
The Web as a Software Platform: Ten Years Later

Antero Taivalsaari1,2 and Tommi Mikkonen2,3

1Nokia Technologies, Hatanpään valtatie 30, Tampere, Finland
2Department of Pervasive Computing, Tampere University of Technology, Korkeakoulunkatu 1, Tampere, Finland

3Department of Computer Science, University of Helsinki, Gustaf Hällströmin katu 2b, Helsinki, Finland

Keywords: Web Programming, Web Applications, Live Object Systems, JavaScript, HTML5, Lively Kernel.

Abstract: In the past ten years, the Web has become a dominant deployment environment for new software systems and
applications. In view of its current popularity, it is easy to forget that only 10-15 years ago hardly any developer
would write serious software applications for the Web. Today, the use of the web browser as a software
platform is commonplace, and JavaScript has become one of the most popular programming languages in the
world. In this paper we revisit some predictions that were made over ten years ago when the Lively Kernel
project was started back in 2006. Ten years later, most of the elements of the original vision have been
fulfilled, although not entirely in the fashion we originally envisioned. We look back at the Lively Kernel
vision, reflecting our original goals to the state of the art in web programming today.

1 INTRODUCTION

The widespread adoption of the World Wide Web has
fundamentally changed the landscape of software de-
velopment. In the past years, the Web has become the
de facto deployment environment for new software
systems and applications. Office productivity applica-
tions and corporate tools such as invoicing, purchas-
ing and expense reporting systems have migrated to
the Web. Banking, insurance and retail industries – to
name a few – have been transformed profoundly by
the emergence of web-based applications and internet
services. Academic papers such as this one are now
commonly written using collaborative, browser-based
environments instead of traditional, installed office
suites. Even software development is nowadays of-
ten performed using interactive, web-based tools.

Only ten years ago, the world looked very differ-
ent still. Back in 2006, very few developers would
write software for the Web, let alone consider us-
ing JavaScript – or any other web technology, for
that matter – for writing any serious software appli-
cations (Casteleyn et al., 2014). Today, the Software
as a Service (SaaS) model (Turner et al., 2003) is
prevalent, and interactive, dynamic software devel-
opment for the Web has become commonplace. In
fact, traditional installed applications now maintain a
stronghold only in the mobile realm, where the num-
ber of mobile apps (especially for iOS and Android

devices) has exploded in recent years (Petsas et al.,
2013). In contrast, the number of applications that
people install on their personal computers has been in
steady decline over the past years. The majority of
activities on personal computers are now performed
using a web browser, leveraging the Software as a Ser-
vice (SaaS) model (VisionMobile, 2016).

In late 2005, when we started talking about creat-
ing an interactive, browser-based programming envi-
ronment entirely in JavaScript, the idea was met with
a lot of contempt at Sun Microsystems where we were
working at the time. JavaScript was viewed as a toy
language that was suitable for writing scripts no more
than few lines long. Furthermore, the idea of using the
web browser as a software platform was found highly
questionable by many of our colleagues.

The Lively Kernel project (Taivalsaari et al.,
2008b; Ingalls et al., 2008) – started at Sun Mi-
crosystems Labs back in 2006 – created one of the
first fully interactive, self-sustaining, web-based soft-
ware development environment that was built on the
assumption that the web browser would become a
credible, full-fledged software platform (http://lively-
kernel.org/). While the Lively system is not very
widely known or used today, it did pave the way –
for its part – for today’s Software as a Service based
software development systems and live web program-
ming more broadly. A recently published ten-year an-
niversary paper summarizes the roots, highlights and

Taivalsaari, A. and Mikkonen, T.
The Web as a Software Platform: Ten Years Later.
DOI: 10.5220/0006234800410050
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 41-50
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

41



evolution of the Lively Kernel from the technical per-
spective over the past ten years (Ingalls et al., 2016).

While the ten-year anniversary paper looked at
Lively mainly from the viewpoint of live object pro-
gramming, in this paper we take a different angle and
look back at the vision presented ten years ago, re-
flecting our original goals to the state of the art in
web programming today. We will also take a look
at the evolution of the Web as a software platform and
its impact on the software industry. We will then look
onwards to the future, highlighting relevant technical
areas for future work. This paper is a follow-up to a
series of earlier papers in which we have tracked the
evolution of the Web as a software platform (Mikko-
nen and Taivalsaari, 2007; Taivalsaari et al., 2008a;
Taivalsaari et al., 2011; Anttonen et al., 2011; Taival-
saari and Mikkonen, 2011).

The structure of this paper is as follows. In Sec-
tion 2, we will first provide a retrospective on the
origins of the Lively Kernel project, including the
broader vision behind it. In Section 3, we dive deeper
into the original goals of the Lively web platform, fol-
lowed by some discussion on meeting those goals in
Section 4. In Sections 5 and 6, we take a look at the
state of the art in web programming today, reflecting
the current state to the goals defined ten years ago.
In Section 7, we make some predictions and propos-
als for future work. Finally, Section 8 concludes the
paper with some final remarks.

2 RETROSPECTIVE

The roots of the Lively Kernel project can be traced
back to early conversations and discussions in 2005
that soon converged on themes related to web pro-
gramming. It was becoming obvious to us that while
the web browser was not designed to be software plat-
form, the browser was nevertheless going to become
an important platform, since the browser offered a
channel to distribute software globally in an entirely
novel, ”frictionless” fashion – without the conven-
tional hassles and distribution costs associated with
shrink-wrapped or manually installed applications.

