
Link Between Gaming Communities in YouTube and Computer Science

Lassi Haaranen and Rodrigo Duran
Department of Computer Science, Aalto University, Helsinki, Finland

Keywords: Computer Science Education, Game-based Learning, Informal Learning.

Abstract: Playing games has become a permanent part of popular culture, and the number of players keeps increasing.
Part of this phenomenon is the act of recording gameplay and sharing the videos creating online gaming
communities. We describe different types of gaming videos that intersect with learning computer science
(CS). In addition, we looked at the discussions those videos spurred and found a rich interaction with CS
topics. Since games can act as an engaging environment for informal learning, we conclude that the gaming
community has relevant connections to learning CS and we as the research community should pay more
attention to this phenomenon.

1 INTRODUCTION

Digital games are an important part of the modern day
culture. Whereas once video games were viewed as a
pastime for the children, this picture has dramatically
shifted in the past decades. In the United States alone,
it is estimated that the amount of money consumers
spent on games exceed 22 billion dollars, the aver-
age age of gamers is 35 years, and approximately 155
million Americans play video games (Entertainment
Software Association, 2015).

But just because the average age of a gamer keeps
climbing up, it does not mean that children are not
playing. New York Times published a long arti-
cle describing the ’Minecraft Generation’ (Thomp-
son, 2016) – a generation building their own visions in
virtual block worlds. And the culture of video games
is not just contained in the games and the worlds they
create. Different fan sites and discussion forums have
existed for a long while, but in more recent years
video sharing services, YouTube in particular, have
become an important part of the cultural phenomenon
of video games.

Videos related to gaming have spawned their
own industry. Google, owner of YouTube, it-
self acknowledged the importance of games cre-
ating its first spinoff platform from YouTube ex-
clusively dedicated to games, YouTube Gaming
(https://gaming.youtube.com/). As an example,
there are dozens of YouTube channels focusing on
Minecraft that have more than a million subscribers
and correspondingly new videos from those chan-

nels receive millions of views. Typically these chan-
nels focus on gameplay videos, usually in the form
of “let’s play” where the author records him/herself
playing a game and narrating the events at the same
time. Whilst majority of these channels and videos
are purely for entertainment, there are some that have
educational value as well. For example, user Seth-
Bling has created a four-part video tutorial series1 on
how to replicate a Turtle-like programming environ-
ment in MineCraft. The first part of the series detail-
ing the use of if-else statements has gathered over
700 000 views, so the potential impact on learning to
program could be substantial.

Given how popular gaming and the videos re-
lated to it are, and especially since quite a few of
them contain instructional material regarding comput-
ing and programming, we wanted to investigate this
phenomenon further. Our goals are summarized by
the following research questions:

• RQ1 What kind of gaming videos there are that
are related to computer science?

• RQ2 How are the commenters discussing these
videos?

The overall goal is to describe and examine the
phenomena of gaming videos related to learning com-
puting. We are particularly interested in informal
learning from the videos, in other words, their use
outside of classrooms and formal education.

1https://www.youtube.com/playlist?list=PL2Qvl4gaBge
02Eh4AqtDSWg3sojt3jeRO

Haaranen, L. and Duran, R.
Link Between Gaming Communities in YouTube and Computer Science.
DOI: 10.5220/0006267000170024
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 2, pages 17-24
ISBN: 978-989-758-240-0
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

17

The rest of the article is structured as follows: In
Section 2 we provide relevant research linking games
and learning computer science. Section 3 describes
our data collection and analysis and Section 4 summa-
rizes our results. Finally, we conclude by discussing
our findings in Section 5.

2 BACKGROUND

In this section, we first present relevant literature re-
garding the use of games in computer science educa-
tion. After that, we discuss previous work on informal
learning contexts. Finally, we explore research done
on YouTube videos and comments done in other do-
mains.

2.1 Games and Computer Science
Education

There has been very little research in learning pro-
gramming or computing in informal contexts. How-
ever, in more formal context the research on using
games to teach has been focused on programming and
computer science. Hayes and Games reviewed the
use of games in education and identified four differ-
ent goals for using games: making games as a con-
text to learn programming, as a way to interest girls
in programming, as a way to learn in other academic
domains, and as a way to understand design con-
cept (Hayes and Games, 2008). They state that the
most commonly sought after learning goal was related
to learning programming or concepts related to it.

