
Progressive Hedging and Sample Average Approximation for the
Two-stage Stochastic Traveling Salesman Problem

Pablo Adasme1, Janny Leung2 and Ismael Soto1

1Departamento de Ingenierı́a Eléctrica, Universidad de Santiago de Chile, Avenida Ecuador 3519, Santiago, Chile
2Shaw College, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Blvd., Longgang District, Shenzhen,

Keywords: Two-stage Stochastic Programming, Traveling Salesman Problem, Progressive Hedging Algorithm, Sample
Average Approximation Method.

Abstract: In this paper, we propose an adapted version of the progressive hedging algorithm (PHA) (Rockafellar and
Wets, 1991; Lokketangen and Woodruff, 1996; Watson and Woodruff, 2011) for the two-stage stochastic
traveling salesman problem (STSP) introduced in (Adasme et al., 2016). Thus, we compute feasible solutions
for small, medium and large size instances of the problem. Additionally, we compare the PHA method with the
sample average approximation (SAA) method for all the randomly generated instances and compute statistical
lower and upper bounds. For this purpose, we use the compact polynomial formulation extended from (Miller
et al., 1960) in (Adasme et al., 2016) as it is the one that allows us to solve large size instances of the problem in
short CPU time with CPLEX. Our preliminary numerical results show that the results obtained with the PHA
algorithm are tight when compared to the optimal solutions of small and medium size instances. Moreover, we
obtain significantly better feasible solutions than CPLEX for large size instances with up to 100 nodes and 10
scenarios in significantly low CPU time. Finally, the bounds obtained with SAA method provide an average
reference interval for the stochastic problem.

1 INTRODUCTION

Most mathematical programming models in the oper-
ations research domain are subject to uncertainties in
problem parameters. There are two well known ap-
proaches to deal with the uncertainties, the first one
is known as robust optimization (RO) while the sec-
ond one is known as stochastic programming (SP)
approach (Bertsimas et al., 2011; Gaivoronski et al.,
2011; Shapiro et al., 2009). In this paper, we are
devoted to the latter approach. More precisely, we
deal with the two-stage stochastic traveling sales-
man problem (STSP) introduced in (Adasme et al.,
2016). We propose an adapted version of the pro-
gressive hedging algorithm (PHA) (Rockafellar and
Wets, 1991; Lokketangen and Woodruff, 1996; Wat-
son and Woodruff, 2011) and compute feasible so-
lutions for small, medium and large size instances
of the STSP. Additionally, we compare numerically
the PHA method with the sample average approxima-
tion (SAA) method (Ahmed and Shapiro, 2002) for
randomly generated instances and compute statistical
lower and upper bounds for the problem. For this pur-

pose, we use the compact polynomial formulation ex-
tended from (Miller et al., 1960) in (Adasme et al.,
2016) as it is the one that allows us to solve large size
instances of the problem within a limited CPU time
with CPLEX.

Two-stage SP problems similar as the one we con-
sider in this paper are, for instance the knapsack prob-
lem (Gaivoronski et al., 2011), the maximum weight
matching problem (Escoffier et al., 2010), maximal
and minimal spanning tree problems (Flaxman et al.,
2006; Escoffier et al., 2010), the stochastic maximum
weight forest problem (Adasme et al., 2013; Adasme
et al., 2015)), to name a few. For the sake of clarity,
the description of the STSP is as follows. We con-
sider the graph G = (V,ED∪ES) to be a non directed
complete graph with a set of nodes V and a set of
weighted edges ED∪ES where ED∩ES = /0. The sets
ED and ES contain deterministic and uncertain edge
weights, respectively. We assume that the edges in
the uncertainty set ES can be represented by a set of
K = {1,2, · · · , |K|} scenarios. The STSP consists of
finding |K|Hamiltonian cycles of G, one for each sce-
nario s ∈ K, using the same deterministic edges and

440
Adasme P., Leung J. and Soto I.
Progressive Hedging and Sample Average Approximation for the Two-stage Stochastic Traveling Salesman Problem.
DOI: 10.5220/0006241304400446
In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES 2017), pages 440-446
ISBN: 978-989-758-218-9
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

possibly different uncertain edges in each cycle, while
minimizing the sum of the deterministic edge weights
plus the expected edge weights over all scenarios.

