Simulating User Interactions: A Model and Tool for Semi-realistic Load
Testing of Social App Backend Web Services

Philipp Brune
University of Applied Sciences Neu-Ulm, Wileystrafie 1, D-89231 Neu-Ulm, Germany

Keywords:
Interaction, Web Services.

Abstract:

Model-based Testing, Load Testing, User Simulation, Mobile App Development, Mobile Social Network

Many mobile apps today support interactions between their users and/or the provider within the app. There-

fore, these apps commonly call a web service backend system hosted by the app provider. For the implemen-
tation of such service backends, load tests are required to ensure their performance and scalability. However,
existing tools like JMeter are not able to simulate “out of the box™ a load distribution with the complex time
evolution of heterogeneous, real and interacting users of a social app, which e.g. would be necessary to detect
critical performance bottlenecks. Therefore, in this paper a probabilistic model for simulating interacting users
of a social app is proposed and evaluated by implementing it in a prototype load testing tool and using it to
test a backend of new real-world social app currently under development.

1 INTRODUCTION

An increasing number of online services nowadays
offer features of social networks for their users, which
enable their users to interact with each other (like
maintaining personal profile, making friends etc.).
Such online services range from multiplayer games
to business-related communities, just to name a few.
In addition, most of these services use mobile apps at
least as one of their user frontends, very often also as
the primary one. Therefore, the usage of social mo-
bile apps is strongly increasing in recent years (Hsiao
et al., 2016).

This requires the implementation and hosting of
service backends for such kind of apps, which are
typically implemented using RESTful web services.
For the quality assurance of such service backends,
load tests are required to ensure their performance
and scalability. However, existing tools like JMe-
ter! using rather static, predefined load profiles or pu-
rely random execution of http requests are not able
to simulate a load distribution out of the box, which
models the complex time evolution of heterogeneous,
real and interacting users of an Online Social Network
(OSN) app.

In particular, the type, time and sequence of user
actions in OSN strongly depend on the current situa-

Uhttp://jmeter.apache.org

Brune, P.

tion of the user, his or her intrinsic motivation to use
the network, friends’ activity, or external events (Xu
et al., 2012), which could be modeled by user agents
having an inner state (Bonabeau, 2002) and maintai-
ning a user session (Shams et al., 2006). This might
be required e.g. to properly size the runtime hosting
environment and to detect critical performance bott-
lenecks. Therefore, realistic load testing of online ap-
plications has been an ongoing topic of research in
web and mobile development for many years (Calza-
rossa and Tucci, 2002; Shams et al., 2006; Terevinto
et al., 2016).

However, none of the existing approaches mo-
del all these relevant aspects of real users’ behaviour.
Therefore, in this paper a more holistic probabilis-
tic model for simulating interacting users of a social
app is proposed. The approach is evaluated by imple-
menting it in a prototype load testing tool and using it
to test a backend of a new real-world social app cur-
rently under development.

The rest of this paper is organized as follows:
In section 2 the related work is analyzed in detail,
section 3 describes the design of the proposed sto-
chastic model. The proof-of-concept implementa-
tion of the prototype load testing tool is illustrated in
section 4 and its evaluation in section 5. The current
limitations of the approach are discussed in section 6
before we conclude with a summary of our findings.

235

Simulating User Interactions: A Model and Tool for Semi-realistic Load Testing of Social App Backend Web Services.

DOI: 10.5220/0006248202350242

In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 235-242

ISBN: 978-989-758-246-2

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

2 RELATED WORK

For many years, tools and techniques for the perfor-
mance evaluation and load testing of internet appli-
cations have been a topic of active and still ongoing
research (Calzarossa and Tucci, 2002; Terevinto et al.,
2016). Therefore, the synthetic generation of realistic
load profiles for distributed applications is a crucial
prerequisite. Various approaches to achieve this on
the network layer of the communications stack have
been proposed (Balachandran et al., 2002; Busari and
Williamson, 2002; Weigle et al., 2006).