While some of our team members had been
closely involved in the development of the Java pro-
gramming language ecosystem for years, it also be-
came clear to us that JavaScript (Flanagan, 2011) –
for better or worse – would become the next major
programming language. After all, JavaScript was the
only programming language that was supported by all
the major web browsers. While looking at JavaScript,
a language once considered as the neglected little sis-
ter of the Java language, we realized that JavaScript

actually offered many attractive qualities such as sup-
port for first class functions, reflection (albeit in a lim-
ited form only) and fully interactive program execu-
tion much in the same fashion as Smalltalk systems
three decades earlier (Goldberg and Robson, 1983).

In July 2006, we gave a presentation to our man-
agement to launch a new initiative on web program-
ming and JavaScript. The key arguments in that pre-
sentation were the following:

1. The World Wide Web will be the next major target
platform.

2. The Web Browser will effectively be the new op-
erating system.

3. JavaScript is the de facto programming language
of the Web.

While there is nothing controversial about these
statements in 2017, back in 2006 these were still
highly questionable claims. Those days, the web
browser was regarded only as a tool for viewing web
pages, i.e., documents with little interactive content
apart from some animated GIF images and Flash ad-
vertisements. Similarly, JavaScript and CSS (Cascad-
ing Style Sheets) were used primarily as tools to en-
liven static web content – not as tools for implement-
ing any serious applications. Furthermore, the con-
cepts of Software as a Service (SaaS) and Platform as
a Service (PaaS) were yet to be popularized – Sales-
force.com would launch their Force.com SaaS plat-
form in 2007.

Given Sun’s stewardship and continued commit-
ment to the Java platform, it was not surprising that
our proposal received only lukewarm interest. Never-
theless, in August 2006, we received a permission and
some funding to start a project to build the initial pro-
totype and demos. The initial project was quite small,
with only four people. The early history of the project
– described in the ten-year anniversary paper (Ingalls
et al., 2016) – resulted in the first public release of the
Lively Kernel on October 1, 2007.

To cut a long story short, the timing of our project
turned out to be about six months too late. In
early 2007, just as we had built the reasonably fea-
ture complete, internal version of the Lively Ker-
nel, it had already been decided that JavaFXScript
(https://en.wikipedia.org/wiki/JavaFXScript) was to
become the official scripting language for the Java
platform. Any projects related to JavaScript were
viewed as a distraction to that strategy. Thus, our
project was limited to being a research project only;
a lot of publications were written and a number of
successful external demonstrations were held over the
next years. In hindsight, had we been able to show
compelling demos about 3-6 months earlier before

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

42



some critical decisions were made, the future might
have looked different.

3 REVISITING THE ORIGINAL
VISION AND GOALS

The vision behind the Lively Kernel project has been
presented in a number of papers years ago (Taival-
saari et al., 2008b; Ingalls et al., 2008; Taivalsaari
et al., 2008a). Ever since the beginning of the Lively
Kernel project (originally known as project Flair and
later simply as Lively), we argued that web pro-
gramming should be fully interactive, very much in
the same fashion as Smalltalk systems had already
been in the 1970s and 1980s (Goldberg and Robson,
1983), allowing programmers to interact on all the ob-
jects directly and fully interactively. We also argued
that the web browser could be used as a fully self-
contained, self-sustaining programming environment;
in other words, the user could accomplish all the pro-
gramming, debugging and application execution tasks
without ever leaving the web browser. In modern web
parlance, the entire system is just a big Single-Page
Application (SPA) (Mesbah and Van Deursen, 2007;
Mikowski and Powell, 2013).

In designing the Lively Kernel, we had the follow-
ing technical goals (Taivalsaari et al., 2008b):

1. Self-sufficiency. The entire system is just a web
page. All the development, debugging and appli-
cation execution tasks can be performed without
ever leaving the browser. Applications live in the
environment much in the same fashion as applica-
tions in Smalltalk systems do (Goldberg and Rob-
son, 1983). (Among other things, this meant that
the source code of the system was maintained in-
side the system itself; apart from a small kernel,
there was no conventional source code represen-
tation of the system available outside the system.)

2. Liveness and malleability. The entire system is
designed to be live, interactive and dynamically
editable in the same fashion as the Smalltalk sys-
tems are. Almost anything in the system can be
changed on the fly. All the parts in the backend as
well as in the frontend can be programmed inter-
actively without the traditional compile, link, run,
crash, debug, and begin-all-over cycle.

3. Uniform and consistent development and user ex-
perience. A central goal in the design of the
Lively Kernel was uniformity. We wanted to build
a platform using a minimum number of underly-
ing concepts. Everything in the Lively Kernel is
an object, and all the visual objects in the system

are morphs that can be manipulated in a consistent
fashion.

4. Support for direct manipulation and desktop-style
user experience. When the Lively Kernel effort
was started, web browsers still offered a rather
clunky user experience that seemed like a throw-
back to an earlier era predating desktop apps. Our
aim was to make the web browser a fully interac-
tive environment supporting direct manipulation
much in the same fashion as Smalltalk systems
and desktop operating systems were long before
the advent of the web browser.

More concisely, the objective was to support
highly dynamic, desktop-style applications and appli-
cation development with rich graphics and direct ma-
nipulation capabilities, but without the installation or
upgrade hassles that conventional applications had.