Notice that for |K| = 1, the problem reduces to
the classical traveling salesman problem. Our pre-
liminary numerical results show that the results ob-
tained with the proposed PHA algorithm are tight
when compared to the optimal solutions of small and
medium size instances. Additionally, we obtain sig-
nificantly better feasible solutions than CPLEX for
large size instances with up to 100 nodes and 10 sce-
narios in significantly low CPU time. Finally, the
bounds obtained with SAA method provide an aver-
age reference interval for the stochastic problem.

Stochastic variants for the traveling salesman
problem have been proposed in (Maggioni et al.,
2014; Bertazzi and Maggioni, 2014) for instance. The
two-stage stochastic problem as presented in this pa-
per can be seen as a particular case of the stochastic
capacitated traveling salesmen location problem with
recourse (Bertazzi and Maggioni, 2014). As far as we
know, PHA and SAA approximation methods for this
new variant of the stochastic traveling salesman prob-
lem have not been studied so far in the literature.

The remaining of the paper is organized as fol-
lows. In Section 2, we present the polynomial two-
stage stochastic formulation of the problem. Then, in
Section 3, we present PHA and SAA methods. Sub-
sequently, in Section 4 we conduct preliminary nu-
merical results in order to compare all the algorithmic
procedures with the optimal solution or best solution
found with CPLEX. Finally, in Section 5 we give the
main conclusions of the paper.

2 TWO-STAGE STOCHASTIC
FORMULATION

In this section, for the sake of clarity we restate
the two-stage stochastic formulation adapted from
(Miller et al., 1960) in (Adasme et al., 2016) for the
traveling salesman problem. For this purpose, let AD
and AS represent the sets of arcs obtained from ED and
ES, respectively where an edge (i, j) is replaced by
two arcs (i, j),(j, i) of same cost in each correspond-
ing set. This formulation can be written as (Adasme
et al., 2016)

(ST SP1) :

min
{x,y,u}

{
∑

(i, j)∈AD

ci jxi j +
|K|
∑
s=1

ps ∑
(i, j)∈AS

δs
i jy

s
i j

}
(1)

subject to:

∑
j:(i, j)∈AD

xi j + ∑
j:(i, j)∈AS

ys
i j = 1,∀i ∈V,s ∈ K (2)

∑
i:(i, j)∈AD

xi j + ∑
i:(i, j)∈AS

ys
i j = 1,∀ j ∈V,s ∈ K (3)

us
1 = 1,∀s ∈ K (4)

2≤ us
i ≤ |V |,∀i ∈ |V |,(i 6= 1),∀s ∈ K (5)

us
i −us

j +1≤
(|V |−1)(1− xi j:(i, j)∈AD − ys

i j:(i, j)∈AS
),

∀i, j ∈V,(i, j 6= 1),s ∈ K (6)
xi j ∈ {0,1},∀(i, j) ∈ AD, (7)
ys

i j ∈ {0,1},∀(i, j) ∈ AS, s ∈ K (8)
us

i ∈ R+,∀i ∈V,s ∈ K (9)

In (ST SP1), the parameter ps,∀s ∈ K in the objective
function (1), represents the probability for scenario
s ∈ K where ∑s∈K ps = 1. Thus, in (1) we minimize
the sum of the deterministic edge weights plus the
expected cost of the uncertain edge weights obtained
over all scenarios. Constraints (2)-(3) force the sales-
man to arrive at and depart from each node exactly
once for each scenario s∈K. Next, the constraints (6)
ensure that, if the salesman travels from i to j, then the
nodes i and j are sequentially ordered for each s ∈ K.
These constraints together with (4) and (5) ensure that
each node is in a unique position. Finally, (7)-(9) are
the domain of the decision variables.