However, for typical distributed and web appli-
cations, the generation of realistic load profiles in
general requires to model the user interactions with
the system (Shams et al., 2006) including the need
to maintain a user session, with “a session being a
sequence of inter-dependent requests submitted by a
single user” (Shams et al., 2006). Since each such
session requires a user-specific state, the creation of
realistic synthetic workloads on the application level
requires the simulation of a large number of inde-
pendent virtual “users” and their interactions with the
system (‘““behaviour”) (Hlavacs et al., 2000; Shams
et al., 2006). In general, agent-based modeling could
be used to achieve this (Bonabeau, 2002).

Such user behaviour modeling has been used to
create synthetic workloads for various types of distri-
buted applications, ranging from multiplayer online
games (Lehn et al., 2014) to traditional web applicati-
ons (Hlavacs et al., 2000; Shams et al., 2006; Shyaa-
mini and Senthilkumar, 2015) and, more recently, so-
cial media platforms (Xu et al., 2012; Terevinto et al.,
2016). Different approaches exist to create the requi-
red large number of independent virtual user instances
(Shams et al., 2006; Vogele et al., 2015; Terevinto
et al., 2016). As a prerequisite for modeling and pre-
dicting workloads, also the real users’ behavior of va-
rious applications has been analyzed (Yu et al., 2006;
Maia et al., 2008; Benevenuto et al., 2009; Radinsky
et al., 2012; Awad and Khalil, 2012). In addition, ty-
pical challenges regarding this kind of performance
evaluation with synthetic workloads have been dis-
cussed (Hashemian et al., 2012).

In many cases, server-side components of distri-
buted applications will be deployed in the cloud, ty-
pically using the Platform-as-a-Service (PaaS) model
(Mell and Grance, 2011). Consequently, synthetic
workload generation and performance modeling for
cloud environments became a major research focus
recently (Chen et al., 2010; Folkerts et al., 2012; Cal-
heiros et al., 2013; Moreno et al., 2013; Chen et al.,
2015; Heinrich et al., 2015; Magalhaes et al., 2015;
Sliwko and Getov, 2016; Gongalves et al., 2016). Ho-

236

wever, only few authors consider modeling of PaaS
environments specifically (Zhang et al., 2012). But
since elasticity is a crucial feature of cloud environ-
ments, the simulation of workload variations over
time has been considered (Albonico et al., 2016).

While approaches for synthetic workload genera-
tion for existing OSN applications have been propo-
sed (Xu et al., 2012; Terevinto et al., 2016), no solu-
tion exists yet for performance testing new OSN ap-
plications still under development, for which the user
roles and behavior are still unknown.

In this case, only stochastic or probabilistic mo-
dels could be used to model the expected user beha-
vior, based on general observations about OSN users’
behavior (Maia et al., 2008; Benevenuto et al., 2009;
Xu et al., 2012). In general, the activity of users in
OSN has been found to depend on the factors: intrin-
sic interest, breaking news (i.e. external events) and
the activity of their friends (Xu et al., 2012), which
could be used to define a generic probabilistic mo-
del of users’ behavior. In addition, users’ activities
will in general follow an overall periodic time depen-
dency due to day and night, weekends and weekdays
etc. (Radinsky et al., 2012).

Since no approach exists so far combining all
these aspects, in this paper a model and software tool
for the synthetic creation of workloads for OSN ap-
plications are proposed and evaluated, which combine
the following features:

e Virtual users modeled by finite state machines
with probabilistic transitions between the states,
where the transitions refer to different user acti-
ons,

e Users’ activity depends on their intrinsic interest,
external events in their area and their friends’ acti-
vity,

e Users are spatially distributed,

e External events are localized and have a certain
spatial impact range.

3 STOCHASTIC MODEL OF
USER INTERACTIONS WITH
SOCIAL APPS

The proposed model is based on the simulation of
actions of locally dispersed social app users. For this
purpose, user objects are generated which are loca-
lized at an equally distributed random position in a
fictitious quadratic “world” with a coordinate system
of longitudinal and latitudinal coordinate values bet-
ween 0 and 100 each. This allows the simulation of

Simulating User Interactions: A Model and Tool for Semi-realistic Load Testing of Social App Backend Web Services

effects of locality (like e.g. by external events with a
limited regional impact).

During test execution, each user object is perio-
dically called to execute actions and send requests to
the backend web services of the app. In each of these
cycles, every user object might perform such actions
with a certain probability, which describes its activity.

