
Thoth: Automatic Resource Management with Machine Learning for
Container-based Cloud Platform

Akkarit Sangpetch, Orathai Sangpetch, Nut Juangmarisakul and Supakorn Warodom
Department of Computer Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang,

1 Chalongkrung Road, Ladkrabang, Bangkok, Thailand

Keywords: Cloud Computing, Scheduling, Container, Platform-as-a-Service.

Abstract: Platform-as-a-Service (PaaS) providers often encounter fluctuation in computing resource usage due to
workload changes, resulting in performance degradation. To maintain acceptable service quality, providers
may need to manually adjust resource allocation according to workload dynamics. Unfortunately, this
approach will not scale well as the number of applications grows. We thus propose Thoth, a dynamic
resource management system for PaaS using Docker container technology. Thoth automatically monitors
resource usage and dynamically adjusts appropriate amount of resources for each application. To implement
the automatic-scaling algorithm, we select three algorithms, namely Neural Network, Q-Learning and our
rule-based algorithm, to study and evaluate. The experimental results suggest that Q-Learning can the best
adapt to the load changes, followed by a rule-based algorithm and NN. With Q-Learning, Thoth can save
computing resources by 28.95% and 21.92%, compared to Neural Network and the rule-based algorithm
respectively, without compromising service quality.

1 INTRODUCTION

Computing paradigm has been radically shifted in
the past decade: from dedicated, on premise
infrastructure to on-demand cloud computing. Many
enterprises and organizations turn to cloud for IT
services so that they can focus on the core
businesses. Cloud providers have been leveraging on
virtualization technology to provide elastic and
flexible IT infrastructure in a form of virtual
machines (VMs). However, using VMs tend to incur
inefficient resource usage since, in practice, many
VMs run the same operation system and similar
dependent software, wasting computing resources on
the same content. In order to mitigate this
inefficiency problem, the container concept has been
introduced. Many containers could share not only
the same infrastructure, but also the underlying
software and dependencies, such as operating
systems and runtime components, increasing the
resource usage efficiency.

Additionally, container technology can address
fundamental challenges found in software
development and deployment – that is the
discrepancies in terms of software versions and
runtime dependencies in development, testing and

production environments, increasing risk of software
malfunction. With containers, developers can
package all coupled components and dependencies
into a pod where all components are co-scheduled
and co-located. Hence, developers can
compartmentalize micro-services of an application
and exercise continuous integration process more
easily, allowing applications become more agile.

Container-based cloud, e.g. Docker, has
emerging in mainstream in the past few years. Then,
major cloud providers, such as Google, Microsoft,
Amazon, IBM, have followed. Scaling container
service is also available where developers can
specify parameters and rules to determine the trigger
thresholds for scaling containers. One challenge with
the existing approach is how to appropriately
configure parameters. Taking too long to adjust
container instances could risk performance
degradation, leading to poor customer satisfaction.
Immediately instantiating instances could also waste
resources, increasing the operational cost. To set the
parameters, developers need to quantify their
workload with observation and analysis on running
applications and hope to discover request patterns.
This stage could take hours, days or months,
depending on applications and usage. The situation

Sangpetch, A., Sangpetch, O., Juangmarisakul, N. and Warodom, S.
Thoth: Automatic Resource Management with Machine Learning for Container-based Cloud Platform.
DOI: 10.5220/0006254601030111
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 75-83
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

75

becomes even worse when workload is dynamic and
agile, like web applications.

Web usage could change rapidly, depending on
content and services offered on web applications.
Ability to quickly respond to load changes is crucial
to prevent degraded service quality. With existing
cloud services, this ability heavily relies on how
quickly and accurately developers can set
parameters for the automatically-scaling service. It is
difficult to maintain the desired service quality when
tuning parameters manually. To address such
challenge, we propose an automatic resource
management engine, called Thoth. Thoth can
automatically adjust container instances in order to
maintain acceptable service quality without
excessive provision. For Thoth’s decision-making
component, we evaluate two machine learning
algorithms, namely 1) a reinforcement learning-
based approach, called Q-Learning and 2) Neural
Network, against our rule-based scaling method. The
algorithms consider percentages of CPU and
memory utilization, the number of requests, the
number of replicas and service time. Service time is
the time that containers take to serve requests. The
resource utilization of the containers indicates how
busy containers are. The number of requests and
service time over time should imply the usage and
trend. All selected metrics can suggest when
container instances should be adjusted so that
containers can gracefully handle load changes.