In particular, if the variable xi j = 1, it means that
the deterministic arc (i, j) ∈ AD is selected in each
Hamiltonian cycle, ∀s ∈ K, otherwise xi j = 0. Sim-
ilarly, if the variable ys

i j = 1, the arc (i, j) ∈ AS is se-
lected in the Hamiltonian cycle associated with sce-
nario s ∈ K, and ys

i j = 0 otherwise.

3 PROGRESSIVE HEDGING AND
SAMPLE AVERAGE
APPROXIMATION

In this section, we propose an adapted version of
the progressive hedging algorithm (Rockafellar and
Wets, 1991; Lokketangen and Woodruff, 1996; Wat-
son and Woodruff, 2011) in order to compute feasi-
ble solutions for (ST SP1). Additionally, we present
the sample average approximation method that we
use to compute statistical lower and upper bounds for
the more general case where the two-stage stochastic

Progressive Hedging and Sample Average Approximation for the Two-stage Stochastic Traveling Salesman Problem

441

objective function is treated as a generic expectation
function.

3.1 Progressive Hedging Algorithm

In order to present a PHA procedure, we write for
each scenario s ∈ K, the following subproblem ob-
tained from (ST SP1)

(ST SPs
1) :

min
{x,y,u}

{
∑

(i, j)∈AD

ci jxi j + ∑
(i, j)∈AS

δs
i jyi j

}

subject to:

∑
j:(i, j)∈AD

xi j + ∑
j:(i, j)∈AS

yi j = 1,

∀i ∈V (10)

∑
i:(i, j)∈AD

xi j + ∑
i:(i, j)∈AS

yi j = 1,

∀ j ∈V (11)
u1 = 1 (12)
2≤ ui ≤ |V |,∀i ∈ |V |,(i 6= 1) (13)
ui−u j +1≤
(|V |−1)(1− xi j:(i, j)∈AD − yi j:(i, j)∈AS),

∀i, j ∈V,(i, j 6= 1) (14)
xi j ∈ {0,1},∀(i, j) ∈ AD, (15)
yi j ∈ {0,1},∀(i, j) ∈ AS (16)
ui ∈ R+,∀i ∈V (17)

Notice that the index “s” is removed from the sec-
ond stage variables in (ST SPs

1). Thus, (ST SPs
1) has

significantly less number of variables than (ST SP1).
More precisely, the total number of first and second
stage variables is of the order of O(|AD|+ |AS|) whilst
the total number of variables in (ST SP1) is of the
order of O(|AD|+ |AS||K|). Obviously, solving for
each scenario s ∈ K the subproblem (ST SPs

1) is sig-
nificantly less complex than solving (ST SP1) directly
with CPLEX. In this sense, PHA uses a by-scenario
decomposition approximation scheme in order to find
feasible solutions for the complete problem (Watson
and Woodruff, 2011).

The PHA algorithm we adapt for (ST SP1) is de-
picted in Algorithm 3.1 and it can be explained as fol-
lows. First, in step 0 we solve for each s ∈ K, the
subproblem (ST SPs

1) with CPLEX and save the first
stage solution in xt

s for the iteration t = 0. Next, we
compute the average of the obtained first stage solu-
tion sets and save this value in x̄t . Finally, for each
s ∈ K we compute the values wt

s where the param-
eter ρ > 0 represents a penalty factor (Watson and
Woodruff, 2011). Subsequently, in step 1 we enter
into a while loop with the stopping condition of

Algorithm 3.1: PHA procedure to compute feasible
solutions for ST SP1.

Data: A problem instance of (ST SP1).
Result: A feasible solution (x,y) for (ST SP1) with

objective function value z.
Step 0:
t = 0 ;
foreach s ∈ K do

xt
s := argmin{x,y}

{
(ST SPs

1)
}

x̄t := ∑s∈K psxt
s ;

foreach s ∈ K do
wt

s := ρ(xt
s− x̄t)

t = t +1;
Step 1:
while (t < tmax and xt

s 6= xt
j,∀s, j ∈ K(j 6= s)) do

foreach s ∈ K do
xt

s :=

argmin{x,y}
{

∑(i, j)∈AD

[
(ci j +wt−1

s,i j)xi j +

ρ
2 |xi j− x̄t−1

i j |
]
+∑(i, j)∈AS

δs
i jyi j

}
;