In agreement with (Xu et al., 2012), this probabi-
lity p4 at the time ¢ is defined by

pa(t) = max(pr(t) + pi(t) + pe(t),)m(t) , (1)

where p; denotes the the user’s internal (intrinsic)
activity, pg the probability of using the OSN due to
the presence of external events affecting the user’s lo-
cation, and pr the average activity of the user’s di-
rect friends’ network (with N being the number of the
user’s direct friends)

1 N
pe(t) =5 X pailt) - @
i=1

In addition, m(t) describes a time-dependent modu-
lation of the resulting probability, depending on the
time of the day (a fictive day lasts for a defined time
span like e.g. 24 seconds) to simulate sleep, rest or
working periods. This modulation has a daily perio-
dicity.

External events appear and vanish in the virtual
world regularly, being located at random center po-
sitions and decreasing in importance for users with
increasing distance. Therefore, the impact of external
events on using the OSN is modelled by the probabi-
lity
) a;
a;+r; ’

Ng(t Ng(t)
pe(t) =Y pei(t)=Y elt) 3)

i=1 i=1
where Ng(t) is the current number of external events
in the virtual world, ¢;(¢) the importancy of the event
i, a; its mean impact radius and r; the distance bet-
ween the event’s center position and the user’s loca-
tion. The importancy e;(f) of an event is decreased
every virtual hour by a defined value Ae; to limit its
impact in time. Upon creation of new events, their
center positions and all described parameters are cho-
sen as random values.

Based on this model, the calculation of the current
activity of a user and the decision whether to perform
an action are implemented by the following Java code
fragment (the variables lat and 1ng denote latitudi-
nal and longitudinal coordinates of a position in the
virtual world):

protected boolean isActive (int hour) {
double friendsActivity = 0;
synchronized (friends) {

if (friends.size() > 0) {
for (GenericUser f : friends) {
friendsActivity =
friendsActivity
+ f.getCurrentActivity();
}
friendsActivity
= friendsActivity /
friends.size();

}
double activity = this.activity
+ Event.getTotalImportance (
this.lat, this.lng)
+ friendsActivity;
if (activity > 1.0) {
activity = 1.0;

if (rand.nextDouble() <
(activity
* activityPerHour [hour])) {
return true;
}

return false;

If this method returns true for a user, one of the
following actions is randomly selected and perfor-
med:

e Do the next action with respect to the social app
(like e.g. login, logout, invite friends, post a com-
ment etc.), depending on the current state of the
user object. Usually this involves making a web
service call to the app’s backend server,

e create a new user at a random position, add it to
the network, link with it as a friend, and after-
wards perform the next action,

e do nothing, with a small probability for deleting
the user from the system to model a user quitting
the social network.

4 PROOF-OF-CONCEPT
IMPLEMENTATION

The proposed model has been implemented using
the Java programming language” within a proof-of-
concept (PoC) load-testing tool. In figure 1 the class
diagram of this load testing tool based on the descri-
bed stochastic model is illustrated.

There, the class GenericUser describes the vir-
tual user objects, which e.g. contain also the met-

