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Abstract: Platform-as-a-Service (PaaS) providers often encounter fluctuation in computing resource usage due to 
workload changes, resulting in performance degradation. To maintain acceptable service quality, providers 
may need to manually adjust resource allocation according to workload dynamics. Unfortunately, this 
approach will not scale well as the number of applications grows. We thus propose Thoth, a dynamic 
resource management system for PaaS using Docker container technology. Thoth automatically monitors 
resource usage and dynamically adjusts appropriate amount of resources for each application. To implement 
the automatic-scaling algorithm, we select three algorithms, namely Neural Network, Q-Learning and our 
rule-based algorithm, to study and evaluate. The experimental results suggest that Q-Learning can the best 
adapt to the load changes, followed by a rule-based algorithm and NN. With Q-Learning, Thoth can save 
computing resources by 28.95% and 21.92%, compared to Neural Network and the rule-based algorithm 
respectively, without compromising service quality. 

1 INTRODUCTION 

Computing paradigm has been radically shifted in 
the past decade: from dedicated, on premise 
infrastructure to on-demand cloud computing. Many 
enterprises and organizations turn to cloud for IT 
services so that they can focus on the core 
businesses. Cloud providers have been leveraging on 
virtualization technology to provide elastic and 
flexible IT infrastructure in a form of virtual 
machines (VMs). However, using VMs tend to incur 
inefficient resource usage since, in practice, many 
VMs run the same operation system and similar 
dependent software, wasting computing resources on 
the same content. In order to mitigate this 
inefficiency problem, the container concept has been 
introduced. Many containers could share not only 
the same infrastructure, but also the underlying 
software and dependencies, such as operating 
systems and runtime components, increasing the 
resource usage efficiency. 

Additionally, container technology can address 
fundamental challenges found in software 
development and deployment – that is the 
discrepancies in terms of software versions and 
runtime dependencies in development, testing and 

production environments, increasing risk of software 
malfunction. With containers, developers can 
package all coupled components and dependencies 
into a pod where all components are co-scheduled 
and co-located. Hence, developers can 
compartmentalize micro-services of an application 
and exercise continuous integration process more 
easily, allowing applications become more agile. 

Container-based cloud, e.g. Docker, has 
emerging in mainstream in the past few years. Then, 
major cloud providers, such as Google, Microsoft, 
Amazon, IBM, have followed. Scaling container 
service is also available where developers can 
specify parameters and rules to determine the trigger 
thresholds for scaling containers. One challenge with 
the existing approach is how to appropriately 
configure parameters. Taking too long to adjust 
container instances could risk performance 
degradation, leading to poor customer satisfaction. 
Immediately instantiating instances could also waste 
resources, increasing the operational cost. To set the 
parameters, developers need to quantify their 
workload with observation and analysis on running 
applications and hope to discover request patterns. 
This stage could take hours, days or months, 
depending on applications and usage. The situation 
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becomes even worse when workload is dynamic and 
agile, like web applications.  

Web usage could change rapidly, depending on 
content and services offered on web applications. 
Ability to quickly respond to load changes is crucial 
to prevent degraded service quality. With existing 
cloud services, this ability heavily relies on how 
quickly and accurately developers can set 
parameters for the automatically-scaling service. It is 
difficult to maintain the desired service quality when 
tuning parameters manually. To address such 
challenge, we propose an automatic resource 
management engine, called Thoth. Thoth can 
automatically adjust container instances in order to 
maintain acceptable service quality without 
excessive provision. For Thoth’s decision-making 
component, we evaluate two machine learning 
algorithms, namely 1) a reinforcement learning-
based approach, called Q-Learning and 2) Neural 
Network, against our rule-based scaling method. The 
algorithms consider percentages of CPU and 
memory utilization, the number of requests, the 
number of replicas and service time. Service time is 
the time that containers take to serve requests. The 
resource utilization of the containers indicates how 
busy containers are. The number of requests and 
service time over time should imply the usage and 
trend. All selected metrics can suggest when 
container instances should be adjusted so that 
containers can gracefully handle load changes. 