In realizing the vision, some key ingredients and
principles were borrowed from Smalltalk systems, in-
cluding the focus (some might even say infatuation)
on uniformity. Our goal was to build a platform using
a minimum number of underlying technologies and
concepts. This was in striking contrast with domi-
nant web technologies that utilize a diverse array of
technologies such as HTML, CSS, DOM, JavaScript,
PHP, XML, and so on. In the Lively Kernel the goal
was to do as much as possible using a single tech-
nology: JavaScript. We chose JavaScript because of
its ubiquitous availability in the web browsers and
because of its syntactic resemblance to highly pop-
ular languages such as C, C++ and Java (in contrast,
Smalltalk had never truly become a mainstream pro-
gramming language because of its unusual syntax).

In realizing the vision, we leveraged the dynamic
aspects of JavaScript, especially the ability to mod-
ify applications at runtime. Such capabilities are an
essential ingredient in building a malleable web pro-
gramming environment that allows applications to be
developed interactively and collaboratively.

At the implementation level, the Lively Kernel
also leveraged Ajax-style asynchronous HTTP net-
work communication (the XMLHttpRequest mech-
anism) that had just become available in major
browsers some months earlier. In the absence of asyn-
chronous networking, it would not have been possible
to build a truly interactive user experience without
blocking the user interface when network operation
requests to backend services were being made.

Back in 2006, it still seemed feasible to try to re-
place the Document Object Model, HTML and CSS
with interfaces that were more uniform and amenable
to programmatic, desktop-style application develop-
ment. We were heavily influenced and inspired by the
Morphic graphics architecture that had been created

The Web as a Software Platform: Ten Years Later

43



over a decade earlier by Randy Smith, John Maloney,
Bay-Wei Chang and other talented engineers as part
of the Self system (Maloney and Smith, 1995). Mor-
phic was a portable, scene-graph based 2D render-
ing and composition architecture with built-in affine
transformation and matrix functionality that allowed
any piece of graphics to be resized, rescaled and ro-
tated programmatically with a rich set of imperative
APIs. Our goal was to replace the DOM with some-
thing equally powerful, utilizing the (SVG) DOM as
the underlying implementation architecture. By re-
placing the DOM with a JavaScript-based reimple-
mentation of Morphic, the hope was that we could
eventually turn the entire World Wide Web into a dra-
matically more interactive, visual, live construction
environment. Such an environment would allow peo-
ple not just to share documents but also create appli-
cations and components collaboratively in a seamless
and fully interactive fashion.

The overall Lively Kernel vision is captured well
in a videotaped lecture given by Dan Ingalls at JS-
Conf in Scottsdale, Arizona in late 20121. The video
summarizes the key Lively features that were famil-
iar from Smalltalk systems of yore. However, to
most web developers – and to most mainstream soft-
ware developers even today – these were and still
are rather unusual, unfamiliar features, offering much
more flexibility and malleability than average devel-
opers are accustomed to.

4 DISCUSSION

To the best of our knowledge, the Lively Kernel
was the first system to implement a purely browser-
based ”zero-installation” web programming environ-
ment with rich, interactive graphics and built-in de-
velopment and debugging tools. It was rather unique
at the time, while drawing a lot of inspiration from the
Smalltalk-80 system (Goldberg and Robson, 1983) as
well as from the Morphic rendering architecture de-
veloped originally for the Self programming language
(Maloney and Smith, 1995; Ungar and Smith, 1987).
The Lively Kernel preserved the central qualities of
the Smalltalk programming environment, and reintro-
duced them in the context of the Web so that the user
would not need any other execution environment than
a reasonably compatible web browser.

Perhaps the most unique (and fateful) decision in
the original Lively Kernel development was the deci-
sion to abandon the web browser’s Document Object
Model (DOM) as the primary developer-facing ren-

1https://www.youtube.com/watch?v=QTJRwKOFddc

dering architecture. The DOM was – and still is –
a rather complex global data structure that holds the
runtime document tree representing a web page in-
side the web browser. Web developers manipulate the
contents of their web pages by poking and tweaking
the DOM tree from their HTML, CSS and JavaScript
code. While the DOM is widely used, it effectively vi-
olates several established software engineering princi-
ples, exposing the implementation details of the user
interface as a large global data structure and as a set
of global variables that can potentially conflict with
each other if the web application downloads compo-
nents from multiple sources.

In hindsight, it should have been pretty obvious
that by the late 2000s the adoption of the DOM –
as well as the ”holy trinity” of HTML, CSS and
JavaScript – was already so prevalent and deeply in-
grained in web development that attempting to re-
place those technologies with something different
should have been seen as an impossible mission. Fur-
thermore, the immaturity of SVG implementations in
web browsers back then – such as the lack of proper
font support for text rendering – caused us consider-
able implementation headaches. In later versions of
the Lively system, the rendering architecture was gen-
eralized to support other underlying rendering tech-
nologies such as HTML and the HTML5 Canvas API.
These later steps in the evolution of the system have
been summarized in the ten-year anniversary paper
(Ingalls et al., 2016).

5 STATE OF THE ART IN WEB
PROGRAMMING: TEN YEARS
LATER

Let us next take a look at the state of the art in web
programming today, reflecting our original objectives
and ideas to the present situation in the industry.

The Web and the Software as a Service (SaaS)
Model have Redefined Personal Computing. To-
day, the use of the Web as a software platform and the
benefits of the Software as a Service model are widely
understood (Turner et al., 2003; Bouzid and Ren-
nyson, 2015). For better or worse, the web browser
has become the most commonly used desktop appli-
cation; often the users no longer open any other ap-
plications than just the browser. Effectively, for many
average computer users today, the browser is the com-
puter.

