
Technology Enhanced Active Learning in Software Engineering

Muthu Ramachandran
School of Computing, Creative Technologies, and Engineering, Headingley Campus, Leeds Beckett University,

Leeds LS6 3QS, U.K.

Keywords: Software Engineering Management, Active Learning, Group Project, Project Supervision, Collaborative
Learning.

Abstract: Educating software engineers in software management have long been hard both in academia and in
industry. It is extremely difficult to educate software engineering management techniques actively.
Historically, we have been quite used to educate in programming in a classroom and in a lab with
instructions Teaching any management aspects has been traditionally based on instructions and case studies.
We have adopted an active based learning approach to teach final year BSc students in Software
Engineering. We let the final year students manage group projects carried out by level 5 students. Mainly,
we don’t come across a large real-world case study. This work on active learning has changed our way of
teaching software engineering and it has made a significant impact on the way the students learning and
have been taught traditionally. This research has also proposed an information system model for
Technology Enhanced Active Learning and Teaching (ALT) with emphasis on three key principles for
teaching Software Engineering: divergent thinking, collaborative learning, and learning through
differentiated assessments. More than 90% of students felt they had gained knowledge more quickly with
active learning. The ALT model is part of the large scale technology enhanced learning for future learning
environments which has been developed adopting most of computer science courses and specialist module.

1 INTRODUCTION

Software Engineer (SE) education is highly essential
in this era of high demand for software systems that
has become part of our everyday life. It has been
hard to train high level of software engineering
concepts, methods, techniques, tools, and managing
large scale projects. It is even harder to train
software engineering management practices in
academia as it is often self-learned in industrial
practice or at work place. Historically, we have been
quite used to educate in programming and related
science. It is extremely difficult to educate software
engineering management techniques actively.
Mainly we don’t come across a large real-world case
study. This we have seen being criticized as methods
that have not been demonstrated in real work. It is
important to educate SE management techniques in
this global world with some real practical aspects.
Software Engineering itself is increasingly a
management discipline of any education and in the
real world. Due enhancement and innovation in
software technology, we are in a much better

position to capture, resolve requirements, intuitively
make our design solution with the use of a wide
range of design notations and CASE tools, develop
code which is much more efficient, and test it all
again with a wide range of tools.

One of our main aims of this module (managing
software development) is blending of formal
academic methods with knowledge of industrial
development practices. Consequently, an objective
of the course is to provide a balance between the
science of management and the practice of
management. This emphasis on the 'hands-on'
approach to management required a considerable
rethinking of this and other modules of the course.

There are several definitions of active learning
used worldwide across different disciplines from
social sciences to school teaching. The aims of this
approach are to make students learn themselves by
doing it rather than only by reading and instructing
them in a classroom or in a lab. There is an
immediate change needed in Software Engineering

242
Ramachandran, M.
Technology Enhanced Active Learning in Software Engineering.
DOI: 10.5220/0006257602420248
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 242-248
ISBN: 978-989-758-239-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Education whether it is taught in the classroom or on
online (E-Learning) by applying active and other
practical learning types (should not totally be lab
based on the other hand as seen in Japan). Offutt
(2013) argues that “Software engineering isn’t a
branch of computer science; it’s an engineering
discipline relying partly on computer science, in the
same way that mechanical engineering relies on
physics.” Similarly, David Parnas (1999) asserts that
process must be shown, not taught, by mentoring
young engineers through actual projects. Therefore,
this research, have considered more practical and
engineering approach to teach Software Engineers in
a more active manner with emphasis on professional
values and consultancy approach.

IT courses, in particular, Software Engineering
courses have seen as difficult to complete in the
social inclusion context as well as normal perception
in schools. Yet, a shortage for these skills remains
high across the globe. One of the main reasons for
this situation is the lack of teaching practices and
methods adopted in the computing curriculum as we
tend to focus more on the new technologies to
practice ourselves and quickly convert them into
courses. This situation has to change. Therefore, we
have adopted an active learning technique of
practicing level 6 final year BSc (Hons) students to
supervise level 5 (pre-final year/2nd year of BSc
(Hons)) group project students in making them to
apply the key software engineering principles as
well as making them to progress. In this context, this
paper is divided into a number sections: section 1
provides an introduction to this work, section 2
provides a brief survey on active learning, section 3
provides the case study of the group project
management, and finally section 4 discusses the
results and analysis.