We implement Thoth based on Docker, which 
provides container-based infrastructure, and 
Kubernetes as a container orchestrator, similarly to 
Google App Engine. Unlike existing systems, we 
also integrate HAProxy to serve as a load balancer 
as well as a request monitoring endpoint. The target 
workload for Thoth is web applications. With Thoth, 
developers no longer need to manually set scaling 
parameters to meet desired performance. Thoth 
could help reduce the time that takes to respond load 
changes. From the experiments, Thoth with Q-
Learning appropriately adjust the container instances 
while achieving the desired request response time 
and consuming the least resources.  

This paper is organized as follows. Section 2 
describes related work. We explain the architecture 
of the implemented system in Section 3. We 
evaluate the performance of the system in Section 4 
and conclude in Section 5. 

 
 
 

2 RELATED WORKS 

Resource allocation problem in computing 
infrastructure, especially in a shared environment 
such as cloud computing, has been studied in 
previous works. One of important factors is scale-
out latency which indicates the amount of time that 
takes to create a sufficient number of working 
instances. As discussed in ASAP (Jiang, 2011), 
scale-out latency on a virtual-machine based 
platform can significantly impact the ability to adjust 
to the demand. To reduce scale-out latency, we 
choose to build the infrastructure based on container 
technology since each container instance can be 
created or removed in a swift. A container instance 
is also its light-weighted and agile. Many previous 
works (Rao et al., 2009), (Dutreilh et al., 2011) 
focus on a virtual-machine based infrastructure, 
while our work situates on the container-based 
platform.   

There are previous studies (Rao et al., 2009), 
(Dutreilh et al., 2011) that deployed data mining 
techniques to predict the demand pattern, similarly 
to our work. The derived patterns were used to 
predict the upcoming workload in order to prepare 
an adequate number of virtual machines (VMs). For 
examples, Rao et al (2009) and Dutreilh et al (2011) 
selected reinforcement learning algorithms to 
allocate virtual machine resources based on resource 
utilization. Jamshidi et al (2016) used self-learning 
fuzzy logic controller to scale the resource. 
Although our work also leverages the reinforcement 
learning algorithms, it considers the service time in 
addition to the resource utilization. Moreover, the 
studies (Rao et al., 2009), (Dutreilh et al., 2011) also 
propose the adjustments to the existing workflow 
deployed in the cloud platform.  

Dawoud et al (2012) suggested a fine-grain 
resource adjustment in order to avoid the initial 
boot-up latency. Dynamic optimization method has 
been used in (Mao et al., 2010) to determine when to 
increase or decrease virtual machine instances with 
respect to budget, performance or energy constraints 
(Dougherty, 2012). 

Although there are existing solutions, such as 
Kubernetes (2017), for providing container-based 
infrastructure, their resource management 
capabilities are not sufficient to manage web 
applications where workload is quite dynamic. 
Kubernetes is an open-source platform, it was 
originally created by Google and offered to Cloud 
Native Computing Foundation (CNCF). Kubernetes 
and Thoth are similar in a sense that both try to 
automatically adjust the system resources so that 
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they meet the incoming demand. However, the 
Autoscaling feature in Kubernetes version 1.1 (as of 
this writing) only supports the threshold-based 
ruling. In other words, users need to specify the 
target CPU utilization which will be compared with 
the average CPU utilization. If the target value is 
met, Kubernetes will automatically spawn one more 
container to help relieve the load. This current 
method is simple but still neglect other important 
factors that can contribute to the quality of web 
applications, such as network utilization and 
memory utilization. Deis (2017) builds open-source 
tools to manage applications on Kubernetes. Thus, 
Deis inherently shares the same scaling challenge 
found in Kubernetes. In contrast, Thoth takes other 
information, such as service time, request rate, 
memory utilization and CPU utilization, into account 
in order to make the scaling decision more 
accurately.  

Flynn (2017) is an open-source platform-as-a-
service based on container technology, but not 
utilized Kubernetes. Flynn helps developers in 
application deployment. Flynn’s scale mechanism is 
still quite static. Users need to specify the number of 
target instances on a command line in order to scale 
an application. 

 

Figure 1: Thoth System Architecture Overview. 

3 ARCHITECTURE 

We design the Thoth’s architecture, as shown in 
Figure 1. One of our key design rationale is that we 
try to leverage existing tools as much as possible and 
provide the necessary modifications to complete our 
resource management mechanism. The existing tools 
we utilize are, for examples, Kubernetes, HAProxy 
and Docker Engine. The system architecture 
contains three different modules: 1) Platform-as-a-

Service or PaaS Module, 2) Profiling Module and 3) 
Scaling module. 