A recent VisionMobile developer survey report
strongly confirmed this observation, proposing the
following key trends in year 2016 (VisionMobile,

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

44



2016):

• The browser has become the default interface for
desktop applications.

• If the browser isn’t used to run the desktop app, it
is being used to distribute it.

• ChromeOS is gaining a foothold in Southern Asia.

Based on the points above, it is fair to say that
the Web and the Software as a Service model have
redefined the notion of personal computing in the
past ten years. Although conventional desktop ap-
plications do still exist and are still widely used,
desktop applications and their deployment model are
now primarily web-based. Perhaps the most repre-
sentative example of this ongoing paradigm shift is
Microsoft’s web-based Office 365 productivity suite
(https://www.office.com/) that replaces Microsoft’s
earlier (native) Office suite – the most iconic and
prevalent software product of the earlier PC era. This
trend has also sparked the introduction of totally
new computing device categories, such as Google’s
purely browser-based Chromebook personal comput-
ers (https://www.google.com/chromebook/) running
the ChromeOS operating system.

JavaScript has Become a Popular Program-
ming Language. Due to the central role of the
web browser, JavaScript has become one of the most
popular programming languages in the world, just
as we anticipated ten years ago. While JavaScript
language standardization work was stalled for many
years, there is now major progress on the standards
front. The ECMAScript 6 Specification was finally
published in June 2015 (ECMAInternational, 2015),
followed by ECMAScript 7 a year later (ECMAIn-
ternational, 2016). Although the suitability of the
JavaScript language for large masses of software de-
velopers can be debated, ECMAScript 6 (also known
as ECMAScript 2015) is actually a pretty decent and
expressive programming language, providing support
for features such as modules, class declarations, lexi-
cal block scoping, iterators and generators, promises
for asynchronous programming, and proper tail calls.

Interactive, Visual Development on the Web
has Become Commonplace. From the viewpoint of
the original Lively vision, it is interesting to note that
interactive, visual development for the Web has be-
come commonplace. There are numerous interactive
HTML5 programming environments such as Cloud9
(https://c9.io/), Codepen.io (http://codepen.io/),
Dabblet (http://dabblet.com/), JSBin
(https://jsbin.com/), JSFiddle (https://jsfiddle.net/),
LiveWeave (http://liveweave.com/) and Plunker
(https://plnkr.co/) that capture many of the original
qualities of the Lively vision – such as the ability to

perform software development entirely within the
confines of the web browser.

In addition, there are web curation systems (see
(Lupfer et al., 2016)) and JavaScript visualization
libraries such as Chart.js (http://www.chartjs.org/),
Cola.js (http://marvl.infotech.monash.edu/webcola/),
D3 (https://d3js.org/) and Vis.js (http://visjs.org/) that
provide rich, interactive, animated 2D and 3D visu-
alizations for the Web, very much in the same fash-
ion as we envisioned when we started the work on
Lively back in 2006. A central difference, though, is
that these new libraries are intended primarily for data
visualization rather than for general-purpose applica-
tion development.

Web Browser Performance and JavaScript
Performance have Improved Dramatically. While
the original versions of the Lively Kernel ran slowly,
advances in web browsers and high-performance
JavaScript engines soon changed the situation dra-
matically. The emergence of Google’s Chrome
web browser and the V8 JavaScript engine – cre-
ated by some of our former colleagues from Sun –
kick-started web browser performance wars. Raw
JavaScript execution speed increased by three orders
of magnitude between years 2006 and 2013, effec-
tively repeating the same dramatic performance ad-
vances that had occurred with Java virtual machines
ten years earlier when those VMs evolved from sim-
ple interpreter-based systems to using advanced adap-
tive just-in-time compilation techniques. Although
improvements in the UI rendering area have been less
dramatic, from the end user’s perspective today’s web
browsers are easily 10-20 times faster than ten years
ago (Wagner, 2016). This has made it possible to run
serious applications in the web browser. (Sadly, this
has also enabled much richer use of interactive adver-
tisements on web sites.)

HTML, CSS and the DOM Turned Out to
be Much More Persistent than we thought. The
browser and JavaScript performance improvements –
while definitely impressive – were not really unfore-
seen to us. We were convinced that the performance
problems of the browser and JavaScript would ulti-
mately get resolved. However, what was unforeseen
to us how ”sticky” the original core technologies in
web development – HTML, CSS and JavaScript – as
well as the use of the DOM would be. Our assump-
tion was that software developers would prefer hav-
ing a more uniform, conventional set of imperative
graphics APIs – supporting direct, programmatic ob-
ject manipulation much in the same fashion as in con-
ventional desktop operating systems – instead of us-
ing features that were originally designed for docu-
ment layout rather than for programming.

The Web as a Software Platform: Ten Years Later

45



Furthermore, when we gave presentations in web
developers conferences, reminding web developers
of traditional software engineering principles such as
modularity, separation of concerns and the general
importance of keeping specifications and public
interfaces separate from implementation details
(Parnas, 1972), web developers shrugged and noted
that the use of HTML, CSS and JavaScript already
gave them the necessary separation. Likewise, the
ability to manipulate graphics by poking the global
DOM tree from anywhere in the application was
seen as a normal way of doing things rather than as
something that would raise any concerns.

In recent years, things have gone in
a better direction given the earlier men-
tioned modularity mechanisms that have been
added to the ECMAScript language, as well
as upcoming support for Web Components
(https://www.w3.org/TR/#tr Web Components).