Zhttp://www.java.com

237

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

<<Java Class>>

<<Java Class>> <<Java Class>>
©Event ®WorkerThread ®GenericUser
modsl utl = <<Java Class>>
“esv: File o numOWorkers: int nZwerNum jon (@ NameGenerator
cwriler: BufferedWiiter = workerhr: int workers | © DUMOLSers: Long ua
ogtariTime: double o stop: boolean ° w‘] " NameGenerator()
o lat double WorkerThread(int) ° I"’S‘m"a’“e ng”g & NameGenerator(String[) String[) String[])
Ing: double) UL ing & NameGenerator(String[J, String[) String] Strin
:av?;Range'dauhle is':adwwm:em w: 0 (EITB) egetName[}'Smn; chsra sl smnel)
stopWorkers(}:void b
o importancy: double eful:,”‘vz::m = © password: Sring
o decrease: double OIS -nameGer” 0.1
o rand: Random 0 (B
o activity: double
: S;’E:‘I‘EL sotes i o currentActivity: Double
hourlyUpdateAll{):void o rand: Random
© hourlyUpdate():double . <<Java Class>>
- O (LB (@RESTClient
:Zg:l Hlomed _evenis —= o sessid: String utl
'showEven! Vol <<Java Class>> N . .
—! o ®Clock o ERI:g'SL'e’e" Bogiaan serviceBaseUrl: String
o taskld: Long Sy E
madal 'csv: File
FHOUR LEN-Int o lasfTaski: Lang Fwriter: BuffsredWiiter
hour-int dock :3";::”;:" [_myClient | =SsiarTime: double
imer: 0 Stimer: Ti
o timer: Timer Py N 01 c*timer: Timer
3 nswrwler. BufferedWriter FrequestCounter: Lon
<<Java Class>> Clock() o startTime: double SwriteCounter: |
&FgetClock()Clock wile-ounler: long
GSucIaIGrzpthnduw o gatHourgint & GenericUser(double,double GenericUser) FRESTClentSing)
u
SEC o nextUserNum)don © geLISON(String):JSONObject
& display: Displa OF eI e © geLISONAay(String):JSONAmay
play: play < createNewFriend():void ﬁsmgmmmeguegu—, Jvoid
usariap: Composin © addFriend(GenericUser):void _friends
© timer: Timer @ removeFriend(GenericUser)void
& SocialGraphWindow() < isActive(int):boolean
Pgetinstance (}:SocialGraphWindow < register():void
@ open()void <<Java Class>> <« login():void
<« createContents()void @ Main < logout()void
@ draw(GC)void {default package) < createTask()void
@ redraw()void o‘Main[} < inviteFriends():void
= translateLatCoord(double)int Fmain(String)void < acceptinvites():void
‘main(Strina[]yvoid
@ translateLngCoord(double)int op Task():void
© drawUser(GC,double,double):void @ doAction():boolean
@ drawRelation(GC double,double double double):void &Prun(intyboolean
© drawEvent{GC double double double)void @ run():void +allUsers
© eraseUser(GC double double)void _ this = showRelations(GC)void N
@ startUIRefresh():void esshcwsvnc\alﬁragh GC)void 0
— |01 ‘
Figure 1: UML class diagram displaying the Java classes of the proposed load testing tool.
e0e Simulated Social Network

Figure 2: Runtime visualization of the simulated virtual users and their relations by the proposed load testing tool. The tool
uses the Standard Widget Toolkit (SWT) to implement the window. Green squares denote the virtual users at their locations,
green lines the friendship relations between these users (social graph), and red circles the events with their mean impact radius.

238

Simulating User Interactions: A Model and Tool for Semi-realistic Load Testing of Social App Backend Web Services

hod isActive (int hour) outlined above. The class
Event models the external events taking place in the
virtual world, and the class Clock sets the current
time in the virtual world. These three classes belong
to the package model, which contains the classes re-
lated to modeling the load.

The utility classes WorkerThread and
NameGenerator describe the parallel worker threads
to call to the GenericUser objects periodically and a
string generator for unique artificial names and email
addresses, respectively. RESTClient is a helper class
for calling RESTful web services of a mobile app
backend over the network, and SocialGraphWindow
implements a Graphical User Interface (GUI) win-
dow to visualize at runtime the current state of the
simulated social graph between the virtual users on
the screen.

This GUI is implemented using the Standard Wid-
get Toolkit (SWT) originating from the Eclipse pro-
ject’. Figure 2 shows a screenshot of this window
visualizing the simulated virtual users and their relati-
ons (green squares and lines) and external events with
their mean impact radius (red circles).

The methods as inviteFriend(),
acceptInvites(), createNewFriend(), etc.
of GenericUser perform the typical actions of
participants in a social network by calling the corre-
sponding web services backend functions. Therefore,
the helper class RESTClient is used. Due to this,
it is comparably easy to adapt the described PoC
implementation to test other OSN’s web service bac-
kends by sub-classing GenericUser and overriding
or extending these methods.

Currently, this PoC implementation is multi-
threaded only and not distributable on multiple
servers, since it uses two global, static arrays,
GenericUser.allUsers and Event.event, repre-
senting the complete sets of all users and events in
the system. These need to be shared between all thre-
ads. Therefore, it needs to be run within a single Java
Virtual Machine (JVM) instance. Regarding the max-
imum number of simulatable users, it thus is only ver-
tically scalable by using a larger symmetric multipro-
cessor (SMP) server.