We implement Thoth based on Docker, which
provides container-based infrastructure, and
Kubernetes as a container orchestrator, similarly to
Google App Engine. Unlike existing systems, we
also integrate HAProxy to serve as a load balancer
as well as a request monitoring endpoint. The target
workload for Thoth is web applications. With Thoth,
developers no longer need to manually set scaling
parameters to meet desired performance. Thoth
could help reduce the time that takes to respond load
changes. From the experiments, Thoth with Q-
Learning appropriately adjust the container instances
while achieving the desired request response time
and consuming the least resources.

This paper is organized as follows. Section 2
describes related work. We explain the architecture
of the implemented system in Section 3. We
evaluate the performance of the system in Section 4
and conclude in Section 5.

2 RELATED WORKS

Resource allocation problem in computing
infrastructure, especially in a shared environment
such as cloud computing, has been studied in
previous works. One of important factors is scale-
out latency which indicates the amount of time that
takes to create a sufficient number of working
instances. As discussed in ASAP (Jiang, 2011),
scale-out latency on a virtual-machine based
platform can significantly impact the ability to adjust
to the demand. To reduce scale-out latency, we
choose to build the infrastructure based on container
technology since each container instance can be
created or removed in a swift. A container instance
is also its light-weighted and agile. Many previous
works (Rao et al., 2009), (Dutreilh et al., 2011)
focus on a virtual-machine based infrastructure,
while our work situates on the container-based
platform.

There are previous studies (Rao et al., 2009),
(Dutreilh et al., 2011) that deployed data mining
techniques to predict the demand pattern, similarly
to our work. The derived patterns were used to
predict the upcoming workload in order to prepare
an adequate number of virtual machines (VMs). For
examples, Rao et al (2009) and Dutreilh et al (2011)
selected reinforcement learning algorithms to
allocate virtual machine resources based on resource
utilization. Jamshidi et al (2016) used self-learning
fuzzy logic controller to scale the resource.
Although our work also leverages the reinforcement
learning algorithms, it considers the service time in
addition to the resource utilization. Moreover, the
studies (Rao et al., 2009), (Dutreilh et al., 2011) also
propose the adjustments to the existing workflow
deployed in the cloud platform.

Dawoud et al (2012) suggested a fine-grain
resource adjustment in order to avoid the initial
boot-up latency. Dynamic optimization method has
been used in (Mao et al., 2010) to determine when to
increase or decrease virtual machine instances with
respect to budget, performance or energy constraints
(Dougherty, 2012).

Although there are existing solutions, such as
Kubernetes (2017), for providing container-based
infrastructure, their resource management
capabilities are not sufficient to manage web
applications where workload is quite dynamic.
Kubernetes is an open-source platform, it was
originally created by Google and offered to Cloud
Native Computing Foundation (CNCF). Kubernetes
and Thoth are similar in a sense that both try to
automatically adjust the system resources so that

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

76

they meet the incoming demand. However, the
Autoscaling feature in Kubernetes version 1.1 (as of
this writing) only supports the threshold-based
ruling. In other words, users need to specify the
target CPU utilization which will be compared with
the average CPU utilization. If the target value is
met, Kubernetes will automatically spawn one more
container to help relieve the load. This current
method is simple but still neglect other important
factors that can contribute to the quality of web
applications, such as network utilization and
memory utilization. Deis (2017) builds open-source
tools to manage applications on Kubernetes. Thus,
Deis inherently shares the same scaling challenge
found in Kubernetes. In contrast, Thoth takes other
information, such as service time, request rate,
memory utilization and CPU utilization, into account
in order to make the scaling decision more
accurately.

Flynn (2017) is an open-source platform-as-a-
service based on container technology, but not
utilized Kubernetes. Flynn helps developers in
application deployment. Flynn’s scale mechanism is
still quite static. Users need to specify the number of
target instances on a command line in order to scale
an application.