Web Components bring component-based soft-
ware engineering principles to the World Wide Web,
including the interoperability of higher-level HTML
elements, encapsulation, information hiding and the
general ability to create reusable, higher-level UI
components that can be added flexibly to web appli-
cations.

The Worlds of JavaScript and Web Program-
ming are Highly Fragmented. The number of
JavaScript libraries and frameworks has grown al-
most exponentially in the past years. Accord-
ing to the recent estimates, there are now over
1,300 publicly released JavaScript libraries available
(https://www.javascripting.com/). Interestingly, there
is still very little convergence yet, except for some
annually changing trends, with some libraries and
frameworks gaining momentum one year, only to lose
their momentum to some newer frameworks some
time later. For instance, the once dominant Proto-
type.js and jQuery libraries are now being forgot-
ten. While Angular.js seemed to capture the most
developer mindshare only two years ago, it is cur-
rently the React.js ecosystem that seems to capture
the majority of developer attention. Furthermore,
the use of JavaScript on the server side, most no-
tably Node.js (https://nodejs.org/en/) and its associ-
ated NPM ecosystem (consisting of tens of thousands
of publicly available components and modules) cre-
ates further fragmentation.

JavaScript has Become a Very Popular Lan-
guage also on the Server Side. As a follow-up to the
previous point, JavaScript has become an extremely
popular language also on the server side. There is a lot
of ongoing innovation in this area, including the cur-
rent trend towards isomorphic applications in which

the frontend and backend functionality are both writ-
ten in JavaScript, and may even share the same code
(http://isomorphic.net/). Server-side JavaScript devel-
opment is a very broad and fascinating topic; how-
ever, it falls outside our original scope and thus we
will not dive deeper into it in this paper.

Mobile Computing is Still Dominated by Apps
– for now. During the original development of the
Lively Kernel, we were aiming at making the sys-
tem run well also on mobile devices. Although the
feasibility of running the system on mobile devices
was demonstrated, in practice mobile devices and
browsers were still so slow those days that no serious
mobile Lively applications could be built. Further-
more, the considerably smaller screen sizes and dif-
ferent input modalities made it difficult to run desktop
applications on mobile devices.

The technical reasons for the desktop and mobile
app divergence are well understood nowadays (Char-
land and Leroux, 2011; Joorabchi et al., 2013). One
approach for tackling the shortcomings of the Web
as a mobile platform is to use cross-platform or hy-
brid app designs (Dalmasso et al., 2013; Casteleyn
et al., 2014). In the late 2000s, so called Rich Inter-
net Application (RIA) platforms such as Adobe AIR,
Apache Cordova (Wargo, 2015) (formerly PhoneGap)
and Microsoft Silverlight (Moroney, 2010) were very
popular. RIA systems were an attempt to bring al-
ternative programming languages and libraries to the
Web in the form of browser plug-in components that
each provided a complete, more efficient platform
runtime (see (Casteleyn et al., 2014)). However, just
as it was predicted in (Taivalsaari and Mikkonen,
2011), the RIA phenomenon turned out to be rather
short-lived.

More broadly, it is interesting to note that in the
past ten years desktop computing and mobile com-
puting have evolved in entirely different directions.
While personal computers are now driven mostly by
the Software as a Service model, mobile devices are
still dominated by native or hybrid apps. This diver-
gence is unlikely to continue indefinitely. There are
already indications that desktop and mobile operating
systems will ultimately converge. For instance, Mi-
crosoft’s latest Windows 10 Mobile operating system
represents an attempt to unify Windows application
platform across multiple device classes.

The convergence between mobile and desktop
platforms will be driven by several factors, including
the increasingly powerful CPUs in mobile devices,
blurring lines between different types of computing
devices (phones, ”phablets”, tablets, tablets with de-
tachable keyboards, ultraportable laptops, and so on),
the growing number of devices that the average com-

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

46



puter users have in their daily lives, and the sub-
sequent need for computing environments in which
applications and data stay automatically in sync be-
tween all the devices (Levin, 2014). In such multi-
device environments, the users will expect a more
seamless, liquid software experience that allows the
users to pick the most applicable device and then ef-
fortlessly move to another device (e.g., with bigger
screen or larger keyboard) to continue the current ac-
tivities. A recently published a Liquid Software Man-
ifesto to summarize predictions and expectations in
this area (Taivalsaari et al., 2014). Microsoft’s Con-
tinuum (Microsoft Corporation, ) and Apple’s Hand-
off/Continuity functionality (Gruman, 2014) already
represent an early manifestation of such functionality.

Instant Worldwide Deployment and Dramat-
ically Faster Release Cycles have Become Com-
monplace. When the Lively Kernel project was
started, the majority of software deployments at Sun
were still done in a conventional fashion by distribut-
ing physical CDs/DVDs or by making new binaries
available on the Web. New software releases occurred
relatively infrequently, perhaps a few times per year
for major software products such as the Java SDK. In
contrast, web-based systems allow changes to be pub-
lished pretty much instantly worldwide.

Since the Lively Kernel was one of the first sys-
tems to boldly enter such an instant deployment
model, we had no support from tools and techniques
that have later been introduced in the context of con-
tinuous deployment (Leppänen et al., 2015). Instead,
all such complications had to be handled as a part of
the manual development process.

