute based access control

Session

SFP

Information

User

+ apply() : void

Rule

Object Subject

SecurityAttribute

- property

- target

- property

- target

0..*

1

- property1

1

Operation

Role

- property

- target

1..*
1..*

- property

- target

SystemInteractionActor

Action Action

Action ObjectNode : Class

A Class Diagram of SFP

A Meta Model of
Activity Diagram

Correspondence

Subject Actor

Operation Action

Object ObjectNode:Class

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

530

infinite loop, the property that must be satisfied is
the non-occurrence of a dead lock in the system. In
this case, the query expression is independent of the
source code, so the first problem discussed does not
occur. However, it is somewhat difficult to create a
mapping between the user-defined business rules
and the source code.

In (Aoki et al., May 2014, Matsuura, 2014), this
problem was solved by defining the business rules in
a decision table. It is a prerequisite for a tester to
extract actions, conditions, and their resulting states
from the business rule documents. In this case, the
query expression was derived from the decision
table.

In the case of source code verification, the
second previously discussed problem is a difficult
one. This is because a large and complicated source
code needs to be well abstracted to avoid an issue
known as “state explosion,” where the number of
states becomes intractably large.

We solved this problem by allowing developers
to select appropriate candidate functions based on
the previously generated decision table. We also
implemented a verification support tool called
Source2UPPAAL (Aoki et al., May 2014) as an
Eclipse plug-in. This tool converts a Java source
code control sequence into finite automata in order
to detect the cause of defects through the use of
UPPAAL.

Figure 4: Method for source code verification.

Rather than using the method from the case
mentioned in Section 2.1, we use a different
technique to more easily and accurately create a
mapping. The tester correlates a word in the decision
table with a variable or method from the source code
and finds an adequate level of abstraction that
preserves the related states with the properties to be
verified.

Based on the two different approaches proposed
for verification at the early and final stages of
software development, we present an experiment for

verifying security requirements in the source code of
the existing system, LUMINOUS.

3 SOURCE CODE
VERIFICATION ON AN
EXISTING SYSTEM

3.1 Overview of the Existing System

LUMINOUS (LUMINOUS) is a learning manage-
ment system in our department that enables teachers
and students to manage learning materials, reports,
questionnaires, etc. We apply our security require-
ments analysis method to the development of a
Bulletin Board System (BBS) for LUMINOUS.
There are two kinds of actors, teachers, and students.
The BBS has three use cases; a student can post a
question, a teacher can answer a question, and both
can view topics. Both types of actors can attach a
file to a question or answer if necessary and can
download an attached file while viewing a topic. A
teacher can post anonymous public questions and
answers if necessary. Students can read only public
questions and answers.

The security requirement for the LUMINOUS
BBS is the protection of personal topics, including
attached files, without being obstructive to usability.

LUMINOUS is running in our department and
has 36,352 steps on the logic side, and 25,973 steps
on the user interface side.

3.2 Verification Process

Initially, we create a mapping of RA models and
security requirements (outlined in section 2.1) to
connect the RA models and source code of the
existing system as shown in Figure 5.

Each rule in an SFP is a logical expression
relating a use case and some added class attributes.
A use case is a function defined by an activity
diagram that is typically connected to a function in
the source code. In the example of the LUMINOUS
BBS, it is also connected to a menu item in the user
interface for the system.

All classes can be extracted from the source code
as a class diagram. Each class then appears in the
activity diagram as an object node.

As a result, we can create a mapping rule
between the source code and the properties that need
to be satisfied by using identifiers in the source code.
To abstract the source code and to avoid state
explosion, we focus on a block of statements that

Security Requirements Verification for Existing Systems with Model Checking Technique and UML

531

correspond with a use case and update methods of
the added attributes in the SFPs.

An SFP rule is expressed through the expected
state of its related attributes under a scenario in
which several use cases are called in proper order.

Figure 5: Connection between RA models and source code.

3.3 Reconstructing Requirements
Specification

Because there were only a few RA models in
LUMINOUS, we reconstructed the RA models in
the following manner.

Through direct operation of the system, we
created RA models including a use case diagram,
activity diagrams for each of the use cases, and a
class diagram. Each screen consists of several menu
items and links. By focusing on menu items that
correspond to target use cases, we can specify a
sequence of functions that are available through the
links as follows:

• For each menu item on the top screen, define
a use case diagram.

• The normal flow of a use case is defined with
an activity diagram. Pre and post conditions
are then specified and exceptional conditions
for every target action are gathered into a
guard condition.

To connect these models to the source code, the
class name of an object node that appears in the
activity diagram translated by referencing the entity
class diagram, extracted from the source code, as
follows:

• Correlate the object word of an action in the
activity diagram with the name of the object
node.

• Correlate words in the pre, post, and guard
conditions with names in the entity classes.

Furthermore, to analyze the correspondence
between a use case and a method in the source code,
we define classes corresponding with screens. In this
case, each attribute of a class needs to be correlated
with an actual label on the screen.