2 ACTIVE LEARNING IN
SOFTWARE ENGINEERING
MANAGEMENT PRACTICE

Active learning helps to facilitate re-enforced
learning, participation, and communication by
actually doing it rather than just listening. In
addition, educating management aspects can’t be
just done in a classroom setting. As it involves
managing and communicating with people. Johnson
(1998) explains active learning as how college
faculty can use cooperative learning to increase
student achievement, create positive relationships

among students, and promote healthy student
psychological adjustment to college. Johnson (1998)
and Walsh and Inala (2010) discuss several
approaches to teach librarians with practical
examples of active learning style. They have also
proposed a number active learning characteristics:

 Students are involved in more than just
listening.

 Less emphasis is placed on transmitting
information and more on developing
students’ skills.

 Students are involved in higher order
thinking (analysis, synthesis and
evaluation). Cognitive and meta-cognitive
activities.

 Students are engaged in activities (e.g.
reading, discussing and writing).

 Greater expectation is placed on the
students’ exploration of their attitudes and
values.

This highlights the importance of active learning

method as opposed to passive learning methods that
we are used to in higher education sectors. In
addition, in computer science education, Hamada
(2007) reports to have successfully adopted a web
based active e-learning strategy. “With the advance
in applying technology in education, the traditional
lecture-driven teaching style is gradually replaced by
a more active teaching style where the students play
a more active role in the learning process. Hamada
(2007) has introduced a set of web-based tools for
active (e-)learning in Automata theory and related
fields in addition to experimental evaluation of its
use in context”.

Meyers and Thomas (1993) explain classroom
experiences and faculty suggestions in providing a
practical guide to teaching strategies to encourage
active learning in the college classroom. A wide
range of teaching tools which ask students to apply
what they are learning are considered, including
problem-solving exercises, cooperative student
projects, informal group work, simulations, case
studies, and role playing.

Silberman (1996) explains in 101 principles of
active learning as specific, practical strategies that
can be used for almost any subject matters to
promote active learning. It brings together in one
source a comprehensive collection of instructional
strategies, with ways to get students to be active
from the beginning through activities that build
teamwork and get students thinking about the

Technology Enhanced Active Learning in Software Engineering

243

subject matter. The 101 strategies are grouped into
the following areas: (1) "Introducing Active
Learning"; (2) "How To Get Students Active from
the Start";

Barnet and Coate (2005) suggest we need change
the way we teach and to re-consider our strategies.
Furthermore, they argue that “the test of an effective
curriculum is ‘engaged’: Are the students
individually engaged? Are they collectively
engaged?” Their main argument is that a complex
and uncertain world requires curricula in which
students as human beings are placed at the centre of
quality of learning experience. Brew (2006)
discusses the need for initiatives to strengthen the
relationship between teaching and research as steps
on the path to the development of a new higher
education. Using examples, conversations and
critical inquiry, it suggests that the establishment of
inclusive scholarly knowledge-building communities
of both students and staff should result from the
development of a stronger relationship between
research and teaching.

Offutt (2013) has proposed three principles for
teaching Software Engineering: divergent thinking,
collaborative learning, and learning through
differentiated assessments. Typically, Convergent
thinking meaning of the traditional believes that
computer science and mathematical problems, in
general, always or most likely have one correct
answer and successful students should tend toward
that answer. Engineering, however, especially
software engineering, on the other hand needs
divergent thinking, where multiple answers are
possible and the most successful students should
find a solution that’s unique when compared with
other students solutions (Offutt, 2013). Computer
science projects and homework assignments tend to
be assessed on a uniform scale that measures every
student’s work with the same yardstick. But in
engineering, especially software engineering, the
notion of what will succeed often varies depending
on the context, including users, market, platform,
and release date. This suggests that we, as educators,
should use differentiated assessments.

Therefore, in summary, Offutt (2013) emphasis
is on, when we teach software engineering, we must
remember that divergent thinking and collaborative
learning are essential abilities for practicing
engineers, and differentiated assessment is essential
for teaching software engineering.

The current research study has learned that “the
feedback and our interaction with our learners via
our teaching has a strong and positive effect on the
achievement of our learners” (Hendry et al., 2016;
Bonwell, 1991). Other active learning adopted in
software engineering courses and in computer
science courses include (Boud and Soloman, 2001;
Spicer, 1983; Huynth et al., 2016; Krusche et al.,
2017; Manohar et al., 2015; Lutz et. al., 2014;
Exposito, 2014). However, they mostly mean active
learning is a way of interacting with computer based
assessment, short cycle exercises, etc. These are one
of the traditional forms of interactive learning
techniques with the use of a computer. In our work,
we use the term active learning to include face to
face meeting, interaction and social activities with a
group project students, self-learning, etc.