In hindsight, it is amazing how quickly the tra-
ditional deployment model was replaced by instant
worldwide deployment enabled by the Software as
a Service model. This has resulted in dramatically
faster release cycles as well as to the rise of entirely
new continuous development and deployment prac-
tices methodologies across the industry, including De-
vOps (Debois, 2011). These topics are now so widely
studied and documented that we do not need to dive
more deeply into them in this paper.

6 STATE OF THE ART IN WEB
PROGRAMMING: REMAINING
TECHNICAL CHALLENGES

The technical challenges associated with web pro-
gramming are still largely the same as ten years ago.
Below we list some of the key challenges.

Limited Access to Local Resources or Host

Platform Capabilities. Web documents and scripts
are run in a sandbox that places restrictions on the
resources and host platform capabilities that the web
browser can access. For instance, access to local files
on the machine in which the web browser is being run
is not allowed, apart from reading and writing cookies
and using localStorage. While these security restric-
tions prevent malicious access, they make it difficult
to build web applications that utilize local resources
or host platform capabilities. Consequently, the func-
tionality that can be offered by web applications is in-
evitably more limited than that of native applications.

Completeness of Applications is Difficult to De-
termine. Web applications are generally so dynamic
that it is impossible to know statically – ahead of ap-
plication execution – if all the structures that the pro-
gram depends on will be available at runtime. While
web browsers are designed to be error-tolerant and
will ignore incomplete or missing elements, in some
cases the absence of elements can lead to fatal runtime
problems that are impossible to detect before execu-
tion. Furthermore, with scripting languages such as
JavaScript applications can even modify themselves
on the fly, and there is no way to statically detect
the possible errors resulting from such modifications.
Consequently, web applications require significantly
more testing to make sure that all the possible appli-
cation behaviors and paths of execution are covered.

Fine-grained Security Model is Missing. A key
point in all the limitations related to networking and
security is the need for a more fine-grained security
model for web applications. On the Web, applications
are still second-class citizens that are at the mercy of
the classic, one size fits all sandbox security model
of the web browser. This means that decisions about
security are determined primarily by the site (origin)
from which the application is loaded, and not by the
specific needs of the application itself.

Incompatible Browser Implementations; Lack
and Disregard of Standards; Cornucopia of Over-
lapping Features and Standards. Just like ten years
ago, a central problem in web application develop-
ment is browser incompatibility. This is partly due
to the rapid pace in specifying new browser features
and the gradual emergence of such features in actual
browser releases. However, there are also legitimate
business reasons for many of the incompatibilities,
arising from intellectual property rights issues, e.g., in
the media codec area. While there has been tremen-
dous progress in improving basic web browser com-
patibility, overall the situation is still much different
from, e.g., Java development where comprehensive
compatibility toolkits were in place early on to ensure
compatibility and standards compliance.

The Web as a Software Platform: Ten Years Later

47



At the same time, there are too many competing
standards that partially overlap each other. For in-
stance, in the area of graphics rendering, a standards-
compatible web browser offers at least five built-
in development and rendering models. These stan-
dards include the dominant Document Object Model
(DOM) rendering architecture. They also include the
Canvas 2D Context API (also known as the Canvas
API, https://www.w3.org/TR/2dcontext/) as well as
WebGL (http://www.khronos.org/webgl/). Addition-
ally, there are important technologies such as Scal-
able Vector Graphics (SVG) and Web Components
that complement the basic DOM architecture. On top
of these basic rendering technologies, an extremely
rich library and tool ecosystem has emerged, provid-
ing a cornucopia of choices for the developer.

More broadly, in striking contrast with the sit-
uation ten years ago, there is now an incredible
amount of innovation in the web development area.
New libraries and tools have become available al-
most on a weekly (if not daily) basis (see, e.g.,
http://www.javascripting.com/). The rapid pace of in-
novation and rather uncontrolled, organic evolution of
the Web have resulted in a situation in which there
are numerous ways to build applications on the Web
– many more than most people realize, and also ar-
guably more than are really needed. This has put the
developers in a complex position in which it is diffi-
cult to choose technologies that would be guaranteed
to still be around and supported ten years from now.

These things said, there are also many pos-
itive developments in the compatibility area.
As already mentioned, there has finally been
tremendous progress in ECMAScript (JavaScript)
language standardization (ECMAInternational,
2015; ECMAInternational, 2016). Furthermore,
newer browsers – in particular Microsoft’s
Edge browser (https://www.microsoft.com/en-
us/windows/microsoft-edge) that has replaced
Internet Explorer – are significantly more compatible
with each other than dominant browsers ten years
ago. We are confident that similar compatibility
improvements will find eventually their way also to
mobile web browsers that still have more significant
feature deviations today (see http://mobilehtml5.org/
for an overview).

In the same vein, aforementioned Web Compo-
nents offer hope that well-known (but hitherto miss-
ing) software engineering principles and practices
will eventually find their way into the web browser,
including modularity and the ability to create higher-
level, general-purpose UI components that can be
flexibly added to web applications. Web components
are still the ”dark horse” in web development – they

are little known to most developers, and it is difficult
to place betting odds on their eventual success.

7 LOOKING FORWARD

The field of web programming today still bears the
imprint of the document-oriented – as opposed to
application-oriented – roots of the Web. The program-
ming capabilities of the Web have largely been an af-
terthought – designed originally by non-programmers
for relatively simple scripting tasks.