Figure 1: Thoth System Architecture Overview.

3 ARCHITECTURE

We design the Thoth’s architecture, as shown in
Figure 1. One of our key design rationale is that we
try to leverage existing tools as much as possible and
provide the necessary modifications to complete our
resource management mechanism. The existing tools
we utilize are, for examples, Kubernetes, HAProxy
and Docker Engine. The system architecture
contains three different modules: 1) Platform-as-a-

Service or PaaS Module, 2) Profiling Module and 3)
Scaling module.

3.1 PaaS Module

The PaaS module is responsible for managing the
container and runtime infrastructure for applications.
We leverage Docker Engine to execute packaged
containers submitted by users. We use Kubernetes to
manage a cluster of Docker-enabled servers and
perform the container-replica creation and
decommission. To run web applications, port-
mapping is also one of the important tasks. We also
use Kubernetes to oversee port-mapping. At the
physical level, we connect each physical server to a
shared persistent storage in order to store persistent
data, such as database or application configurations.

We assume that each packaged container is
stateless and the different instances of the packaged
container will be able to serve each incoming
request equivalently. This assumption is generally
true in practice for recently-created web
applications. One of the key design for web
applications is reliability. In modern applications,
reliability can be achieved through running multiple
instances in various datacenters, rather than
obtaining very expensive pieces of hardware. Hence,
new web applications are normally designed to have
many identical workers serve users. These workers
are replaceable if any problem occurs, while users
do not even notice the problem.

When a user sends a request to the web servers
running on Thoth, each incoming request is going
through HAProxy servers. HAProxy serves as a load
balancer and reverse proxy for services running on
our platform. We also use HAProxy to capture
request statistics, such as the number of incoming
request and the service time of each container.
Combining HAProxy and Kubernetes, we have a
flexible platform which can manage applications’
resource scaling as well as collect the resource usage
statistics of all tenants in the system. Our PaaS
module is designed similarly to existing PaaS
platform, such as Cloud Foundry (originally
developed by VMware) and OpenShift by Red Hat.

3.2 Profiling Module

The main task of the profiling module is profiling
performance and collecting the resource usage of
applications running on our platform. In this module,
we implement a centralized log collector to keep two
important information: 1) the application-request
statistics and the service time, reported from

Thoth: Automatic Resource Management with Machine Learning for Container-based Cloud Platform

77

HAProxy and 2) the CPU and memory utilization of
each container and each physical servers. The CPU
and memory utilization is monitored by Kubernetes.
All statistics are captured as time series and stored
into InfluxDB to be used for further analysis and
monitoring the status of the system.

3.3 Scaling Module

The scaling module is our primary contribution
which automatically analyses the stream of
information collected by the profiling module,
described in Sub-section 3.2. The goal of the
analysis is to determine whether a web application is
needed more resources in order to meet the
acceptable quality of service. Then, it needs to
identify an appropriate course of actions for the
system in order to achieve such goal.

The collected time-series data is normalized and
reformatted to fit the requirements of the selected
machine-learning algorithms. In this paper, we
choose to explore Q-Learning, a reinforcement
learning-based approach, and Neural Network. The
selected algorithms will be compared with our rule-
based scaling method, which mimics the existing
approaches. These algorithms will serve as a key
component in our decision maker sub-module in
order to decide whether or not to increase or
decrease the instances of application containers. The
final decision is forwarded to the controller which
interacts with the Kubernetes to scale the container
for the application.

We implement our decision maker component as
a service module so that it can utilize different plug-
ins for various algorithms including Q-learning and
artificial neural network. In the future, different
applications might be able to use different
algorithms as appropriate.

Our scaling module is similar to the Autoscaling
feature in Kubernetes version 1.1 (as of this writing)
in a way that it tries to automatically adjust the
resources in order to satisfy the performance
requirement. However, the Autoscaling feature in
Kubernetes version 1.1 only considers a threshold-
based scaling based on target CPU utilization. In
contrast, our scaling module includes various
metrics including the application-request-related
information and system utilization into the
consideration. And our system can be easily
extended to additional information in the future.