s.t. (10)-(17)
x̄t := ∑s∈K psxt

s ;
foreach s ∈ K do

wt
s := wt−1

s +ρ(xt
s− x̄t)

t = t +1;
Step 2:
if (t = tmax) then

foreach i ∈ K do
foreach s ∈ K do

ys := argmin{y}
{
(ST SPs

1(x
t
i))
}

Compute a feasible solution of (ST SP1)
with xt

i and ys,∀s ∈ K

Save the best solution found as (xt ,yt ,zt);

else
foreach s ∈ K do

ys := argmin{y}
{
(ST SPs

1(x
t
s))
}

Compute a feasible solution of (ST SP1) with xt
s

and ys,∀s ∈ K;
Save the feasible solution as (xt ,yt ,zt)

return (xt ,yt ,zt);

a maximum number of iteration tmax while simulta-
neously checking whether the first stage solution set
has converged to a unique solution set. The steps in-
side the while loop are exactly the same as those in
step 0, with the difference that now we solve for each
s ∈ K, the subproblem (ST SPs

1) with the objective

function
{

∑(i, j)∈AD

[
(ci j +wt−1

s,i j)xi j +
ρ
2 |xi j− x̄t−1

i j |
]

+∑(i, j)∈AS
δs

i jyi j

}
where the parameters wt−1

s and ρ
penalize the difference in the first stage solution sets
within each iteration. Notice that this objective func-
tion uses absolute terms instead of Euclidean terms
as it is performed in (Watson and Woodruff, 2011).

ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

442

This allows us to formulate the equivalent mixed inte-
ger linear program straightforwardly. Finally, in step
2 we check whether the condition of t = tmax is satis-
fied, if so it means we have not found convergence
for the first stage variables. In this case, we com-
pute a feasible solution for each set of first stage vari-
ables and save the best solution. If t < tmax, it means
we have found a unique set of first stage variables
x = xs,∀s ∈ K. In this case, we simply obtain a fea-
sible solution for (ST SP1) using this set of variables
and save it as best solution found with the algorithm.

3.2 Sample Average Approximation
Method

In this subsection, we briefly sketch the SAA method
used to compute statistical lower and upper bounds
for (ST SP1). It is well known that this method con-
verges to an optimal solution of a continuous two-
stage stochastic linear optimization problem provided
that the sample size is sufficiently large (Ahmed and
Shapiro, 2002). For this purpose, we generate several
random samples for the second stage objective func-
tion costs.

We compare the SAA method with the numerical
results obtained with Algorithm 3.1. We remark that
the SAA method allows to obtain only an average ref-
erence interval for the stochastic problem. In other
words, with SAA method we do not solve exactly the
same instances as in the PHA algorithm, since we in-
tend to approximate the expectation function of the
second stage objective function rather than solving for
a particular set of scenarios. The SAA method is de-
picted in Algorithm 3.2.

In step zero of SAA method, we generate
randomly |M| independent samples m ∈ M =
{1, . . . , |M|} with scenario sets Nm where |Nm| = N.
Subsequently, we generate randomly a reference sam-
ple set N′ with sufficiently large number of scenarios
where |N′| >> N. Then, in step 1, we solve the re-
ferred two-stage stochastic optimization problem for
each sample m ∈ M where the set K is substituted
by Nm. Next in step 2, we compute the average of
the optimal objective function values obtained in step
1. The average is saved as a statistical lower bound
for (ST SP1) (Ahmed and Shapiro, 2002). Similarly,
we solve the referred optimization problem using the
fixed first stage solution xm obtained in step 1 for each
m ∈ M , where the set K is substituted by N′. The
latter allows to select the solution xm with the mini-
mum optimal objective function value as the solution
of SAA method. Finally, we generate randomly a first
stage solution set x = xξ for one sample scenario on
the second stage variables and compute the optimal

Algorithm 3.2: SAA procedure for (ST SP1) with ex-
pectation second stage objective function.

Data: A problem instance of (ST SP1) with
expectation.

Result: Statistical lower and upper bounds for
(ST SP1) with expectation.