Use of game elements (achievements, badges,
rankings) in non-game environments (such as projects
and classroom lessons) has attracted a great interest
of education community in recent years embedded in
the concept known as gamification (Deterding et al.,
2011). Although being used in many diverse aspects,
gamification applied to programming attempted to in-
troduce computing skills, especially to younger stu-
dents and novice programmers, in a more palatable
fashion with different interfaces, objectives, and out-
comes. Tillmann et al. describe how their new gami-
fied platform, Code Hunt (http://www.codehunt.com)
can help beginners to understand computing concepts
in the form of numerical output puzzles using Java
and C# (Tillman et al., 2014) . Engagement to the
platform comes from the introduction of a ranking
system that rewards programmers that create elegant
programs with fewer attempts.

Using full games, instead of gamified appli-
cations, as an engaging environment to promote
learning of computer skills has been discussed for

decades (Kelleher and Pausch, 2005). When it comes
to formal education and computer science courses,
four ways of utilizing computer games as part of the
learning process has been described (Wallace et al.,
2010). In the first approach, students create their own
games in order to learn (1). And relatedly, in the sec-
ond group they implement a critical part of a given
game (2). In the third approach, students learn by
implementing an agent to a game (3). This group is
of particular interest given that this can be done in
many of the current games meant for entertainment.
In the last category, students learn by playing a seri-
ous game that has been designed to teach particular
concepts (4).

Code.org (https://code.org/learn) iniative hosts
several games that support programming learning
through games. Most of these games use mechanics
similar to the popular Lightbot (https://lightbot.com)
game where users need to provide a sequence of com-
mands so a robot can reach a specific point on the
map. To address syntax issues that young users might
have most of these games use a block-based interface.
Figure 1 shows an example of a Minecraft-themed
game by Code.org, where users solve specific tasks
like constructing or moving in the map using blocks
interface.

Figure 1: Code.org Minecraft themed sequence commands
game.

2.2 Games Enhanced by Programming

Although the literature of using games to teach pro-
gramming in a formal setting as a development tool
is rich, in recent years a new approach has emerged:
using programming inside games as a way to provide
context to programming, as well as, to enhance the
play itself. This approach is distinct from the pre-
vious experiences using games not as a development
environment or an educational game to teach a spe-
cific subject, but as a skill to improve features on the

CSEDU 2017 - 9th International Conference on Computer Supported Education

18

act of play itself.
Minecraft, from Mojang, now the 3rd most sold

game of all time, allows deep modifications of the
game so researchers use its features as building blocks
to provide a constructionist experience to learn pro-
gramming. A tailored version of Minecraft called
ComputerCraftEdu provides insight on how block-
based programming performs versus textual program-
ming in a game environment, showing that block-
based programming increases interest in program-
ming compared to textual in the same setting (Saito
et al., 2015).

Zorn et al. developed their own block-
representations of programming constructs that func-
tion similarly to normal Minecraft blocks (Zorn et al.,
2013). This enabled users to create code in the same
manner they construct originally in Minecraft. As in
ComputerCraftEdu, the goal of the research was to
better understand how block-based versus textual lan-
guage performs in terms of students appreciation and
if learning style affected this appreciation. Results
show that programming appreciation increased with
the use of their blocks programming tool.

It is interesting to highlight that those features de-
scribed in Saito et al. (2015) and Zorn et al. (2013),
although studied as teaching tools, could be used
to automatize tasks executed extensively by players,
such as mining and constructing. This intrinsic cor-
relation with in-game functions creates the potential
use of those features in diverse aspect from the ex-
periences previously described in the literature, pro-
moting more engagement and even reaching a distinct
audience that incidentally discovered computing sub-
jects.

Another example of games that use programming
as an intrinsic part of its mechanics is CodeSpells
(https://codespells.org/). Starting as a research project
and later evolving into a full commercial game, the
concept relies on creating powerful magic spells us-
ing programming (Esper et al., 2014). A program-
ming language is used to describe the properties and
actions performed by a spell that users can freely cre-
ate and manipulate. In that sense, learning program-
ming happens due to the built-in game mechanics.