4 EVALUATION

The main objective of the evaluation is to investigate
and assess the resource-control effectiveness of each
selected algorithm. We consider how quickly each
algorithm can adjust the number of computing
containers to cope with changes in workload so that
the request response time is maintained at the
acceptable level. The best algorithm should be able
to achieve desirable response time, while using the
computing resources as little as possible. In the
cloud regime, the amount of computing resources in
use implies the cost of computing resources. Cloud
providers may charge users or developers in term of
the number of running containers in combination of
the time in use. The more running containers
developers have, the more expense would incur. In
the experiments, all containers are instantiated from
the same image, i.e. using the same programs.

We choose three algorithms, namely Q-Learning
(Section 4.1.1), Neural Network (Section 4.1.2) and
Rule-based algorithm which uses the parameters in
Table 2. The rule-based algorithm represents a fixed
solution where developers are able to come up with
appropriate rules to handle existing workloads. The
rules are defined by the scaling threshold for
monitored Quality of Service metrics (such as
service time and request/response rate), as well as
resource utilization metrics (CPU, Memory.)
However, if the access pattern changes, the rules
may need to be revised and manually changed
accordingly. In this case, we assume that developers
are knowledgeable to be able to identify the
appropriate rules for such workload. The
configuration details of each algorithm are described
in Section 4.1.

We conduct three experiments for each selected
algorithm using the generated workload with the
characteristics, elaborated in Section 4.2. While
running the experiments, we use HAProxy to collect
all performance data, i.e. response time, CPU and
memory utilization. The experimental results are
demonstrated and discussed in Section 4.3.

4.1 Experimental Settings

As mentioned earlier, we select three algorithms for
the evaluation, namely Q-Learning, Neural Network
and Rule-based algorithm. The goal of each
algorithm is the same that is trying to maintain the
response time below 500 milliseconds for each
request by increasing the number of containers to
keep up with the additional workload or removing
the containers to reduce the excess resource. The
configurations of each algorithm are described in the
following.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

78

4.1.1 Q-Learning

Q-Learning is a reinforcement-learning based
approach for machine learning. As shown in Figure
2, Q-Learning system simulates a state diagram with
variable link weight. After the system transition
from an initial state, the reward of the current state is
evaluated. Good state will yield high reward and
reinforcement the associated transition. Bad state
will yield lower reward and reflect back to ensure
that the system is less likely to take the transition. As
shown in Figure 2, state A is a current state. If no
change in the resource allocation is needed, for
example when the service quality is still in the
acceptable range, it still stays in state A. If we need
to add an additional container instance or a replica in
order to handle higher demand, it will transition
from state A to state B. If we want to remove a
replica due to diminished workload, it can transition
from state A to state C.

Figure 2: A state diagram showing states and transitions to
multiple states generated while performing Q-Learning
approach.

Typical Q-Learning implementation uses finite
matrix to store its state-space information. However,
in our settings, the state-space size could be
exceedingly large. There are numerous scenarios in
terms of the number of outstanding requests, request
response time, CPU and memory utilization. To
make the approach practical for actual deployment,
we use a sparse learning matrix and store the list of
indexed states instead. In practice, the number of
explored state is limited and the time required to
calculate the state transition is negligible.

In order to cope with the large number of
available states, we have implemented a delayed
reward calculation in order to properly capture the
effect of change in the system. After transition to a
new state, the actual reward for such transition is

calculated and stored in the database. The reward
calculation is presented in Figure 3. The calculation
is comprised of the selected factors as follows:

1) The average CPU utilization.
2) The average memory utilization.
3) The service time that takes a server to

respond to a request.
4) The ratio of the total number of requests to

the maximum number of requests that can
be served by a single instance. This ratio
suggests the degree of workload quantity.

5) The number of existing replicas running an
application.

Table 1 demonstrates how we configure each

factor in order to make the calculation shown in
Figure 3. After combining all factors or variables,
the result determines the current state of an
application. Each state is identified as a tuple of the
variables <CPULOW, MEMLOW, RTIMELOW,
REQFOLD, REPLICAS>. Each state is associated
with a Q matrix value and the initial reward matrix
value is set to zero.

Figure 3: Variables used to identify the Q-Learning state.

Table 1: Q-Learning State Variables.