Step 0:
Generate randomly |M| independent samples
m ∈M = {1, . . . , |M|} with scenario sets Nm where
|Nm|= N ;
Select a reference sample N ′ to be sufficiently large
where |N ′|>> N;
Step 1:
foreach m ∈M do

Solve the two-stage stochastic problem

min
{x,y,u}

{
∑

(i, j)∈AD

ci jxi j+

|Nm|−1
|Nm|

∑
s=1

∑
(i, j)∈AS

δs
i jy

s
i j

}

subject to:(2)− (9)

where the set K is replaced by Nm. Save the
sample optimal objective function value vm and
the sample optimal solution xm

Step 2:

Compute the average v̄|M| = |M|−1 ∑|M|m=1 vm with the
values obtained in the previous step. Save the average
as a statistical lower bound for (ST SP1);
foreach m ∈M do

Solve the following problem using the first stage
solution xm obtained in step 1

min
{xm,y,u}

{
∑

(i, j)∈AD

ci jxm(i j)+

|N ′|−1
|N ′|

∑
s=1

∑
(i, j)∈AS

δs
i jy

s
i j

}

subject to:(2)− (9) for fixed x = xm

where the set K is replaced by N ′ ;
Select the solution xm with the minimum optimal
objective function value as the solution of SAA
method.

Generate randomly a first stage solution set x = xξ
with one sample scenario and compute

min
{xξ,y,u}

{
∑

(i, j)∈AD

ci jxξ(i j)+

|N ′|−1
|N ′|

∑
s=1

∑
(i, j)∈AS

δs
i jy

s
i j

}

subject to:(2)− (9) for fixed x = xξ

where the set K is substituted by N ′ ;
Save the optimal objective function value as a
statistical upper bound for (ST SP1);

Progressive Hedging and Sample Average Approximation for the Two-stage Stochastic Traveling Salesman Problem

443

objective function value of the referred optimization
problem as a statistical upper bound for (ST SP1). It is
important to note that we compute the SAA solution
as well as the lower and upper bounds for (ST SP1) as-
suming that (ST SP1) has an expectation second stage
objective function.

4 PRELIMINARY NUMERICAL
RESULTS

In this section, we present preliminary numerical re-
sults. A Matlab (R2012a) program is developed using
CPLEX 12.6 to solve (ST SP1) and its LP relaxation.
The PHA and SAA methods are also implemented in
Matlab. The numerical experiments have been carried
out on an Intel(R) 64 bits core (TM) with 3.4 Ghz and
8 G of RAM. CPLEX solver is used with default op-
tions.

We generate the input data as follows. The edges
in ED and ES are chosen randomly with 50% of prob-
ability. The values of ps,∀s ∈ K are generated ran-
domly from the interval [0,1] such that ∑s∈K ps = 1.
Costs are randomly drawn from the interval [0,50] for
both the deterministic and uncertain edges. In par-
ticular, the cost matrices c = (ci j),∀(i j) ∈ AD and
δs = (δs

i j),∀(i j) ∈ AS,s ∈ K are generated as input
symmetric matrices.

In Algorithm 3.1, we set the parameter tmax =
{7,12} and save the best run, i.e., the run which al-
lows us to find the best feasible solution. The pa-
rameter ρ is calibrated on a fixed value of ρ = 10.
In Algorithm 3.2, we generate randomly |M| = 10
independent samples, each with |Nm| = 5 scenarios
for the instances 1-10, whilst for the instances 11-
12, we generate |M| = 10 independent samples each
with |Nm|= 2 scenarios since the CPU times become
highly and rapidly prohibitive in this case. Finally,
we generate a reference scenario set with |N′| = 50
scenarios.