3.1 PaaS Module 

The PaaS module is responsible for managing the 
container and runtime infrastructure for applications. 
We leverage Docker Engine to execute packaged 
containers submitted by users. We use Kubernetes to 
manage a cluster of Docker-enabled servers and 
perform the container-replica creation and 
decommission. To run web applications, port-
mapping is also one of the important tasks. We also 
use Kubernetes to oversee port-mapping. At the 
physical level, we connect each physical server to a 
shared persistent storage in order to store persistent 
data, such as database or application configurations. 

We assume that each packaged container is 
stateless and the different instances of the packaged 
container will be able to serve each incoming 
request equivalently. This assumption is generally 
true in practice for recently-created web 
applications. One of the key design for web 
applications is reliability. In modern applications, 
reliability can be achieved through running multiple 
instances in various datacenters, rather than 
obtaining very expensive pieces of hardware. Hence, 
new web applications are normally designed to have 
many identical workers serve users. These workers 
are replaceable if any problem occurs, while users 
do not even notice the problem.  

When a user sends a request to the web servers 
running on Thoth, each incoming request is going 
through HAProxy servers. HAProxy serves as a load 
balancer and reverse proxy for services running on 
our platform. We also use HAProxy to capture 
request statistics, such as the number of incoming 
request and the service time of each container. 
Combining HAProxy and Kubernetes, we have a 
flexible platform which can manage applications’ 
resource scaling as well as collect the resource usage 
statistics of all tenants in the system. Our PaaS 
module is designed similarly to existing PaaS 
platform, such as Cloud Foundry (originally 
developed by VMware) and OpenShift by Red Hat. 

3.2 Profiling Module 

The main task of the profiling module is profiling 
performance and collecting the resource usage of 
applications running on our platform. In this module, 
we implement a centralized log collector to keep two 
important information: 1) the application-request 
statistics and the service time, reported from 
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HAProxy and 2) the CPU and memory utilization of 
each container and each physical servers. The CPU 
and memory utilization is monitored by Kubernetes. 
All statistics are captured as time series and stored 
into InfluxDB to be used for further analysis and 
monitoring the status of the system. 

3.3 Scaling Module 

The scaling module is our primary contribution 
which automatically analyses the stream of 
information collected by the profiling module, 
described in Sub-section 3.2. The goal of the 
analysis is to determine whether a web application is 
needed more resources in order to meet the 
acceptable quality of service. Then, it needs to 
identify an appropriate course of actions for the 
system in order to achieve such goal.  

The collected time-series data is normalized and 
reformatted to fit the requirements of the selected 
machine-learning algorithms. In this paper, we 
choose to explore Q-Learning, a reinforcement 
learning-based approach, and Neural Network. The 
selected algorithms will be compared with our rule-
based scaling method, which mimics the existing 
approaches. These algorithms will serve as a key 
component in our decision maker sub-module in 
order to decide whether or not to increase or 
decrease the instances of application containers. The 
final decision is forwarded to the controller which 
interacts with the Kubernetes to scale the container 
for the application. 

We implement our decision maker component as 
a service module so that it can utilize different plug-
ins for various algorithms including Q-learning and 
artificial neural network. In the future, different 
applications might be able to use different 
algorithms as appropriate.  

Our scaling module is similar to the Autoscaling 
feature in Kubernetes version 1.1 (as of this writing) 
in a way that it tries to automatically adjust the 
resources in order to satisfy the performance 
requirement. However, the Autoscaling feature in 
Kubernetes version 1.1 only considers a threshold-
based scaling based on target CPU utilization. In 
contrast, our scaling module includes various 
metrics including the application-request-related 
information and system utilization into the 
consideration. And our system can be easily 
extended to additional information in the future.  

 
 

4 EVALUATION 

The main objective of the evaluation is to investigate 
and assess the resource-control effectiveness of each 
selected algorithm. We consider how quickly each 
algorithm can adjust the number of computing 
containers to cope with changes in workload so that 
the request response time is maintained at the 
acceptable level. The best algorithm should be able 
to achieve desirable response time, while using the 
computing resources as little as possible. In the 
cloud regime, the amount of computing resources in 
use implies the cost of computing resources. Cloud 
providers may charge users or developers in term of 
the number of running containers in combination of 
the time in use. The more running containers 
developers have, the more expense would incur. In 
the experiments, all containers are instantiated from 
the same image, i.e. using the same programs. 