Teaching Software Engineering at Leeds Beckett
at the graduate level include taking two semester
foundation modules in the first year and moving on
to second year where they learn project
management, group projects, and software design
module. In their final year, they take a two semester
module on software engineering with emphasis on
software reuse, component-based software
engineering (CBSE), software cost estimation
models, model-driven development, software
process improvement, quality models and testing
techniques. As part of their assessment in the final
year they are required to manage a second year
group project with a size of 5 maximum. The main
idea is that students learn more effectively when
they are faced with situation to introduce and teach
someone else and it is dynamic as they judged based
on actively self-engaged as well to make sure the
managed group is also actively engaged in their
project. This is the rational for adopting active
learning techniques into software engineering
classrooms. The dynamic nature of the arrangement
makes them to collaborate (achieving collaborative
learning), socialise, and to think differently
(divergent thinking) as they needed to meet outside
the normal classroom hours, often encouraged to
meet in the social areas such as cafeteria, etc.

This section outlined some of the existing
literature on good learning practices. However, it is
not clear how we can teach those practices and
therefore, we need efficient teaching strategies along
with those learning strategies. The following section
presents our work on applying some of the learning
strategies adopted through active learning methods

CSEDU 2017 - 9th International Conference on Computer Supported Education

244

as Offutt (2013) and others have not presented how
we can teach those techniques in practice.

3 ACTIVE LEARNING &
TEACHING MODEL BASED ON
SPECIFIC LEARNING
OUTCOME (ALT MODEL)

It is important to have an efficient teaching and
learning model which should consist of a clear
learning objectives, learning outcome, proposed
assessment, and clear marking criteria. However, for
an active learning technique this can be quite hard,
especially during the first time around. Making clear
assessment criteria can also be quite difficult as it
should be based on observation, feedback from the
students themselves to each other, group dynamics,
etc. In our approach to active learning is specifically
tuned for learning outcome so the effectiveness of
the learning method can easily be monitored and can
also see how well students have progressed with the
work. Our proposed learning model is shown in
Figure 1 which consists of a list of learning
objectives and expected outcomes and the
assessment criteria are largely based around meeting
those expected results/achievements by the groups.

Figure 1: Technology Enhanced Active Learning
Environment.

In the final year software engineering module, our
course structure has the following learning
outcomes:

1. Practice of diverse Requirements
Engineering Methods (Divergent
Thinking)

2. Practice of applying diverse software cost
estimation techniques (Divergent
thinking)

3. Practice of Software Project Management
Techniques such as scope management,

communication management, project
planning and scheduling (Differential
Assessment)

4. Application of software metrics measuring
the productivity of group projects
(emphasis is on Collaborative Learning)

This model has been implemented in a group

project that level 5 students take which was
managed by level 6 students. This has been
demonstrated in the following section with details of
data observed. As discussed, this paper has enforced
three types of learning practices that is proposed by
Offutt (2013) more efficiently with our approach to
ALT model. The divergent thinking was enforced
through application of variety of requirements,
design, and cost estimation approaches consulted
and trained Level 5 students, collaborative learning
has been enforced and supervised by making sure
smooth and successful delivery of level 5 group
project students and their product deliverable in a
timely and in a more engineered manner with
professional values and dignity of others (assessed
through acting as professional consultant) in the
group is also monitored. The successful
implementation of differential assessment is
implemented and monitored through varying degree
of assessment mark sheets, feedback from the
groups, and interview with consultant engineers with
the module tutors.

4 CASE STUDY – GROUP
PROJECT MANAGEMENT

The group project module is the appropriate one
selected for Software Engineering Consultancy and
Management (SECM). The aim of the group project
is to develop a web-based video rental agency. This
module has its own learning outcome such as to
work as a team, attend meetings regularly, record
and monitor progress, meet the deadlines, show
individual contribution to the group, know your
strength and weakness when working as a team.
Managing Software Development (MSD) module
has its own learning outcomes such as to be able to
consult group project, write a reflective report,
knowledge transfer skills, group communications,
technical consultancy on software engineering
methods and management. Our aim is to achieve
both, but at the same time encourage active learning.
The aim is to marry and synchronise expected
learning outcome and deliverable between MSD and

Learning
objectives
on Group
based/Team
based

Active
Learning

Software
Management
with specific
Learning
objectives &
teaching
principles of
key skill sets:

Expected
learning

Participants/Ac
tive Learners

Student
Manager –
Final Year
BSc (Hons)

Cloud Based
Technology

Subject-Specific
Learning
Environment

Learning
Environment

Technology Enhanced Active Learning in Software Engineering

245

the group project (year 2). The MSD coursework
descriptions are:

 To supervise a Level 2 group project (1 or 2
groups will be allocated to each student in
ASE module).