In Tables 1 and 2, the instances are the same for
the first stage costs. In Table 1, the legend is as fol-
lows. In column 1, we show the instance number. In
columns 2-3, we show the instance dimensions. In
columns 4-5 we present the number of deterministic
and uncertain edges for each instance, respectively.
In columns 6-10, we present the optimal solution of
(ST SP1) or the best solution found with CPLEX in
two hours of CPU time, CPLEX number of branch
and bound nodes, CPU time in seconds, the optimal
solution of the linear relaxation of (ST SP1) and its
CPU time in seconds, respectively. In columns 11-
13, we present the best solution found with Algorithm
3.1, its CPU time in seconds and the number of itera-

tions required to find the feasible solution. Finally, in
columns 14-15, we present the gaps that we compute
by
[

Opt−LP
Opt

]
∗100 and

[
B.S.−Opt

Opt

]
∗100, respectively.

In Table 1, we solve small, medium and large size
instances ranging from |V |= 10, |K|= 5 to |V |= 100
nodes and |K| = 10 scenarios. From Table 1, first
we observe that the number of deterministic and un-
certain edges are balanced. Next, we observe that
(ST SP1) allows to solve to optimality only the in-
stances 1-11 with up to |V | = 30 nodes and |K| = 5
scenarios. For the remaining instances, we cannot
solve to optimality the problem. However, we obtain
feasible solutions for most of them, with the exception
of instance # 15. For this instance, we cannot find a
feasible solution with CPLEX in two hours of CPU
time. For the instance # 11, the problem is solved in
3910.61 seconds whilst the instances 1-10 are solved
to optimality in less than 300 seconds. The linear re-
laxation for the instances 1-10 is solved in less than
1 second, while the LP instances 11-20 can be solved
to optimality with CPU times ranging from 1 to 42
seconds. Next, we observe that the gaps for the LP
instances go from 10.55 to 54.14. This clearly shows
that the LP relaxation is not tight and explain the in-
crease in the number of branch and bound nodes. On
the opposite, we observe that the gaps for Algorithm
3.1 are very tight ranging from -66.89% to 11.21%.
Negative gaps mean that the feasible solutions ob-
tained with Algorithm 3.1 are significantly better than
those obtained with CPLEX in two hours of CPU
time. Notice that the CPU times required by Algo-
rithm 3.1 are considerably lower than two hours. This
shows the effectiveness of Algorithm 3.1. In particu-
lar, when finding feasible solutions for large size in-
stances of the problem. Notice that most of the gap
values obtained by Algorithm 3.1 for the instances
which are solved to optimality (e.g., instances 1-10)
are lower than 9% with the exception of instance # 11.
In this case, the gap is 11.21%. Finally, we observe
that the number of iterations required by Algorithm
3.1 is either six or eleven.

In Table 2, the legend is as follows. Columns
1-5 show exactly the same information as in Ta-
ble 1. In columns 6-9, we present statistical lower
bounds, the SAA solution, statistical upper bounds
and CPU time in seconds found by Algorithm 3.2.
Finally, in Columns 10-12 we present gaps that we
compute by

∣∣∣ Stat.Lb−Opt
Opt

∣∣∣∗100,
∣∣∣ SAALb−Opt

Opt

∣∣∣∗100 and∣∣∣ Stat.Ub−Opt
Opt

∣∣∣ ∗ 100, respectively where Opt corre-
sponds to the optimal solution or best solution found
in Table 1.

In Table 2, we only solve small and medium size
instances ranging from |V | = 10, |K| = 5 to |V | = 40

ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

444

Table 1: Numerical results for (ST SP1) using 50% of deterministic edges.

Inst. Dim. # of edges (ST SP1) PHA Algorithm Gaps
|V | |K| |ED| |ES| Opt B&Bn Time (s) LP Time (s) B.S. Time (s) #Iter Gap1 Gap2

1 10 5 23 22 125.22 115 0.50 112.02 0.32 126.09 22.53 6 10.55 0.69
2 12 5 42 24 101.95 0 0.43 90.95 0.35 103.28 22.05 6 10.78 1.31
3 14 5 41 50 111.90 1655 3.61 81.18 0.35 112.27 23.60 6 27.46 0.33
4 17 5 61 75 131.46 2009 5.61 111.10 0.33 141.41 23.78 6 15.49 7.57
5 20 5 88 102 148.38 15776 108.27 126.52 0.39 150.61 25.57 6 14.73 1.51
6 10 10 30 15 107.78 7 0.64 84.90 0.34 107.78 63.23 6 21.23 0
7 12 10 26 40 147.72 619 1.78 131.11 0.34 149.05 65.17 6 11.25 0.89
8 14 10 43 48 139.45 275 2.07 122.12 0.39 146.99 86.86 11 12.42 5.41
9 17 10 62 74 133.52 37730 238.27 113.30 0.35 138.81 92.22 11 15.14 3.96