As shown in Figure 5, after these tasks have
been completed, we can create RA models that are
linked to identifiers in the source code.

3.4 Defining Security Requirements

In LUMINOUS, there are four different user roles:
student, main teacher, sub teacher, and teaching
assistant. By giving different authority to each role,
we can control user access to the functions of
LUMINOUS. Some roles have assets that need to be
protected from the other roles and from individual
students.

Adding certain attributes to the roles or assets
allows us to protect against inappropriate access.
This security property must be verified.

As mentioned in Section 2.1, we define SFPs
against the RA models reconstructed in Section 3.3
based on the Common Criteria as follows:

• Define a scenario that should be verified by
combining several use cases according to the
pre-conditions of those use cases
The following is an example scenario that
consists of actors and use cases:

• According to the mapping rules shown in
Figure 3, the SFPs shown in Table 1 were
derived from these use cases by extracting all
actions and classes from their related activity
diagrams.

• Table 1 expresses the SFPs of a BBS that
manage questions and answers between a
student and a teacher. The class Topic is a
data asset that is generated by executing the
use case post a question. A Topic is updated
by the use case answer a question, which is
executed by a teacher. At the time of
answering, a teacher can decide whether the
Topic is public or private.

• Add security attributes that control a subject
and object against data assets. In this case,
Topic and Attachment are considered to be
assets in the system, and have security
attributes.

• Required rules based on the Common
Criteria are defined in Table 2.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

532

Table 1: Partial SFPs of LUMINOUS BBS.

Table 2: Access Control Rules.

rule A Prior to executing the action, attachment.security_attrubute
== public||contributor.role ==student_id

rule B1 After executing the action, topic.security_attribute == private
rule B2 After executing the action, attachment.security_attribute ==

private
rule B3 After executing the action, (topic.security_attribute ==

public implies attachment.security_attribute == public||
attachment.security_attribute == private) &&
(topic/security_attribute == private implies
attachment/security_attribute == private)

rule C1 Prior to executing the action, topic.security_attribute ==
private implies that after executing the action,
topic.security_attribute == public

rule C2 Prior to executing the action, attachment.security_attribute
== private implies that after executing the action,
attachment.security_attribute == public

rule D1 Prior to executing the action, topic.security_attribute ==
public implies that after executing the action,
topic.security_attribute == private

rule D2 Prior to executing the action, attachment.security_attribute
== public implies that after executing the action,
attachment.security_attribute == private

In order to connect to variables in the source
code, the extracted entity class diagram identifies
added security attributes.

Furthermore, state transitions of an object related
to the security attribute are defined in a state
machine diagram.

3.5 Source Code Analysis for Mapping
Specification to Source Code

LUMINOUS is an ASP.NET application. Up to this
point, we have obtained the entity classes from the
source code and defined the UI (User Interface)
classes from screen images in the live system.

However, several troublesome tasks must be
performed in order to connect this information with
the real identifiers in the source code. To extract
entity class names and attributes, we need to analyze

an edmx file that expresses an entity data model in
the Entity Framework of C#. We must also analyze a
cs file to extract UI class names and methods.

We perform static analysis on these files to
retrieve the five following pieces of data as a
correspondence table between UI components and
identifiers in the source code.

1) Entity class name
2) Attribute names of the entity class
3) UI class name
4) Method names of the UI class
5) Identifiers for UI components such as a

button or checkbox

A tester manually selects items that will be used
to verify a scenario.

Up to this point, the correspondence between
items in the activity diagram (use case) and
identifiers in the source code is still not clear. We
specify the relationship between items in the activity
diagram (use case) and identifiers in the source code
as follows:

• A user operation typically corresponds with a
UI component such as a button, checkbox, or
an input tag in the web application. Based on
the identity of the component that submits a
method call to the transition destination
screen, we can derive the name of the called
method.

• We define the basic data operations of Create,
Read, Update, and Delete in an activity
diagram because LUMINOUS uses a
database system. We can then create a
correspondence between these CRUD actions
in the activity diagram and the API
(Application Programming Interface) of the
database system.

Security Requirements Verification for Existing Systems with Model Checking Technique and UML

533

3.6 Generating a System Model and
Query Expressions

A system model and query expressions were
generated from the previously defined scenario, and
the table mentioned in Section 3.4, by using the data
mentioned in Section 3.5 with the Source2UPPAAL
tool.

As shown in Figure 6, a system model consists of
the following processes that are connected to the
channel synchronization mechanism in UPPAAL:

• The verification scenario was translated into
a UPPAAL model that combines use cases
from the scenario in the proper order.

• Each use case model defined in the activity
diagram was translated into a UPPAAL
model that correctly maps the control flow of
actions.

• A state machine diagram that defines a
property of a security attribute was translated
into a UPPAAL model. This model can
connect to use case models via an API model
for updating security attributes using the
channel synchronization mechanism.

In Figure 6, an arrow denotes channel
synchronization between two processes.

Figure 6: System model generated in UPPAAL.