S EVALUATION

The proposed model and prototype tool were evalua-
ted by testing a web service backend for a new social
mobile app currently under development for a pro-
spective internet start-up.

3http://www.eclipse.org/swt

This service backend consists of RESTful web
services implemented using Java Enterprise Edition
(EE) JAX-RS API, Java Persistence API (JPA) for
object-relational mapping, a PostgreSQL database
and running on the Heroku Platform-as-a-Service
(PaaS) cloud environment®.

Figure 3 shows the results of a typical test run.
Here, both diagrams display measured data for a
time period of 350.000 milliseconds (corresponding
to about 14 fictive days in the simulated world, with
each being 24 seconds long).

The diagram at the top first shows the execution
times (black line) of one typical social app web ser-
vice request (namely: retrieve pending invitations to
a group) measured on the server (including database
access, without network latency, in milliseconds). Se-
cond, the cumulated intensity of the external events is
shown (red line, integrated over the whole area of the
virtual world). These intensity values are multiplied
by 1000 for displaying them together with the execu-
tion times in one diagram.

The diagram below first shows the number of si-
mulated users (black line), and second the periodic
pattern of the activity filter values (red line). With the
latter values the calculated activity of a user is finally
multiplied to model periods of activity and inactivity
(i.e. sleep) during a day. This corresponds to the sta-
tement activity*activityPerHour [hour] at the
end of the isActive (int hour) method shown in
section 3. The pattern repeats itself for every ficti-
tious day (about 14 times). The intensity values lie
in a range between 0 and 1 and are multiplied here
by 1000 for displaying them in one diagram with the
number of users.

The data indicates that the measured execution
time for processing a service request on average ri-
ses with the number of users and positively correlates
with the intensity of the external events, as one would
expect. However, these execution times are impacted
by multiple other factors (like e.g. the general rand-
omness of the model, the internal JVM state, server
load), so it could not be expected to observe a simple
direct proportionality.

Therefore, the data is in line with the intended be-
haviour for the proposed load testing tool and sup-
ports its applicability in practice. In addition, the tool
already helped to detect various design flaws of the
service implementation under test (e.g. regarding the
concurrent database connection handling and hidden
dependencies between different service functions pre-
viously overlooked), so it proved to be useful also
qualitatively.

“http://www.heroku.com

239

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

5 14000
o
(@]
E: 12000+
EES
gﬁmooo-—
[
- 2
od 8000+
2 >
8% 6000+
E c
a g 1 \
‘;-‘,gfu 4000+
m T (U I
5 2000+ h Y "‘ |
Q |
& I |
0 ' (A I I | ; I
0 100000 200000 300000
Time (msec)
1600
8 1400+
o
Ef 1200+
oL
25 1000 ron im MM QBT oA A AR men Mo oo non oin i
c = 1 T
ol /
8 > 800+ ’
>3 /
§< 600+ Vi
[«}}
& E T /
o E 400+
8 _/
T 200+
e (yu oo uououvuuuvuouyguyguyudd
0 = : = : = :
0 100000 200000 300000

Time (msec)

Figure 3: Measured results from running the prototype load test tool for the backend services of a new social mobile app
currently under development. For this test, the backend services were running in the Heroku PaaS cloud and the test tool
was run locally on a PC. The diagram at the top shows the cumulated intensity of the external events (red line, intgrated over
the whole area and multiplied by 1000 for displaying purposes) and the execution times of a specific frequent service request
measured inside the server (black line, in milliseconds) over time (in milliseconds). The diagram below shows the increasing
number of simulated users (black line) and the overall activity filter factor for the time of the day (red line, values between 0
and 1, multiplied by 1000 for displaying purposes) over time (in milliseconds).

240

Simulating User Interactions: A Model and Tool for Semi-realistic Load Testing of Social App Backend Web Services

6 LIMITATIONS AND FURTHER
RESEARCH

While these evaluation results in principle demon-
strate its feasibility, some open issues remain to be
addressed for evaluating the general applicability and
benefits of the proposed approach in practice:

First, its adaptability to test different OSN bac-
kends needs to be demonstrated by evaluating the
tool in various scenarios, in lab tests as well as in
practice. As indicated in section 4, sub-classing of
GenericUser provides a mean to adapt the present
PoC implementation with reasonable effort to new
OSN backends.