System
Variables

Description
Possible
Values

CPULOW
Average CPU utilization is

less than 50 %
0, 1

MEMLOW
Average memory

utilization is less than 50%
0, 1

RTIMELO
W

Response time is less than
average response time

0, 1

REQFOLD

The ratio of the total
number of requests to the

maxinum number of requests
that can be served by a single

instance

0, 1, 2,
….

REPLICAS
The number of replicas for

the application
1, 2, 3,

…

4.1.2 Artificial Neural Network (ANN)

Artificial Neural Network, simply Neural Network
(NN) is usually utilized as pattern classification. As
depicted in Figure 4, NN normally has multiple

Thoth: Automatic Resource Management with Machine Learning for Container-based Cloud Platform

79

inputs, weighed with appropriate values. Then, all
weighted inputs are combined using a selected
transfer function. The result will go through an
activation function which defines the output of such
inputs.

In this work, we deploy NN to recognize patterns
of application characteristics that require scaling.
Similar to Q-Learning, we use the variables
identified in Table 1 to construct an artificial neural
network with back-propagation. As shown in Figure
5, we represent the application state with a three-
layer neural network with one hidden layer. There
are 36 nodes in total. The input nodes conform to the
same guidelines described in Table 1, similarly to Q-
Learning. The task of the network is to classify the
combination of the given inputs and then determine
an associate action which can be increasing or
decreasing the number of existing containers or
replicas.

Figure 4: Neural network architecture.

4.1.3 Rule-based Algorithm

The rule-based algorithm (Rule) is created as a
representation of a fixed resource control algorithm.
Appropriate rules are influenced by experts with
relevant knowledge and experiences. The objective
of these rules is to achieve acceptable application
performance while minimizing the resources utilized
by applications. Two common application
performance metrics are response time and
throughput. The application response time is the
amount time that takes from sending an application
request until receiving the response. If we exclude
the network round-trip time from the response time,
it will be the time that the application servers take to
complete the request, referred to as service time. In
the rule-based approach, we give the service time
higher priority than the throughput or request rate
because the response time is an important factor to
indicate interactivity level with users. We also use
the CPU and memory utilization to estimate the
resource usage of individual applications. However,
the rules that we have constructed are not adaptive to

load fluctuation. This approach is similar to what we
have in current PaaS infrastructures.

Figure 5: The artificial neural network that is used in our
scaling algorithm.

To construct the rules, we select four important
metrics, namely 1) service time, which determines
the amount time that takes the containers to finish a
request, 2) the request rate or the number of requests
per second, 3) memory utilization percentage of
running containers and 4) CPU utilization
percentage of running containers. If the values of the
metrics exceed the maximum, the system needs to
create an additional container to handle the
workload. However, if the number decreases below
the minimum setting, the system needs to remove a
container in order to release unnecessary resources.

 Our rule-based algorithm will consider the
parameters according to the order in Table 2 – that is
the metrics are sorted by its priority. A higher
priority metric will get considered before a lower
priority metric. For example, the service time has
higher priority than CPU utilization. If the service
time exceeds 500 milliseconds but the number of
requests per second is below 1,200, the system still
needs to create another container. The reason is the
service time has a higher priority than a request rate.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

80

Table 2: Rule-based parameters and priorities.

Parameters Minimum Maximum

1) Service Time
(Milliseconds)

150 500

2) Request Rate (Requests per
Second)

1,200 2,500

3) Memory Utilization (%) 50 75

4) CPU Utilization (%) 50 75

4.2 Workloads

We use Locust (locust.io) to generate a synthetic
workload to simulate a dynamic usage scenario. The
test application is an eight-puzzle solver with
randomly-generated settings. The time to solve each
setting varies to mimic dynamic applications. The
generated workload pattern is shown in Figure 6.

Figure 6: The average number of requests per second for
the synthetic workload.