While the adoption of Single-Page Application
(SPA) development style (Mesbah and Van Deursen,
2007; Mikowski and Powell, 2013) and its support in
popular frameworks such as Angular (Jadhav et al.,
2015) have improved the overall user experience es-
pecially for those web sites that want to behave more
like classic desktop applications, we think that the
characteristics of typical web applications today still
do not reflect the true potential of the Web as an ap-
plication platform. Furthermore, while social media
features have made the use of the Web generally more
interactive and collaborative, the general user experi-
ence is still strongly reminiscent of the strictly page-
based back-forward-reload metaphor introduced by
the NCSA Mosaic browser back in the early 1990s
(Darken, 1998).

In many ways, the original Lively system already
was much more interactive, dynamic and collabora-
tive than an average web application today. How-
ever, at this point we are clearly past the point where
the foundations of the Web could be altered signifi-
cantly. Thus, instead of attempting to ”fix” the Web,
we have shifted our attention to new areas in which
dynamic programming capabilities will likely play a
central role in the future.

Looking forward, we predict that the current tran-
sition towards the Internet of Things (IoT) and the
Web of Things (WoT) will drive the industry towards
systems that have much better support for interactive
development and programming. We are moving to the
Programmable World Era in which literally all ev-
eryday objects will be connected to the Internet and
will have enough computing, storage and network-
ing capabilities to host a dynamic programming envi-
ronment, thus turning everyday objects remotely pro-
grammable (Wasik, 2013; Taivalsaari and Mikkonen,
2017).

For better or worse, everyday objects around us
will have more computing power, storage capacity
and network bandwidth than computers that were
used for running Smalltalk systems in the 1970s and
1980s. The availability and presence of such capa-

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

48



bilities will open up tremendous possibilities for en-
tirely new types of applications and services. Many
of the platforms under development for the IoT do-
main leverage Node.js, which effectively means that
JavaScript may well become the de facto program-
ming language for IoT applications as well.

The Internet of Things area offers a natural play-
ground for dynamic programming capabilities pro-
vided by systems such as the Lively Kernel. To this
end, we plan to harness and leverage the Lively envi-
ronment as a web-based graphical end-user program-
ming environment for IoT devices, with the goal to
realize the broader Programmable World vision by
implementing the same kind of direct manipulation
capabilities that demonstrated earlier. The key differ-
ence is that rather than just making the World Wide
Web more lively, we now aim at making the entire
world around us programmable in an effortless and
lively fashion (”Lively Things”).

8 CONCLUSIONS

The Lively Kernel project created one of the first fully
interactive, self-sustaining web-based software devel-
opment environments that was built on the assump-
tion that the web browser would one day become
a credible, full-fledged software platform. Today –
over ten years after the inception of the Lively Kernel
project – most of the elements of the original Lively
vision have been fulfilled, although not entirely in a
fashion we originally envisioned.

In this paper, we have revisited the Lively vision,
reflecting the original goals to the state of the art
in web programming today. The emergence of the
web browser as an application platform has inspired
numerous systems to take advantage of the features
and capabilities that we embraced when starting the
project. While the Lively Kernel itself did not be-
come very widely known or used, it did pave the way
– for its part – for today’s Software as a Service based
software development systems and dynamic web pro-
gramming more broadly.

We believe that the interactive, web-based devel-
opment capabilities will become even more impor-
tant in the future as the industry moves towards the
Programmable World Era in which everyday objects
around us will become connected and programmable.

ACKNOWLEDGEMENTS

This work has been supported by the Academy of Fin-
land (project 295913).

REFERENCES

Anttonen, M., Salminen, A., Mikkonen, T., and Taival-
saari, A. (2011). Transforming the Web into a Real
Application Platform: New Technologies, Emerging
Trends and Missing Pieces. In Proceedings of the 26th
ACM Symposium on Applied Computing (SAC’2011,
TaiChung, Taiwan, March 21-25, 2011), ACM Press,
proceedings vol 1, pages 800–807.

Bouzid, A. and Rennyson, D. (2015). The Art of SaaS: A
Primer on the Fundamentals of Building and Running
a Successful SaaS Business. Xlibris.

Casteleyn, S., Garrigós, I., and Mazón, J.-N. (2014). Ten
Years of Rich Internet Applications: A Systematic
Mapping Study, and Beyond. ACM Trans. Web,
8(3):18:1–18:46.

Charland, A. and Leroux, B. (2011). Mobile Application
Development: Web vs. Native. Communications of
the ACM, 54(5):49–53.

Dalmasso, I., Datta, S. K., Bonnet, C., and Nikaein,
N. (2013). Survey, Comparison and Evaluation
of Cross Platform Mobile Application Development
Tools. In Wireless Communications and Mobile Com-
puting Conference (IWCMC), 2013 9th International,
pages 323–328. IEEE.

Darken, R. (1998). Breaking the Mosaic Mold. IEEE Inter-
net Computing, 2(3):97.

Debois, P. (2011). Devops: A Software Revolution in the
Making. Journal of Information Technology Manage-
ment, 24(8):3–39.

ECMAInternational (2015). ECMAScript 2015 Language
Specification, Standard ECMA-262, 6th Edition,
June 2015. http://www.ecma-international.org/ecma-
262/6.0/. [Online; accessed 22-Feb-2017].

ECMAInternational (2016). ECMAScript 2016 Language
Specification, Standard ECMA-262, 7th Edition,
June 2016. http://www.ecma-international.org/ecma-
262/7.0/. [Online; accessed 22-Feb-2017].

Flanagan, D. (2011). JavaScript: The Definitive Guide, 6th
edition. O’Reilly Media.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The
Language and its Implementation. Addison-Wesley.