Second, as described in section 4, the current PoC
implementation is limited to a single JVM instance
and therefore is only vertically scalable. While this
is sufficient to evaluate the proposed model and the
basic feasibility of the approach, the creation of more
realistic, spatially distributed load tests requires hori-
zontal scalability using an implementation distributa-
ble over multiple servers. The presented implemen-
tation in principle could be extended to run on multi-
ple server nodes in a network by implementing a syn-
chronisation and replication mechanism between the
nodes for the two global arrays described. E.g., a mes-
sage passing communication model could be used for
this. However, further research is needed to imple-
ment and evaluate this extension.

7 CONCLUSION

In conclusion, in this paper a probabilistic model for
simulating interacting users of a social app has been
proposed and evaluated by implementing it in a pro-
totype load testing tool. The proposed approach is
capable not only of simulating the users’ activity de-
pending on their interest, external events in their area
and their friends’ activity, but also takes into account
the spatial distribution of users and external events,
which are localized and have a certain spatial impact
range within a virtual world.

While the evaluation is still preliminary, the re-
sults obtained so far are promising. Already with the
prototype tool some serious design flaws of a service
backend of a new, real-world social app currently un-
der development were detected. However, further re-
search is needed to continue the evaluation of the pro-
posed approach in lab and field tests with respect to
its possible applications, ease of use, performance and
adaptability.

REFERENCES

Albonico, M., Mottu, J.-M., and Sunyé, G. (2016). Au-
tomated workload generation for testing elastic web
applications.

Awad, M. A. and Khalil, I. (2012). Prediction of user’s
web-browsing behavior: Application of markov mo-
del. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 42(4):1131-1142.

Balachandran, A., Voelker, G. M., Bahl, P., and Rangan,
P. V. (2002). Characterizing user behavior and net-
work performance in a public wireless lan. In Procee-
dings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Compu-
ter Systems, SIGMETRICS °02, pages 195-205, New
York, NY, USA. ACM.

Benevenuto, F., Rodrigues, T., Cha, M., and Almeida, V.
(2009). Characterizing user behavior in online so-
cial networks. In Proceedings of the 9th ACM SIG-
COMM Conference on Internet Measurement Confe-
rence, IMC ’09, pages 49-62, New York, NY, USA.
ACM.

Bonabeau, E. (2002). Agent-based modeling: Methods and
techniques for simulating human systems. Procee-
dings of the National Academy of Sciences, 99(suppl
3):7280-7287.

Busari, M. and Williamson, C. (2002). Prowgen: a synthetic
workload generation tool for simulation evaluation of
web proxy caches. Computer Networks, 38(6):779—
794.

Calheiros, R. N., Netto, M. A., De Rose, C. A., and
Buyya, R. (2013). Emusim: an integrated emula-
tion and simulation environment for modeling, evalu-
ation, and validation of performance of cloud compu-
ting applications. Software: Practice and Experience,
43(5):595-612.

Calzarossa, M. C. and Tucci, S. (2002). Performance Eva-
luation of Complex Systems: Techniques and Tools:
Performance 2002. Tutorial Lectures, volume 2459.
Springer Science & Business Media.

Chen, F., Grundy, J., Schneider, J.-G., Yang, Y., and He,
Q. (2015). Stresscloud: a tool for analysing perfor-
mance and energy consumption of cloud applications.
In Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 721-724.
IEEE Press.

Chen, Y., Ganapathi, A. S., Griffith, R., and Katz, R. H.
(2010). Towards understanding cloud performance
tradeoffs using statistical workload analysis and re-
play. University of California at Berkeley, Technical
Report No. UCB/EECS-2010-81.

Folkerts, E., Alexandrov, A., Sachs, K., losup, A., Markl,
V., and Tosun, C. (2012). Benchmarking in the cloud:
What it should, can, and cannot be. In Technology
Conference on Performance Evaluation and Bench-
marking, pages 173-188. Springer.

Gongalves, G. D., Drago, I, Vieira, A. B., da Silva, A. P.C.,
Almeida, J. M., and Mellia, M. (2016). Workload mo-
dels and performance evaluation of cloud storage ser-
vices. Computer Networks.