10 20 10 93 97 153.02 21294 229.79 133.57 0.46 166.67 73.30 6 12.71 8.92
11 30 5 199 236 115.63 222400 3910.61 82.80 1.37 128.60 45.02 11 28.40 11.21
12 40 5 401 379 147.27 272361 7200 109.89 1.59 147.10 68.49 11 25.38 -0.12
13 60 5 889 881 194.47 60032 7200 114.96 1.82 174.30 164.17 11 40.88 -10.37
14 80 5 1552 1608 243.86 20885 7200 130.76 3.80 186.13 358.81 6 46.38 -23.67
15 100 5 2516 2434 - 6540 7200 122.02 4.31 177.16 739.57 6 - -
16 30 10 221 214 148.56 220674 7200 108.33 2.90 155.46 86.57 6 27.08 4.64
17 40 10 368 412 171.46 83242 7200 117.81 1.91 167.69 118.83 6 31.29 -2.20
18 60 10 844 926 244.26 15384 7200 123.38 4.83 169.16 233.10 6 49.49 -30.74
19 80 10 1549 1611 564.93 7703 7200 135.26 15.86 187.07 673.42 6 76.06 -66.89
20 100 10 2545 2405 275.51 1922 7200 126.35 41.51 186.08 3832.77 6 54.14 -32.46
−: No solution found with CPLEX in 2 hours.

nodes and |K| = 5 scenarios. We do not solve larger
size instances of the problem as in Table 1, since the
CPU times become rapidly prohibitive in this case.

From Table 2, we mainly observe that the SAA
solution values obtained with Algorithm 3.2 are be-
tween the statistical lower and upper bounds for all
the instances. We compute an average distance for the
lower and upper bounds of 38.74 %, whilst we com-
pute an average distance between the SAA solution
and lower bounds of 27.72 %. Similarly, we compute
an average distance between the upper bounds and
SAA solutions of 11.01 %. We also see that most of
the objective function values obtained in Table 1 are
near the lower and upper bounds obtained with SAA
Algorithm 3.2. Finally, by computing the averages of
columns 10-12 in Table 2, we obtain a minimum of
14.32 units for the column # 11. This suggests that
the SAA solution values are tighter when compared
with the objective function values found in Table 1.

5 CONCLUSIONS

In this paper, we proposed an adapted version of
the progressive hedging algorithm (PHA) (Rockafel-
lar and Wets, 1991; Lokketangen and Woodruff,
1996; Watson and Woodruff, 2011) for the two-stage
stochastic traveling salesman problem (STSP) intro-
duced in (Adasme et al., 2016). Thus, we computed
feasible solutions for small, medium and large size in-
stances of the problem. Additionally, we compared
the PHA method with the sample average approxi-

mation (SAA) method for all the randomly generated
instances and calculated statistical lower and upper
bounds for the problem. For this purpose, we used
the compact polynomial formulation extended from
(Miller et al., 1960) in (Adasme et al., 2016) as it is
the one that allows us to solve large size instances of
the problem within short CPU time with CPLEX. Our
preliminary numerical results showed that the results
obtained with the PHA algorithm are tight when com-
pared to the optimal solutions of small and medium
size instances. Moreover, we obtained significantly
better feasible solutions than CPLEX for large size
instances with up to 100 nodes and 10 scenarios in
considerably low CPU time. Finally, the bounds ob-
tained with SAA method provide an average reference
interval for the stochastic problem.

ACKNOWLEDGEMENTS

The first and third author acknowledge the financial
support of the USACH/DICYT Projects 061413SG,
061513VC DAS and CORFO 14IDL2-29919.

Progressive Hedging and Sample Average Approximation for the Two-stage Stochastic Traveling Salesman Problem

445

Table 2: Upper and Lower Bounds for the Instances in Table 1 using SAA Algorithm.