4.3 Experimental Results

From the experiments, both Neural Network
algorithm (NN) and Q-Learning algorithm (QL)
have very similar cumulative distribution functions
as shown in Figure 7A and 7B, while the rule-based
algorithm (Rule) has a little higher response time at
higher percentile. When we consider the response
time at the 90th percentile (Figure 7A), QL has the
best response time, followed by NN and Rule – that
is 6, 7 and 11 milliseconds respectively. Yet, the
CDF graphs of all three algorithms have long tails.
The 99th percentile response times of NN, QL and
Rule (Figure 7B) are 5,800, 3,782, 3,647
milliseconds respectively. The 99th percentile
response times are three orders of magnitude higher
than the 90th percentile response times. The average
response times of NN, QL and Rule are 169.76,
129.55, and 93.49 milliseconds respectively. NN has

the highest average response time, which is 23.68%
and 44.93% higher than the average response time of
QL and Rule respectively. From the experimental
results, NN has the worst capability to maintain the
acceptable response time, while QL has a bit better
overall response time than Rule.

Figure 7A: The zoomed-in response time cumulative
distribution function plot of NN, QL, and Rule (shown the
90th percentile).

Figure 7B: The zoomed-in response time cumulative
distribution function plot of NN, QL, and Rule (shown the
99th percentile).

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30 35 40 45 50
C
D
F

Response Time (Milliseconds)

Neural Network Q‐Learning

Rule

0.98

0.985

0.99

0.995

1

3400 3800 4200 4600 5000 5400 5800

C
D
F

Response Time (Milliseconds)
Neural Network Q‐Learning

Rule

0

100

200

300

400

500

600

0 2000 4000 6000

R
eq

u
es
ts
 p
er
 s
ec
o
n
d

Time (Seconds)

Thoth: Automatic Resource Management with Machine Learning for Container-based Cloud Platform

81

Figure 8: The number of replicas used with each
algorithm.

Figure 9: The average CPU and memory utilization for
each algorithm.

Consider the number of containers or replicas in
use for each experiment, as shown in Figure 8. The
number of replicas imply the expense that would
incur to developers. NN needs a lot more replicas
than QL and Rule in order to handle the same
amount of workload. Rule uses the containers a bit
more than QL, especially during the period of 3,400
and 4,100 milliseconds. Therefore, on average NN,
QL and Rule require 1.94, 1.38 and 1.68 replicas
respectively. Hence, QL should yield the least
computing cost to developers, followed by Rule and
NN.

Consider the CPU and memory utilization of all
in-use replicas, as shown in Figure 10 and 11. NN
and QL have the similar average utilization. As
shown in Figure 8 and 9, NN requires many more
replicas to do the same amount of work as QL since
the overall computing utilization of both NN and QL
is about the same. Rule has 35.16% and 9.59%
higher average CPU and memory utilization than the
others respectively. As shown in Figure 8, Rule is

Figure 10: The CPU utilization of the application
containers during the experiments with each algorithm.

Figure 11: The memory utilization of the application
containers during the experiments with each algorithm.

more sensitive to the workload changes than NN and
QL. Thus, Rule tends to trigger an additional
instance more quickly than QL, resulting in higher
CPU and memory resource usage. During the period
of 3,400 - 4,100 milliseconds, NN was unable to
respond to the load changes in time, which could be
the reason that NN has the worst overall response
time.

 The results from Figure 6-11 suggest that QL is
a preferable choice over NN since QL yields better
service (i.e. 34.79% better response time at 99th
percentile) with less computing cost (i.e. 28.96%
less containers in use). When we compare QL and
Rule, QL has overall slightly-better service at the

0

1

2

3

4

5

6

7

8

0 2000 4000 6000

R
ep

lic
as

Time (Seconds)

Neural Network Q‐Learning

Rule

0

20

40

60

80

Avg CPU (%) Avg Memory (%)

%
 R
es
o
u
rc
e
U
ti
liz
at
io
n

Neural Network Q‐Learning Rule

0

100

200

300

400

500

600

0 2000 4000 6000

%
 C
P
U
 U
ti
liz
at
io
n

Time (Seconds)
Neural Network Q‐Learning

Rule

0

10

20

30

40

50

60

0 2000 4000 6000

%
 M

em
o
ry
 U
ti
liz
at
io
n

Time (Seconds)
Neural Network Q‐Learning

Rule

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

82

90th percentile and incurs less computing cost (i.e.
21.94% less containers in use). As mentioned
earlier, NN requires the most average number of
containers in order to achieve the same amount of
work. Additionally, the overall response time of NN
seems to be the worst. This is because NN tends to
have the slowest response to the load changes. In
other words, NN cannot spawn a sufficient number
of containers in time in order to cope with more
workloads and when the load becomes smaller, NN
does not reduce the in-use containers as quickly as it
should.