Gruman, G. (Oct. 7, 2014). Apple’s Handoff: What Works,
and What Doesn’t. InfoWorld.

Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R.,
Lincke, J., Röder, M., Taivalsaari, A., and Mikkonen,
T. (2016). A World of Active Objects for Work and
Play: The First Ten Years of Lively. In Proceedings
of SPLASH’2016 Onward! Track (Amsterdam, the
Netherlands, October 30 - November 4, 2016), pages
238–249.

Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., and
Mikkonen, T. (2008). The Lively Kernel – a
Self-Supporting System on a Web Page. In Self-
Sustaining Systems (S3’2008, Potsdam, Germany,
May 15-16, 2008), Lecture Notes in Computer Science
LNCS5146, pages 31–50. Springer-Verlag.

Jadhav, M. A., Sawant, B. R., and Deshmukh, A. (2015).
Single Page Application using AngularJS. Interna-
tional Journal of Computer Science and Information
Technologies, 6(3).

The Web as a Software Platform: Ten Years Later

49



Joorabchi, M. E., Mesbah, A., and Kruchten, P. (2013).
Real Challenges in Mobile App Development. In
2013 ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, pages
15–24. IEEE.

Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P.,
Itkonen, J., Mäntylä, M. V., and Männistö, T. (2015).
The Highways and Country Roads to Continuous De-
ployment. IEEE Software, 32(2):64–72.

Levin, M. (2014). Designing Multi-Device Experiences: An
Ecosystem Approach to User Experiences Across De-
vices. O’Reilly Media, Inc.

Lupfer, N., Kerne, A., Webb, A. M., and Linder, R. (2016).
Patterns of Free-form Curation: Visual Thinking with
Web Content. In Proceedings of the 2016 ACM
on Multimedia Conference (MM’16, Amsterdam, The
Netherlands, October 15-19, 2016), pages 12–21.

Maloney, J. and Smith, R. (1995). Directness and Liveness
in the Morphic User Interface Construction Environ-
ment. In Proceedings of UIST’95, pages 21–28.

Mesbah, A. and Van Deursen, A. (2007). Migrating Multi-
Page Web Applications to Single-Page Ajax Inter-
faces. In 11th European Conference on Software
Maintenance and Reengineering CSMR’07, pages
181–190. IEEE.

Microsoft Corporation. Continuum.
http://www.windowscentral.com/continuum.

Mikkonen, T. and Taivalsaari, A. (2007). Web Applications:
Spaghetti Code for the 21st Century. Technical Report
TR-2007-166, Sun Microsystems Labs, June 2007.

Mikowski, M. S. and Powell, J. C. (2013). Single Page Web
Applications: JavaScript End-to-End. Manning.

Moroney, L. (2010). Microsoft Silverlight 4 Step by Step.
Microsoft Press.

Parnas, D. L. (1972). On the Criteria to be Used in Decom-
posing Systems into Modules. Communications of the
ACM, 15(12):1053–1058.

Petsas, T., Papadogiannakis, A., Polychronakis, M.,
Markatos, E. P., and Karagiannis, T. (2013). Rise of
the Planet of the Apps: A Systematic Study of the Mo-
bile App Ecosystem. In Proceedings of the 2013 Inter-
net Measurement Conference, pages 277–290. ACM.

Taivalsaari, A. and Mikkonen, T. (2011). The Web as an
Application Platform: The Saga Continues. In 37th
Euromicro Conference on Software Engineering and

Advanced Applications (SEAA’2011, Oulu, Finland,
August 30 - September 2, 2011), pages 170–174. IEEE
Computer Society.

Taivalsaari, A. and Mikkonen, T. (2017). Roadmap to the
Programmable World: Software Challenges in the IoT
Era. IEEE Software, Jan/Feb 2017, 34(1):72–80.

Taivalsaari, A., Mikkonen, T., Anttonen, M., and Salminen,
A. (2011). The Death of Binary Software: End User
Software Moves to the Web. In Proceedings of the
9th International Conference on Creating, Connecting
and Collaborating through Computing (C5’2011, Ky-
oto, Japan, January 18-20, 2011), pages 17–23. IEEE
Computer Society.

Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz, K.
(2008a). Web Browser as an Application Platform.
In 34th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA’2008, Parma,
Italy, September 3-5, 2008), pages 293–302. IEEE
Computer Society.

Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz,
K. (2008b). Web Browser as an Application Plat-
form: The Lively Kernel Experience. Technical re-
port, Technical Report TR-2008-175, Sun Microsys-
tems Laboratories.

Taivalsaari, A., Mikkonen, T., and Systä, K. (2014). Liq-
uid Software Manifesto: The Era of Multiple Device
Ownership and Its Implications for Software Archi-
tecture. In Proceedings of COMPSAC’2014.

Turner, M., Budgen, D., and Brereton, P. (2003). Turning
Software into a Service. Computer, 36(10):38–44.

Ungar, D. and Smith, R. (1987). Self: The Power of Sim-
plicity. In Proceedings of OOPSLA’87, pages 227–
241.

VisionMobile (2016). Cloud and Desktop Developer Land-
scape. http://www.visionmobile.com/product/cloud-
and-desktop-developer-landscape/.
[Online; accessed 5-March-2016].

Wagner, J. L. (2016). Web Performance in Action: Building
Fast Web Pages. Manning.

Wargo, J. M. (2015). Apache Cordova 4 Programming.
Pearson Education.

Wasik, B. (2013). In the Programmable World, All Our
Objects Will Act as One. Wired (May 2013), page

462.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

50