Inst. Dim. # of edges SAA Algorithm Gap
|V | |K| |ED| |ES| Stat. Lb SAA Lb Stat. Ub Time (s) Gap1 Gap2 Gap3

1 10 5 23 22 108.88 120.29 143.63 8.85 13.05 3.94 14.70
2 12 5 42 24 114.96 141.19 146.70 9.19 12.77 38.49 43.89
3 14 5 41 50 127.02 131.58 144.24 5.39 24.60 29.07 41.49
4 17 5 61 75 127.89 147.79 162.50 43.85 2.72 12.42 23.61
5 20 5 88 102 135.73 156.73 164.87 60.07 8.52 5.63 11.12
6 10 10 30 15 106.84 117.88 136.77 17.27 0.87 9.37 26.89
7 12 10 26 40 133.05 145.32 146.74 28.52 9.93 1.63 0.67
8 14 10 43 48 104.04 133.21 142.80 24.94 25.39 4.47 2.40
9 17 10 62 74 113.52 146.37 153.21 47.30 14.98 9.63 14.75

10 20 10 93 97 118.20 164.43 174.54 100.27 22.76 7.46 14.07
11 30 5 199 236 93.01 145.12 152.34 186.61 19.57 25.50 31.74
12 40 5 401 379 117.18 183.12 196.86 1748.68 20.43 24.34 33.67

REFERENCES

Adasme, P., Andrade, R., Letournel, M., and Lisser, A.
(2013). A polynomial formulation for the stochastic
maximum weight forest problem. ENDM, 41:29–36.

Adasme, P., Andrade, R., Letournel, M., and Lisser, A.
(2015). Stochastic maximum weight forest problem.
Networks, 65(4):289–305.

Adasme, P., Andrade, R., Leung, J., and Lisser, A. (2016).
A two-stage stochastic programming approach for the
traveling salesman problem. ICORES-2016.

Ahmed, S. and Shapiro, A. (2002). The sample average
approximation method for stochastic programs with
integer recourse. Georgia Institute of Technology.

Bertazzi, L. and Maggioni, F. (2014). Solution approaches
for the stochastic capacitated traveling salesmen lo-
cation problem with recourse. J Optim Theory Appl,
166(1):321–342.

Bertsimas, D., Brown, D., and Caramanis, C. (2011). The-
ory and applications of robust optimization. SIAM Re-
views, 53:464–501.

Escoffier, B., Gourves, L., Monnot, J., and Spanjaard, O.
(2010). Two-stage stochastic matching and spanning
tree problems: Polynomial instances and approxima-
tion. Eur J Oper Res, 205:19–30.

Flaxman, A. D., Frieze, A., and Krivelevich, M. (2006). On
the random 2-stage minimum spanning tree. Random
Struct Algor, 28:24–36.

Gaivoronski, A., Lisser, A., Lopez, R., and Xu, H. (2011).
Knapsack problem with probability constraints. J
Global Optim, 49:397–413.

Lokketangen, A. and Woodruff, D. L. (1996). Progressive
hedging and tabu search applied to mixed integer (0-
1) multi stage stochastic programming. Journal of
Heuristics, 2(2):111–128.

Maggioni, F., Perboli, G., and Tadei, R. (2014). The multi-
path traveling salesman problem with stochastic travel
costs: a city logistics computational study. Trans-
portation Research Procedia, 1(3):528–536.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). In-

teger programming formulations and travelling sales-
man problems. J. Assoc. Comput. Mach., 7:326–329.

Rockafellar, R. T. and Wets, R. J. B. (1991). Scenarios and
policy aggregation in optimization under uncertainty.
Mathematics and Operations Research, 16:119–147.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2009).
Lectures on stochastic programming: Modeling and
theory. MOS-SIAM Series on Optimization, Philadel-
phia.

Watson, J. P. and Woodruff, D. L. (2011). Progressive hedg-
ing innovations for a class of stochastic mixed-integer
resource allocation problems. Computational Man-
agement Science, 8:355–370.

ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

446