5 CONCLUSION

We have proposed Thoth, an automated resource
management system for container-based cloud
platform, using different learning algorithms to auto-
scale computing resources for web applications. The
goal is to assist developers so that they do not need
to manually adjust computing resources when
workload changes to maintain acceptable level of
service. Thoth utilized three algorithms as pluggable
scaling modules, namely Neural Network, Q-
Learning and Rule-based algorithm. These
algorithms are studied and evaluated in a container-
based platform as a service system. The
experimental results suggest that QL can achieve the
best quality of service with the least computing cost
since QL can adapt to the load changes more quickly
and appropriately than the others. Although Rule-
based algorithm can yield a similar quality of service
to QL, Rule requires 21.94% more computing
resources, resulting in more expense. Additionally,
the rule-based algorithm requires experts to
manually calibrate the rules and it cannot be
automatically adjusted to changes in the workload.
NN performs the worst in terms of the amount of
resources and service quality since it cannot adjust
the load changes quickly enough. From the
evaluation, QL could help developers maintain
acceptable service quality as well as automatically
adjust the proper amount of computing resources in
order to minimize the computing resource expense.

REFERENCES

Dawoud, W., Takouna, I. and Meinel, C. (2012) Elastic
virtual machine for fine-grained cloud resource
provisioning. In: Global Trends in Computing and
Communication Systems, Springer Berline Heidelberg,
pp. 11-25.

Deis.io, (2017). Deis builds powerful, open source tools
that make it easy for teams to create and manage
applications on Kubernetes. [online] Available at:
https://deis.io.

Dougherty, B., White, J. and Schmidt, D.C. (2012) Model-
driven auto-scaling of green cloud computing
infrastructure. In: Future Generation Computer
Systems, 28, no 2., pp.371-378.

Dutreilh, X., Kirgizov, S., Melekhova O., Malenfant, J.,
Rivierre, N. and Truck, I. (2011) Using Reinforcement
Learning for Autonomic Resource Allocation in
Clouds: Toward a Fully Automated Workflow. In: the
7th International Conference on Autonomic and
Autonomous Systems, Venice, Italy: ICAS, pp.67-74.

Flynn.io, (2017). Throw away the duct tape. Say hello to
Flynn. [online] Avaiable at: https://flynn.io/

Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H.,
Metzger, A. and Estrada, G. (2016) Fuzzy Self-
Learning Controllers for Elasticity Management in
Dynamic Cloud Architectures. In: the 12th
International ACM SIGSOFT Conference on Quality
of Software Architectures, Venice: QoSA, pp. 70-79.

Jiang, J., Lu, J., Zhang, G. and Long, G. (2013) Optimal
Cloud Resource Auto-Scaling for Web Applications.
In: the 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Delft: CCGrid,
pp. 58-65.

Jiang, Y., Perng, C.S., Li, T. and Chang, R. (2011) ASAP:
A Self-Adaptive Prediction System for Instant Cloud
Resource Demand Provisioning. In: IEEE 11th
International Conference on Data Mining, Vancouver,
BC, pp. 1104-1109.

Kubernetes.io, (2017). Kubernetes is an open-source
system for automating deployment, scaling, and
management of containerized applications. [online]
Available at: https://kubernetes.io/

Mao, M., Li, J. and Humphrey, M. (2010) Cloud auto-
scaling with deadline and budget constraints. In: the
11th IEEE/ACM International Conference on Grid
Computing, Brussels, pp. 41-48.

Rao, J., Bu, X., Xu, C.Z., Wang, L., and Yin, G. (2009).
VCONF: a reinforcement learning approach to virtual
machine auto-configuration. In: the 6th International
Conference on Autonomic Computing, Barcelona,
Spain: ICAC, pp. 137-146.

Thoth: Automatic Resource Management with Machine Learning for Container-based Cloud Platform

83