We choose three algorithms, namely Q-Learning 
(Section 4.1.1), Neural Network (Section 4.1.2) and 
Rule-based algorithm which uses the parameters in 
Table 2. The rule-based algorithm represents a fixed 
solution where developers are able to come up with 
appropriate rules to handle existing workloads. The 
rules are defined by the scaling threshold for 
monitored Quality of Service metrics (such as 
service time and request/response rate), as well as 
resource utilization metrics (CPU, Memory.) 
However, if the access pattern changes, the rules 
may need to be revised and manually changed 
accordingly. In this case, we assume that developers 
are knowledgeable to be able to identify the 
appropriate rules for such workload. The 
configuration details of each algorithm are described 
in Section 4.1. 

We conduct three experiments for each selected 
algorithm using the generated workload with the 
characteristics, elaborated in Section 4.2. While 
running the experiments, we use HAProxy to collect 
all performance data, i.e. response time, CPU and 
memory utilization. The experimental results are 
demonstrated and discussed in Section 4.3. 

4.1 Experimental Settings 

As mentioned earlier, we select three algorithms for 
the evaluation, namely Q-Learning, Neural Network 
and Rule-based algorithm. The goal of each 
algorithm is the same that is trying to maintain the 
response time below 500 milliseconds for each 
request by increasing the number of containers to 
keep up with the additional workload or removing 
the containers to reduce the excess resource. The 
configurations of each algorithm are described in the 
following. 
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4.1.1 Q-Learning 

Q-Learning is a reinforcement-learning based 
approach for machine learning. As shown in Figure 
2, Q-Learning system simulates a state diagram with 
variable link weight. After the system transition 
from an initial state, the reward of the current state is 
evaluated. Good state will yield high reward and 
reinforcement the associated transition. Bad state 
will yield lower reward and reflect back to ensure 
that the system is less likely to take the transition. As 
shown in Figure 2, state A is a current state. If no 
change in the resource allocation is needed, for 
example when the service quality is still in the 
acceptable range, it still stays in state A. If we need 
to add an additional container instance or a replica in 
order to handle higher demand, it will transition 
from state A to state B. If we want to remove a 
replica due to diminished workload, it can transition 
from state A to state C. 

 

Figure 2: A state diagram showing states and transitions to 
multiple states generated while performing Q-Learning 
approach. 

Typical Q-Learning implementation uses finite 
matrix to store its state-space information. However, 
in our settings, the state-space size could be 
exceedingly large. There are numerous scenarios in 
terms of the number of outstanding requests, request 
response time, CPU and memory utilization. To 
make the approach practical for actual deployment, 
we use a sparse learning matrix and store the list of 
indexed states instead. In practice, the number of 
explored state is limited and the time required to 
calculate the state transition is negligible. 

In order to cope with the large number of 
available states, we have implemented a delayed 
reward calculation in order to properly capture the 
effect of change in the system. After transition to a 
new state, the actual reward for such transition is 

calculated and stored in the database. The reward 
calculation is presented in Figure 3. The calculation 
is comprised of the selected factors as follows: 

1) The average CPU utilization.  
2) The average memory utilization. 
3) The service time that takes a server to 

respond to a request. 
4) The ratio of the total number of requests to 

the maximum number of requests that can 
be served by a single instance. This ratio 
suggests the degree of workload quantity. 

5) The number of existing replicas running an 
application. 

 
Table 1 demonstrates how we configure each 

factor in order to make the calculation shown in 
Figure 3. After combining all factors or variables, 
the result determines the current state of an 
application. Each state is identified as a tuple of the 
variables <CPULOW, MEMLOW, RTIMELOW, 
REQFOLD, REPLICAS>. Each state is associated 
with a Q matrix value and the initial reward matrix 
value is set to zero. 

 

Figure 3: Variables used to identify the Q-Learning state. 

Table 1: Q-Learning State Variables. 

System 
Variables 

Description 
Possible 
Values 

CPULOW 
Average CPU utilization is 

less than 50 % 
0, 1 

MEMLOW 
Average memory 

utilization is less than 50% 
0, 1 

RTIMELO
W 

Response time is less than 
average response time 

0, 1 

REQFOLD 

The ratio of the total 
number of requests to the 

maxinum number of requests 
that can be served by a single 

instance 

0, 1, 2, 
…. 