241

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

Hashemian, R., Krishnamurthy, D., and Arlitt, M. (2012).
Web workload generation challenges—an empirical in-
vestigation. Software: Practice and Experience,
42(5):629-647.

Heinrich, R., Jung, R., Schmieders, E., Metzger, A., Has-
selbring, W., Reussner, R., and Pohl, K. (2015). Ar-
chitectural run-time models for operator-in-the-loop
adaptation of cloud applications.

Hlavacs, H., Hotop, E., and Kotsis, G. (2000). Workload
generation by modeling user behavior. In In Procee-
dings OPNETWORKS 2000.

Hsiao, C.-H., Chang, J.-J., and Tang, K.-Y. (2016). Ex-
ploring the influential factors in continuance usage
of mobile social apps: Satisfaction, habit, and custo-
mer value perspectives. Telematics and Informatics,
33(2):342 - 355.

Lehn, M., Triebel, T., Rehner, R., Guthier, B., Kopf, S., Bu-
chmann, A., and Effelsberg, W. (2014). On synthetic
workloads for multiplayer online games: a methodo-
logy for generating representative shooter game wor-
kloads. Multimedia Systems, 20(5):609-620.

Magalhaes, D., Calheiros, R. N., Buyya, R., and Gomes,
D. G. (2015). Workload modeling for resource usage
analysis and simulation in cloud computing. Compu-
ters & Electrical Engineering, 47:69-81.

Maia, M., Almeida, J., and Almeida, V. (2008). Identifying
user behavior in online social networks. In Procee-
dings of the 1st workshop on Social network systems,
pages 1-6. ACM.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing.

Moreno, I. S., Garraghan, P., Townend, P, and Xu, J.
(2013). An approach for characterizing workloads
in google cloud to derive realistic resource utiliza-
tion models. In Service Oriented System Engineering
(SOSE), 2013 IEEE 7th International Symposium on,
pages 49-60. IEEE.

Radinsky, K., Svore, K., Dumais, S., Teevan, J., Bocharov,
A., and Horvitz, E. (2012). Modeling and predicting
behavioral dynamics on the web. In Proceedings of
the 21st International Conference on World Wide Web,
WWW 12, pages 599-608, New York, NY, USA.
ACM.

Shams, M., Krishnamurthy, D., and Far, B. (2006). A
model-based approach for testing the performance of
web applications. In Proceedings of the 3rd interna-
tional workshop on Software quality assurance, pages
54-61. ACM.

Shyaamini, M. B. and Senthilkumar, M. (2015). A novel
approach for performance testing on web application
services. International Journal of Applied Engineer-
ing Research, 10(18):38679-38683.

Sliwko, L. and Getov, V. (2016). Agocs—accurate google
cloud simulator framework.

Terevinto, P. N., Pont, A., Gil, J. A., and Domenech, J.
(2016). A flexible workload model based on roles of
interactive users in social networks. In 2016 IFIP Net-
working Conference (IFIP Networking) and Works-
hops, pages 524-529.

Vogele, C., Robert, H., Robert, H., van Hoorn, A., and Kr-

242

cmar, H. (2015). Modeling complex user behavior
with the palladio component model.

Weigle, M. C., Adurthi, P., Herndndez-Campos, E., Jeftay,
K., and Smith, F. D. (2006). Tmix: a tool for ge-
nerating realistic tcp application workloads in ns-2.
ACM SIGCOMM Computer Communication Review,
36(3):65-76.

Xu, Z., Zhang, Y., Wu, Y., and Yang, Q. (2012). Mo-
deling user posting behavior on social media. In Pro-
ceedings of the 35th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’12, pages 545-554, New York, NY,
USA. ACM.

Yu, H., Zheng, D., Zhao, B. Y., and Zheng, W. (2006).
Understanding user behavior in large-scale video-on-
demand systems. In ACM SIGOPS Operating Systems
Review, volume 40, pages 333-344. ACM.

Zhang, W., Huang, X., Chen, N., Wang, W., and Zhong,
H. (2012). Paas-oriented performance modeling for
cloud computing. In 2012 IEEE 36th Annual Compu-
ter Software and Applications Conference, pages 395—
404. IEEE.