2.3 Learning Computer Science in
Informal Settings

The previous examples are from a formal context,
i.e. courses or outreach activities specifically aimed
at teaching or improving the perception of program-
ming and computer science. However, we are specif-
ically interested in informal learning in computer sci-
ence but previous research on the subject is very

sparse. One example where informal learning in
computing has been studied comes from a short re-
port that looked at how elementary school students
acquired programming knowledge (Boyle and Mc-
Dougall, 2003). Although this report looked at the
informal sources used to gain programming knowl-
edge, the knowledge was used and practiced in a for-
mal classroom setting as well.

McCartney et al. investigated what motivates
computing students to learn in informal and self-
directed settings. Using questionnaires with 17 se-
lected students, a thematic analysis was performed
and five different topics emerged (social influence,
projects, joy of learning and fear) to understand
why students engaged in this particular learning set-
ting (McCartney et al., 2016). Evidence points to that
learning with projects, in different nuances, is pivotal
in self-directed learning and could have an impact in
classroom pedagogies.

Whilst the actual learning process in informal set-
tings has not been studied in detail, there is at least
evidence that gaming communities and forums can
host a high-level discussion and scientific argumen-
tation. Investigation on discussion forum of a popular
massively multiplayer online game World of Warcraft
and found that at least in that one particular forum,
more than 80 percent of the discussion was centered
around social knowledge construction (Steinkuehler
and Duncan, 2008). And importantly, over a half of
the forum posts contained systems based reasoning,
as well as, a few posts containing model-based rea-
soning of game mechanics that the players were try-
ing to uncover.

2.4 YouTube as a Community for
Learning

One of the important features of YouTube is the low
barrier to entry to produce and consume videos (Chau,
2010). Videos and comments to those can be easily
added and circulated amongst peer groups. And one
of the main categories of videos he identified was the
’informal mentorship’ in the form of how-to videos.

In other domains, there is some research on
using YouTube as an educational channel. In
medicine, publishing videos on clinical skill train-
ing on YouTube instead of peer-reviewed services has
been investigated, in hopes of attracting a consider-
ably larger audience (Topps et al., 2013). They found
the results promising and the number of views encour-
aging, but naturally assessing educational impact is
difficult with anonymous viewers.

Link Between Gaming Communities in YouTube and Computer Science

19

3 METHODS

To gain an understanding on how gaming videos and
learning programming are connected we used a mixed
method approach. We first collected and categorized
videos based on their content to gauge the prevalence
of game videos that related to programming or com-
puter science in some way. After this step, we se-
lected two videos and used a grounded theory based
analysis to have a more detailed picture of the phe-
nomena. This section first describes the classifica-
tion of the videos and then explains the method of the
comment analysis in more detail.

3.1 Classification of Videos

Video categorization began by both authors reviewing
together an initial set of 50 gaming videos selected us-
ing the ’programming’ query. Through discussion of
the titles and content of the videos, five categories of
gaming videos that pertain to programming were cre-
ated. This categorization scheme was used to catego-
rize a larger sample of videos. The reliability of this
categorization was tested by evaluating inter-rater re-
liability. The five categories to classify the larger set
of videos were:

• Gaming enhanced by programming Using pro-
gramming and/or computer science concepts in-
side a specific game, to improve gameplay

• Game programming tutorial General tutorials
for game programming, teaching game develop-
ment whilst not being related to any specific game

• Modding tutorials Tutorials teaching how to cre-
ate a modification (mod) for a specific existing
game

• Game programming discussion Discussions on
general level what it means to be a game program-
mer and what the field is like

• Other Unrelated videos or videos that did not fit
any of the above categories

We used the query ‘programming’ and gathered
the first 400 videos for classification. Whilst search-
ing we used the default parameters available (sorted
by relevance and no limits to when the video was up-
loaded). However, it should be noted that the informa-
tion on how exactly YouTube orders the search results
is not available.

Both authors independently labeled the 400 pres-
elected videos. After labeling, we resolved any con-
flicts through discussion. Consensus and the results
of the categorization are presented in Section 4.1.