 Their role is to act as a project manager to
monitor, measure, advice, and measure
project metrics and to facilitate
communication amongst the group members.
This should be about processes and metrics
for managing quality in software
development, and practicing professional
facets of software engineering.

 They are expected to apply methods, tools,
techniques, and metrics where possible.
Apply knowledge from Managing Software
Development module (taught in the autumn
term –Semester A) and to use their own
experience as a Software Engineer.

The expected outcome is a reflective managerial

report consists of assessment of group dynamics,
role analysis and allocation, metrics collection,
observation, facilitating communication, conflict
resolution, and assessing product deliverables such
as requirements, project planning, cost estimation,
and implementation. The reflective report was
marked against the following criteria:

 Log book – activities, issues, solutions.
Should reflect phases of development
process. Must incorporate application of
selected metrics

 Reflective report on what could be done to
improve the process of managing projects,
ethical issues about conflict between getting
it done and quality, cost estimation success,
usefulness of selected metrics, post mortem
analysis of the project, etc.

 A report consisting of both technical merits
that are introduced and management
summary

 A range of metrics
 Assessment of the project process
 Evidence of facilitating the Group

communication and management
 Range of requirements engineering technique

introduced (e.g. use case diagram)
 The cost estimation technique used
 SQA technique used
 Metrics collected (using Together CASE tool

as well as ASE module)

 Complexity analysis of the code
 Application of MSD module techniques
 Test plan, Test case design, and test

implementation techniques for web based
projects

 Feedback form from your group (Hint
format)

o How useful was your participation?
o Did they learn new techniques?
o Did they feel their development was speeded

up?
o What did you introduce?
o What were their problems and issues, and

have they been solved?
o How well you managed communication and

management?
o Will they feel they can work with you on

another project?

Each year we are continuing to update on each of the
above activities and expected outcome.

5 RESULTS AND ANALYSIS

It is relatively hard to make any clear observation in
action research type of project due their nature of
personality and communication issues. However, we
have made some quite interesting observation. From
the past three years of this approach we have
identified a number of key outcomes:

 Students manager/consultant need to be
assigned to a group by the instructor instead
of leaving them to choose their preferred
group didn’t work well in the first year of
this approach

 Step in, when necessary, to resolve
conflicts between the consultant and the
group early on during their involvement

 Improvise the student manager now and
then during their discussion. This was made
easy due a specific allocated hour for group
projects.

 We found that the 90 % of the student
manager expressed this assignment as very
interesting and different to their usual
assignments.

 More than 90% expressed more than
satisfactory to the feedback questionnaire
completed by the group project team
members.

CSEDU 2017 - 9th International Conference on Computer Supported Education

246

 More than 60% of the student
managers/consultants felt this has increased
their learning and deeper understanding of
some of the SE issues as it was questioned
by group project students

 2nd year students felt they had learned
something additional to their normal way of
working on a group project on a software
development project and hence speeded up
their work. For example, they have learned
effort estimation and structuring,
questioning and rationalising of
requirements earlier on before starting their
development.

We are hoping to continue this approach for

coming years, but hopefully with more assessment
of the group communication and conflict resolution
conducted by the student managers. Figure 2
summaries the feedback received on the application
of ALT based learning. The group project students
(2nd year BSc SE students) expressed overall 90%
satisfaction with active learning based approach to
their assessment and the help they received from
their final year students as compared to just by
themselves and the final year students expressed
nearly 100% and felt how much they enjoyed in
supervising and applying software project
management, learned people’s management, and
have also improved their communication skills.

0

10

20

30

40

50

60

70

80

90

100
Group Project
Students (2nd
Year)

Software
Engineering
Student
Managers
(Final Year)

Figure 2: Results and Analysis on SE Practices.