We generate a query expression from the rules
shown in Table 2. Figure 7 shows the query
expressions generated for the scenario in Figure 6. It
is expressed in the UPPAAL model through
variables, location names, etc., that are generated by
the support tool Source2UPPAAL.

The scenario is as follows:

• A student posts a question. At the time of
posting, the Topic is private. Next, a teacher
answers the question. At this time, the Topic

can be set to public or private at the teacher’s
discretion.

The query indicates that after answering the
question, if a teacher sets the topic Topic private,
then the Topic will have never been given public
access.

Figure 7: Query expression generated based on the
scenario.

We now discuss improvements that have been
made to the verification support tool
Source2UPPAAL.

Figure 8 shows the interface for editing a
scenario. The left screen is a template for a scenario
and the right screen expresses the abstract syntax
tree of the target source code. A tester selects a
component from a use case and applies it to SUB1
or SUB2 on the left screen. To analyze the use case
effectively, they then use the UI correspondence
table mentioned in Section 3.5. Source2UPPAAL
has a function that highlights the key words
extracted through this static analysis.

Figure 8: Editing of a scenario.

Figure 9 shows the process of assigning a
function to the scenario template. A tester searches
for a function by using the UI correspondence table.
They then follow the path on the right screen. An
actor of the target use case is a student and the
function is a function of BBS.

SIT.Luminous.Web.student.detail.bbs::buttonCreate_Click

If the user finds the button Create_Click method,
then that component corresponds to a goal function.
They can then drag it to the target statement on the
left screen as shown in Figure 9. As a result, the
target method can be unfolded in the verification
scenario.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

534

Figure 9: Assigning a function to the scenario.

4 DISCUSSION AND
CONCLUSIONS

This paper presented an experiment on the
verification of security requirements for the source
code of an existing system. The experiment showed
that we could verify whether the existing system
satisfied the security requirements. Generally, source
code verification is difficult and time consuming.
There are several different approaches to source
code verification (Beyer et al., 2004, Thompson et al.,
2008). A tester needs to analyze the details of the
target source code and insert assertion statements. In
this case, requirements specification implementation
will be dependent on the document.

To optimize the approach shown in Figure 1, we
solved the following problems through
experimentation:

• RA Models are an effective approach for
specifying functional requirements. Security
requirements are a kind of non-functional
requirement related to functional
requirements; they can be specified through
the systematic method shown in Figure 3. It
is important to design and manage concepts
such as Cross-Cutting Concerns and Context
Awareness modularly so that we can formally
verify them. Furthermore, such designs need
to be implemented in a clear and consistent
manner for the duration of the project.

• In this paper, RA Models were defined
manually. We are planning the development
of a support tool for these manually defined
RA Models to improve their
comprehensiveness and accuracy.

• Several problems impede the creation of a
correspondence table through static analysis
of the source code. Various different
technologies such as programming languages,

platforms, and application frameworks are
used to implement a software system.
Because analysis methods depend on the
technologies used, an analysis tool can be
very expensive to develop. It is also common
that developers do not comply with standard
coding conventions during the project and
team members can vary during the course of
the project. This causes inconsistency in
definition of operations and fields.

REFERENCES

OMG, “UNIFIED MODELING LANGUAGE”,
http://www.uml.org/

Y. Aoki and S. Matsuura, Verifying Security
Requirements using Model Checking Technique for
UML-Based Requirements Specification, Proc. of 1st
International Workshop on Requirements Engineering
and Testing, pp.18-25, September,2014.

Y. Aoki, S. Ogata, H. Okuda and S. Matsuura, Data
Lifecycle Verification Method for Requirements
Specifications Using a Model Checking Technique,
Proc. of The Eighth International Conference on
Software Engineering Advances (ICSEA 2013),
pp.194-200, 2013.

UPPAAL, http://www.uppaal.com/, 2016.
S. Ogata and S. Matsuura, “A UML-based Requirements

Analysis with Automatic Prototype System
Generation,” Communication of SIWN, Vol. 3,
pp.166-172, 2008.

Common Criteria, “CC/CEM v3.1 Release4”,
http://www.commoncriteriaportal.org/cc/

Y. Aoki, S. Matsuura, “Verifying Business Rules Using
Model-Checking Techniques for Non-specialist in
Model-Checking.” IEICE TRANSACTIONS on
Information and Systems, Vol. E97-D, No. 5,
pp.1097-1108, May, 2014.

S. Matsuura, Y. Aoki, and S. Ogata, Practical Behavioral
Inconsistency Detection between Source Code and
Specification using Model Checking, ISSRE 2014,
pp.124-125, 2014.

LUMINOUS, https://lmns.sayo.se.shibaura-it.ac.jp/
D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, An

Eclipse Plug-in for Model Checking, Proceedings.
12th IEEE International Workshop on Program
Comprehension, pp. 251-255, 2004.

S. Thompson and G. Brat, Verification of C++ Flight
Software with the MCP Model Checker, Aerospace
Conference 2008 IEEE, pp.1-9, 2008.

Security Requirements Verification for Existing Systems with Model Checking Technique and UML

535