3.2 Grounded Theory and Comments

In addition to looking at the videos as a whole, we an-
alyzed the discussions in the comment sections to pro-
vide a richer description of the phenomena. To do this
we adopted a grounded theory approach. Grounded
theory as a method aims at providing a rich descrip-
tion and explanation of a phenomenon and it is also
useful for generating hypotheses. At the core is the
idea of building a theory that is grounded in the
gathered data. The procedure of grounded theory is
to analyze the data by firstly coding it openly and
then returning to the codes and doing axial coding.
In axial coding, the codes are categorized to extract
themes and concepts of interest. For a discussion on
grounded theory specifically in computing education,
see (Kinnunen and Simon, 2010).

We started our open coding by selecting four
videos from the games enhanced by programming
category and one video from the modding category.
The selection of these two categories highlights the
informal setting we are investigating. These types of
videos enable a diverse type of content where learning
is incidental to the task. The initial open coding re-
sulted in ten different categories for comments, such
as ‘joke’, ‘reflect’, ‘question’ etc. Whilst this open
coding did describe the contents of the discussions it
did so in very broad terms. However, it did not high-
light the importance of discussing computer science
and programming concepts which were common in
the comments.

To improve the coding and produce more useful
axial coding, we selected two videos where program-
ming and games were mixed and that had a large
number of comments. The key difference this time
was that we only included comments that were di-
rectly related to computer science or programming,
thus enabling us to focus on coding the relevant con-
tent. Based on the original set of codes and the codes
generated during this step, we created the axial coding
that is presented in Section 4.2.

After the open and axial coding we had the key
themes of the discussions, or more precisely in our
case we had identified different types of discussions.
The third analysis phase of grounded theory is the se-
lective coding, where a core category is selected that
describes the phenomena and the rest of the categories
are integrated and reflected in light of this core cat-
egory. However, since the categories of discussions
that we found were so different from each other we
decide to forgo this step and focus on providing a de-
scription communication in the comments.

CSEDU 2017 - 9th International Conference on Computer Supported Education

20

4 RESULTS

4.1 Categorizing Game Videos Related
to Computing

Both authors coded the list of 400 videos individu-
ally, whenever the title of the video clearly showed
the category it belonged to it was used. In the cases,
where the title was not enough to classify the video,
the content of the video was reviewed. After the indi-
vidual coding (Cohen’s κ = 0.619) the conflicts were
resolved through discussion. Table 1 summarizes the
distribution of the videos.

Table 1: The distribution of the videos.

Category # %
Games enhanced by Programming 38 9.50
Game programming tutorial 242 60.50
Modding tutorials 7 1.75
Game programming discussion 56 14.00
Other 57 14.25

As can be seen in Table 1, the majority of the
videos are in game programming tutorials which usu-
ally come in longer series having multiple videos.
However, almost tenth of the videos were about com-
mercial games meant for entertainment (not serious
games) that incorporated programming in some form.

4.2 Discussions Related to The Videos

To provide a richer description of the gaming commu-
nity intersecting with computer science, we looked at
the discussions in the comment sections of two differ-
ent videos. The videos were chosen to highlight two
different types of interaction with computing. Any
of the popular videos could have been selected but
we felt that these two videos provided a good variety
in both discussion and the content of the video itself.
The content of the selected videos are detailed next.

V1 BASIC Interpreter in Minecraft

The first video chosen is called “BASIC Program-
ming Language in Minecraft” from the channel Seth-
Bling, seen in Figure 2. At the time of writing (July
2016), the video has garnered over half a million
views and hundreds of comments. The running time
of the video is 13’45” and it focuses on how the author
implemented an interpreter for BASIC programming
language inside MineCraft.

The first part of the video focuses on how the in-
terpreter was created in the game and how to use it to

Figure 2: BASIC Interpreter in Minecraft.

run programs. The author showcases the interpreter
by writing a simple function that calculates whether
a number is prime and also touches some advanced
topics, such as abstract syntax tree, the difference be-
tween compiled and interpreted language. The video
also contains a section with the author explaining how
this BASIC interpreter can be used to control a turtle
inside MineCraft, demonstrated by a loop with com-
mands for the turtle to move in a particular pattern and
mine a route through the virtual blocks of MineCraft.