In addition, the final year project managers have
also expressed how efficient they had this
opportunity to learn by teaching, coaching, and
monitoring the group project students in terms of
individual topics such as software projects
management practice, cost estimations, etc, and as
follow:

SPM: Effective Application of Software Project
Management Practices (over 90%)
U: Deeper Understanding of SPM Techniques
(>85%)
TC: Team Communications & Dealing with Team
Issues
CE: Application of SPM Cost Estimation
Techniques (FP, COCOMO)
RE&D: Application of Requirements Engineering
and Design Methods
Ref: Reflective Report Writing Skills
QM: Application of software quality assurance
techniques & software metrics techniques
PM: Improved Presentation & Communication
Skills

These are the practices asked in the feedback
form for which we have obtained more than 90%
satisfaction with effective application of SE
practices on SPM, CE, Ref, QM, and PM by group
project students as well as the student managers
have improved their understanding of the SE
practices and their leadership and communication
skills. Compared to other approaches in software
engineering education in particular they all refer to
computer based interaction with some team project.
In our project, we used a meaningful active learning
that developed group communication and
management practices early in their educational
career.

6 CONCLUSION

This research on Active Teaching and Learning in
Software engineering Education looked at existing
approaches to teaching and learning practices in
computer science and software engineering. We
have adopted our own teaching and learning model
based on active learning strategies that are
successful in school and social science education.
We have also have discovered three key learning
approaches have also been successfully adopted:
divergent thinking, collaborative learning, and
differential assessment. The ALT model has also
been evaluated by students and found to be 100%
more effective in their learning.

REFERENCES

Offutt, J (2013) Putting the Engineering into Software
Engineering Education, IEEE Software, Jan-Feb 2013,
30(1):96

Technology Enhanced Active Learning in Software Engineering

247

Parnas, D (1999) “Software Engineering Programs Are
Not Computer Science Programs,” IEEE Software,
vol. 16, no. 6, 1999, pp. 19–30.

Johnson, D. et al (1998) Active Learning: Cooperation in
the College Classroom, Interaction Book Company,
USA

Walsh, A and Inala, P (2010) Active Learning Techniques
for Librarians: Practical examples, Chandos
Publishing

Hamada, M (2007) Web-based Active e-Learning Tools
for Automata Theory, Seventh IEEE International
Conference on Advanced Learning Technologies
(ICALT 2007)

Meyers, Chet Jones, Thomas B (1993). Promoting Active
Learning. Strategies for the College Classroom,
Jossey-Bass Inc Publishers, USA

Silberman, L (1996) Active Learning: 101 Strategies To
Teach Any Subject, Prentice Hall

Barnett, R. and Coate, K. (2005) Engaging the curriculum
in higher education. Maidenhead: Open University
Press and McGraw Hill.

Brew, A. (2006) Research and teaching: beyond the
divide. London: Palgrave, Macmillan.

Hendry, G.D, White, P, and Herbert (2016) Providing
exemplar-based ‘feedforward’ before an assessment:
The role of teacher explanation, Active Learning in
Higher Education Journal (SAGE Publication) July
2016 17: 99-109, first published on March 18, 2016
doi:10.1177/1469787416637479

Bonwell, C (1991) Active Learning: Creating Excitement
in the Classroom, www.active-learning-site.com

Boud, D, Ed. and Soloman, N. Ed (2001) Work-Based
Learning: A New Higher Education?, Taylor &
Francis Inc, USA.

Spicer, C. J (1983) A Spiral Approach to Software
Engineering Project Management Education, ACM
SIGSOFT SOFTWARE ENGINEERING NOTES Vol
8 No 3 Jul 1983 Page 30

Huynh, Trongnghia; Hou, Gene; Wang, Jin (2016)
Communicating Wave Energy: An Active Learning
Experience for Students, American Journal of
Engineering Education, v7 n1 p37-46 Jun 2016. 10 pp.

Krusche, S. et al. (2017) Interactive Learning: Increasing
Student Participation through Shorter Exercise Cycles,
The proceeding of the 2016 Australasian Computing
Education Conference, ACM Digital Library 2017.

Manohar, P. A., et al. (2015) Case Studies for Enhancing
Student Engagement and Active Learning in Software
V&V Education, Journal of Education and Learning,
v4 n4 p39-52 2015. 13 pp.

Lutz, Michael J., Naveda, J. F., and Vallino, James R
(2014) Undergraduate Software Engineering,
Communications of the ACM. Aug2014, Vol. 57 Issue
8, p52-58. 7p.

Exposito, E (2014) yPBL: An Active, Collaborative and
Project-Based Learning Methodology in the Domain
of Software Engineering, Journal of Integrated Design
& Process Science. 2014, Vol. 18 Issue 2, p77-95. 19p

CSEDU 2017 - 9th International Conference on Computer Supported Education

248