REPLICAS 
The number of replicas for 

the application 
1, 2, 3, 

… 

4.1.2 Artificial Neural Network (ANN) 

Artificial Neural Network, simply Neural Network 
(NN) is usually utilized as pattern classification. As 
depicted in Figure 4, NN normally has multiple 
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inputs, weighed with appropriate values. Then, all 
weighted inputs are combined using a selected 
transfer function. The result will go through an 
activation function which defines the output of such 
inputs.  

In this work, we deploy NN to recognize patterns 
of application characteristics that require scaling. 
Similar to Q-Learning, we use the variables 
identified in Table 1 to construct an artificial neural 
network with back-propagation. As shown in Figure 
5, we represent the application state with a three-
layer neural network with one hidden layer. There 
are 36 nodes in total. The input nodes conform to the 
same guidelines described in Table 1, similarly to Q-
Learning. The task of the network is to classify the 
combination of the given inputs and then determine 
an associate action which can be increasing or 
decreasing the number of existing containers or 
replicas. 

 

Figure 4: Neural network architecture. 

4.1.3 Rule-based Algorithm 

The rule-based algorithm (Rule) is created as a 
representation of a fixed resource control algorithm. 
Appropriate rules are influenced by experts with 
relevant knowledge and experiences. The objective 
of these rules is to achieve acceptable application 
performance while minimizing the resources utilized 
by applications. Two common application 
performance metrics are response time and 
throughput. The application response time is the 
amount time that takes from sending an application 
request until receiving the response. If we exclude 
the network round-trip time from the response time, 
it will be the time that the application servers take to 
complete the request, referred to as service time. In 
the rule-based approach, we give the service time 
higher priority than the throughput or request rate 
because the response time is an important factor to 
indicate interactivity level with users. We also use 
the CPU and memory utilization to estimate the 
resource usage of individual applications. However, 
the rules that we have constructed are not adaptive to 

load fluctuation. This approach is similar to what we 
have in current PaaS infrastructures.  

 

Figure 5: The artificial neural network that is used in our 
scaling algorithm. 

To construct the rules, we select four important 
metrics, namely 1) service time, which determines 
the amount time that takes the containers to finish a 
request, 2) the request rate or the number of requests 
per second, 3) memory utilization percentage of 
running containers and 4) CPU utilization 
percentage of running containers. If the values of the 
metrics exceed the maximum, the system needs to 
create an additional container to handle the 
workload. However, if the number decreases below 
the minimum setting, the system needs to remove a 
container in order to release unnecessary resources. 

 Our rule-based algorithm will consider the 
parameters according to the order in Table 2 – that is 
the metrics are sorted by its priority.  A higher 
priority metric will get considered before a lower 
priority metric. For example, the service time has 
higher priority than CPU utilization. If the service 
time exceeds 500 milliseconds but the number of 
requests per second is below 1,200, the system still 
needs to create another container. The reason is the 
service time has a higher priority than a request rate. 
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Table 2: Rule-based parameters and priorities. 

Parameters Minimum Maximum 

1) Service Time 
(Milliseconds) 

150 500 

2) Request Rate (Requests per 
Second) 

1,200 2,500 

3) Memory Utilization (%) 50 75 

4) CPU Utilization (%) 50 75 

4.2 Workloads 

We use Locust (locust.io) to generate a synthetic 
workload to simulate a dynamic usage scenario. The 
test application is an eight-puzzle solver with 
randomly-generated settings. The time to solve each 
setting varies to mimic dynamic applications. The 
generated workload pattern is shown in Figure 6. 

Figure 6: The average number of requests per second for 
the synthetic workload. 

4.3 Experimental Results 

From the experiments, both Neural Network 
algorithm (NN) and Q-Learning algorithm (QL) 
have very similar cumulative distribution functions 
as shown in Figure 7A and 7B, while the rule-based 
algorithm (Rule) has a little higher response time at 
higher percentile. When we consider the response 
time at the 90th percentile (Figure 7A), QL has the 
best response time, followed by NN and Rule – that 
is 6, 7 and 11 milliseconds respectively. Yet, the 
CDF graphs of all three algorithms have long tails. 
The 99th percentile response times of NN, QL and 
Rule (Figure 7B) are 5,800, 3,782, 3,647 
milliseconds respectively. The 99th percentile 
response times are three orders of magnitude higher 
than the 90th percentile response times. The average 
response times of NN, QL and Rule are 169.76, 
129.55, and 93.49 milliseconds respectively. NN has 

the highest average response time, which is 23.68% 
and 44.93% higher than the average response time of 
QL and Rule respectively. From the experimental 
results, NN has the worst capability to maintain the 
acceptable response time, while QL has a bit better 
overall response time than Rule. 