V2 Programming Rockets in Kerbal Space
Program

Figure 3: Programming Rockets in Kerbal Space Program

Link Between Gaming Communities in YouTube and Computer Science

21

In the second video (seen in Figure 3) the author, Scott
Manley, describes the usage of kOS mod for Kerbal
Space Program. The game consists of designing and
flying rockets and kOS is a modification for the game
which brings a programmable computer that can be
used to automate tasks. The total length of the video
is 8’11”, and at the time of writing (July 2016), it has
gathered over 120 thousand views and more than 400
comments.

The video showcases a simple script written for
the kOS that guides the rocket to an orbit around the
planet. First, in the video, the rocket is launched. Af-
ter a while, it reaches the highest point in the ballis-
tic trajectory, and the script takes control of the ship.
The script then finalizes the launch by guiding the
rocket into a stable orbit. The contents of the script
are shown in the video and the various lines of codes
are explained as they happen. In the scripting lan-
guage various commands are given that wait until cer-
tain conditions (e.g. high enough altitude) are met and
then another command is given (e.g. turn the rocket to
face a particular direction or turn the engines on). The
author also talks about how the mod can be used for
more complex things such as automated rovers and
discusses the similarities with the system and the use
of computers in real life during space missions.

Overview of The Discussion

After the open coding of the first 350 comments
from both videos, we started axial coding and found
that the majority of comments abstracted to three
categories: programming languages, efficiency, and
learning experience. We use V1 and V2 to denote
from which video the comment came from. The num-
ber of relevant, pertaining to computer science, com-
ments for V1 was 139 (ca. 40%) and for V2 73 (ca.
21%).

From the comments, it is clear that some of the
commenters were already familiar with computer sci-
ence and programming. How big this population is
compared to those who are novices is hard to estimate,
and the only method for doing so is to infer from the
contents of the comments.

Programming Languages

Referring to Douglas Adam’s Hitchhiker’s Guide to
Galaxy, someone started a posted a comment: Now
we need a command block that can calculate the
answer to life the universe and everything. (V1).
This gathered several replies, where people showed
their knowledge and shared simple programs in many
languages to show how printing number 42 was
achieved, e.g. “ this is it in HTML <p>42 </p>”

(V1), “In scratch: When green flag clicked: Say
42” (V1), “Here is in python print(42)” (V1), and
other commenters point out a way to replicate this in
multiple languages, including for example Java, and
JavaScript.

Since V2 featured a custom language created for
the game that is not in use elsewhere, it received
plenty of comments reflecting on learning a new and
highly specific language versus more general pro-
gramming languages. This was reflected in comments
such as: “I just love the idea of kOS, and would gladly
spend humongous amount of time playing with it...
but, i also hate the programming language itself. It
would be so awesome to see something like kOS which
is using JavaScript/Python/Ruby/C# .. or any sensible
programming language out there (thus object orien-
tation would probably be very useful feature)” (V2)
and “Yeah, a C or Python (maybe even Lua) version
would have been nicer, but basic isn’t hard to learn, it
is very basic” (V2)

Some of the commenters also pointed out the lim-
itations of the Kerboscript (the name of the language
used in the kOS mod): “Yeah I really wish they had a
more mainstream language, but then again it’s still a
beta. We might see something like that later hopefully,
having functions and classes would be very cool.”
(V2). This, in turn, prompted a discussion on how lan-
guages work on a lower level: “Whatever program-
ming language and style you like, it still gets turned
into machine code which doesn’t inherently support
functions and classes” (V2).

Overall, the discussion on both videos was fo-
cused on the authenticity of programming languages.
This was especially prevalent on V2 since the video
portrayed a custom programming language that was
then used to complete ‘real’ programming tasks.

Efficiency

Much of the discussion related to computer science in
comments to V1 revolved around the topic of algo-
rithmic efficiency. In the video, the author presented
a simple ISPRIME function which computed whether
a number was prime in a suboptimal way. This was
pointed out in many comments, often with sugges-
tions on how to improve, for example: “Instead of
X-1 wouldn’t 1/2 X be a better cutoff point for finding
primes? (Since no number can be evenly divided by
a number greater than 1/2 itself?) That would save
some cycles, especially as the numbers get higher.
...” (V1) , and “Yeah, computing the square root of
something is usually ’expensive’, but dividing by two
is usually cheap. It’d be an easy optimization.” (V1)

As a classic algorithm efficiency problem, some
experienced users provided the best cutoff helping

CSEDU 2017 - 9th International Conference on Computer Supported Education

22

to improve the author’s solution. However, some
users also reflected about the problem and discussed
the methods. In V2, efficiency discussion centered
around certain parameters in the code, which some
users felt could be optimized further.

Learning Experience

The third and perhaps the most interesting category is
the discussion on learning experience regarding pro-
gramming. One long thread in the comments involved
the use of these types of games and their affordances
in teaching younger population: “Does this have the
potential to help kids learn to program? IE if it was
directly applicable in the world like you showed the
turtle? :-)” (V1)

This spurred many replies, giving suggestions on
how to start learning programming using various ap-
proaches, such as game modding: “Could try learn-
ing to mod the game; modding can range from need-
ing almost no programming experience to advance
programming, depending on how far you take it.”
(V1) and watching programming tutorials on video:
“You can watch video tutorials though this is the
hardest way to learn programming.” (V1)

The different tools and aspects of learning pro-
gramming were discussed as well. With one com-
menter noting that block-based programming has
gained popularity: To be honest, logical-block-style
programming is taught very very early in some places
now. Because it teaches logic without needing to
learn a programming language syntax.” (V2). There
were thoughts also on the difficulties of using profes-
sional tools when starting out in programming: Well,
the main reason it was hard for me to get into pro-
gramming was because the IDE was made for more
experienced people and was packed with features ...
(V1)

Other Observations

We initially suspected, based on the literature (Ra-
malingam et al., 2004), that there would be nu-
merous comments portraying poor self-efficacy when
confronted with programming and computer science.
However, to our surprise these comments were almost
completely missing, with only one concrete example:
“Now i feel stupid This is insane! :D Wow” (V1).
While it is difficult to verify, we suspect that there are
more feelings of poor self-efficacy but those individ-
ual just do not comment, or even tune out the video as
soon as something complex is presented.

5 DISCUSSION

In this article, we have examined the intersection of
computer science and computer games in an informal
setting. We approached this by describing the gaming
content that includes programming as well as discus-
sion related to it. While there has been many different
approaches to incorporate games into classrooms, es-
pecially programming ones, very little discussion has
taken place regarding informal learning from games.
We approached this phenomenon through analyzing
gaming videos that relate to programming – a popular
way of disseminating content and ideas in the gaming
community.

Looking at different kind of gaming videos that
relate to computer science (RQ1), we discovered a
plethora of programming-related videos associated
with a variety of different games. Additionally, we
sought to provide a more comprehensive picture of
the phenomena by analyzing the discussions on these
videos (RQ2). We conclude that a fair portion of the
discussion is relevant to computer science and pro-
gramming. The vast majority of programming re-
lated discussion can be described to belong to one
of the three categories: programming languages and
their capabilities, efficiency in algorithms and pro-
grams, and the experience of learning programming
and computer science.

Incorporating computing and programming edu-
cation into the K-12 curriculum has been heavily de-
bated and discussed all over the world. At the same
time, games and the whole gaming culture have risen
to be a massive cultural phenomenon. And it at least
seems that the number of games that contain pro-
gramming within them is increasing. These games,
where programming is a way to interact with the game
world, could provide a rich and engaging environment
to learn programming. Because the need to program
arises from a problem within the game, they provide
a motivating environment to learn to program.

However, based on the data, we have no way of
knowing who the commenters are and what is their
previous experience with computer science. Simi-
larly, based on the discussion it is hard to tell how
much actual learning is going on, and whether any of
the possible learning is transferable to other contexts.

As we have shown, some of these exchanges
are relevant to learning programming and computing
skills. Given that, so many, especially young, people
do play these games, we argue that the informal side
warrants more discussion and research. We hold the
view that it is crucial to understand when, where, and
how the first contact with programming happens.