 

Figure 7A: The zoomed-in response time cumulative 
distribution function plot of NN, QL, and Rule (shown the 
90th percentile). 

 

Figure 7B: The zoomed-in response time cumulative 
distribution function plot of NN, QL, and Rule (shown the 
99th percentile). 
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Figure 8: The number of replicas used with each 
algorithm. 

 

Figure 9: The average CPU and memory utilization for 
each algorithm. 

Consider the number of containers or replicas in 
use for each experiment, as shown in Figure 8. The 
number of replicas imply the expense that would 
incur to developers. NN needs a lot more replicas 
than QL and Rule in order to handle the same 
amount of workload. Rule uses the containers a bit 
more than QL, especially during the period of 3,400 
and 4,100 milliseconds. Therefore, on average NN, 
QL and Rule require 1.94, 1.38 and 1.68 replicas 
respectively. Hence, QL should yield the least 
computing cost to developers, followed by Rule and 
NN. 

Consider the CPU and memory utilization of all 
in-use replicas, as shown in Figure 10 and 11. NN 
and QL have the similar average utilization. As 
shown in Figure 8 and 9, NN requires many more 
replicas to do the same amount of work as QL since 
the overall computing utilization of both NN and QL 
is about the same. Rule has 35.16% and 9.59% 
higher average CPU and memory utilization than the 
others respectively. As shown in Figure 8, Rule is 
 

 

Figure 10: The CPU utilization of the application 
containers during the experiments with each algorithm. 

 

Figure 11: The memory utilization of the application 
containers during the experiments with each algorithm. 

more sensitive to the workload changes than NN and 
QL. Thus, Rule tends to trigger an additional 
instance more quickly than QL, resulting in higher 
CPU and memory resource usage. During the period 
of 3,400 - 4,100 milliseconds, NN was unable to 
respond to the load changes in time, which could be 
the reason that NN has the worst overall response 
time.   

 The results from Figure 6-11 suggest that QL is 
a preferable choice over NN since QL yields better 
service (i.e. 34.79% better response time at 99th 
percentile) with less computing cost (i.e. 28.96% 
less containers in use). When we compare QL and 
Rule, QL has overall slightly-better service at the 
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90th percentile and incurs less computing cost (i.e. 
21.94% less containers in use). As mentioned 
earlier, NN requires the most average number of 
containers in order to achieve the same amount of 
work. Additionally, the overall response time of NN 
seems to be the worst. This is because NN tends to 
have the slowest response to the load changes. In 
other words, NN cannot spawn a sufficient number 
of containers in time in order to cope with more 
workloads and when the load becomes smaller, NN 
does not reduce the in-use containers as quickly as it 
should. 

5 CONCLUSION 

We have proposed Thoth, an automated resource 
management system for container-based cloud 
platform, using different learning algorithms to auto-
scale computing resources for web applications. The 
goal is to assist developers so that they do not need 
to manually adjust computing resources when 
workload changes to maintain acceptable level of 
service. Thoth utilized three algorithms as pluggable 
scaling modules, namely Neural Network, Q-
Learning and Rule-based algorithm. These 
algorithms are studied and evaluated in a container-
based platform as a service system. The 
experimental results suggest that QL can achieve the 
best quality of service with the least computing cost 
since QL can adapt to the load changes more quickly 
and appropriately than the others. Although Rule-
based algorithm can yield a similar quality of service 
to QL, Rule requires 21.94% more computing 
resources, resulting in more expense. Additionally, 
the rule-based algorithm requires experts to 
manually calibrate the rules and it cannot be 
automatically adjusted to changes in the workload. 
NN performs the worst in terms of the amount of 
resources and service quality since it cannot adjust 
the load changes quickly enough. From the 
evaluation, QL could help developers maintain 
acceptable service quality as well as automatically 
adjust the proper amount of computing resources in 
order to minimize the computing resource expense. 
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