Link Between Gaming Communities in YouTube and Computer Science

23

5.1 Future Work

In the future, we plan to do a more detailed investiga-
tion of the users involved in this kind of informal way
to learn programming through gaming videos. Since
it is the background of users’ is not available and the
fact that most of the comments are very short, the phe-
nomena is difficult to analyze using methods applied
to other discussion contexts (e.g. forums). Develop-
ing methodology to investigate informal learning in
general is required.

Additionally, it would be interesting to find out
whether similar phenomena is happening in other sub-
jects. While it was not the focus of this research, we
did note a portion of the discussion related to physics
happening in the comments of V2.

ACKNOWLEDGEMENTS

Rodrigo Duran was supported by CNPq–Brazil.

REFERENCES

Boyle, M. and McDougall, A. (2003). Formal and infor-
mal environments for the learning and teaching of
computer programming. In Proceedings of the 3.1
and 3.3 working groups conference on International
federation for information processing: ICT and the
teacher of the future-Volume 23, pages 11–12. Aus-
tralian Computer Society, Inc.

Chau, C. (2010). Youtube as a participatory culture. New
directions for youth development, 2010(128):65–74.

Deterding, S., Dixon, D., Khaled, R., and Nacke, L. (2011).
From game design elements to gamefulness: defin-
ing gamification. In Proceedings of the 15th inter-
national academic MindTrek conference: Envisioning
future media environments, pages 9–15. ACM.

Entertainment Software Association (2015). Essential
facts about the computer and video game industry.
Available Online: http://www.theesa.com/wp-
content/uploads/2015/04/ESA-Essential-Facts-
2015.pdf.

Esper, S., Foster, S. R., Griswold, W. G., Herrera, C., and
Snyder, W. (2014). Codespells: bridging educational
language features with industry-standard languages.
In Proceedings of the 14th Koli Calling International
Conference on Computing Education Research, pages
05–14. ACM.

Hayes, B. and Games, I. (2008). Making computer games
and design thinking: A review of current software and
strategies. Games and Culture.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environ-
ments and languages for novice programmers. ACM
Computing Surveys (CSUR), 37(2):83–137.

Kinnunen, P. and Simon, B. (2010). Building theory
about computing education phenomena: a discussion
of grounded theory. In Proceedings of the 10th Koli
Calling International Conference on Computing Edu-
cation Research, pages 37–42. ACM.

McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K.,
Thomas, L., and Zander, C. (2016). Why comput-
ing students learn on their own: Motivation for self-
directed learning of computing. ACM Transactions on
Computing Education (TOCE), 16(1):2.

Ramalingam, V., LaBelle, D., and Wiedenbeck, S. (2004).
Self-efficacy and mental models in learning to pro-
gram. In ACM SIGCSE Bulletin, volume 36, pages
171–175. ACM.

Saito, D., Washizaki, H., and Fukazawa, Y. (2015). Work
in progress: A comparison of programming way:
Illustration-based programming and text-based pro-
gramming. In Teaching, Assessment, and Learning for
Engineering (TALE), 2015 IEEE International Con-
ference on, pages 220–223. IEEE.

Steinkuehler, C. and Duncan, S. (2008). Scientific habits of
mind in virtual worlds. Journal of Science Education
and Technology, 17(6):530–543.

Thompson, C. (2016). The Minecraft Genera-
tion. The New York Times. Available online:
http://www.nytimes.com/2016/04/17/magazine/the-
minecraft-generation.html.

Tillman, N., Halleux, J., Xie, T., and Bishop, J. (2014).
Code hunt: Gamifying teaching and learning of com-
puter science at scale. L@S ’14 Proceedings of the
first ACM conference on Learning @ scale confer-
ence, pages 221–222.

Topps, D., Helmer, J., and Ellaway, R. (2013). Youtube as a
platform for publishing clinical skills training videos.
Academic Medicine, 88(2):192–197.

Wallace, S. A., McCartney, R., and Russell, I. (2010).
Games and machine learning: a powerful combination
in an artificial intelligence course. Computer Science
Education, 20(1):17–36.

Zorn, C., Wingrave, C. A., Charbonneau, E., and LaVi-
ola Jr, J. J. (2013). Exploring minecraft as a conduit
for increasing interest in programming. In FDG, pages
352–359. Citeseer.

CSEDU 2017 - 9th International Conference on Computer Supported Education

24

