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Abstract: Full movement of the vocal cords is necessary for life sustaining functions. To enable correct diagnosis of 
reduced vocal cord motion and thereby potentially enhance treatment outcomes, it is proposed to objectively 
determine the degree of vocal cord paralysis in contrast to the current clinical practice of subjective 
evaluation. Our study shows that quantitative assessment can be achieved using optical flow based motion 
estimation of the opening and closing movements of the vocal cords. The novelty of the proposed method 
lies in the automatic processing of fibre-optic endoscopy videos to derive an objective measure for the 
degree of paralysis, without the need for high-end data acquisition systems such as high speed cameras or 
stroboscopy. Initial studies with three video samples yield promising results and encourage further 
investigation of vocal cord paralysis using this technique. 

1 INTRODUCTION 

The co-ordinated movement of the vocal cords in the 
human throat facilitates breathing, swallowing and 
voice production. Partial or complete paralysis of the 
vocal cords adversely affects these vital functions. In 
order to appropriately treat this condition, it is 
essential to determine the degree of paralysis as 
accurately as possible. However, in the current 
clinical practice, the judgement of the extent of 
paralysis is made subjectively by visual inspection 
of the vocal cords using endoscopy. It is therefore 
challenging for clinicians to ascertain and evaluate 
the paralysis, particularly in the case of slight partial 
paralysis. Therefore, an objective assessment 
technique based on video processing is proposed in 
this paper, to automatically quantify vocal cord 
paralysis, in order to aid and enhance current 
diagnostic practices. 

A number of approaches have been developed to 
quantify vocal cord motion such as Glottal Area 
Waveform or GAW (Panek et al., 2015; Woo, 2014; 
Gonzalez et al., 2013), phonovibrography 
(Lohscheller et al., 2008), kymography (Švec and 

Schutte, 2012), glottography (Karakozoglou et al., 
2012), spatiotemporal analysis (Zhang et al., 2007) 
etc. Most of the research studies have focussed on 
quantitative assessment of vocal cord vibration 
during voice production. The high frequency (100-
250Hz) vibrations are visualised using high speed 
cameras with frame rates over 2000 frames per 
second or by using stroboscopy. The latter technique 
involves illuminating the vocal cords periodically 
with bright flashes of light to produce the effect of 
viewing the vibration in slow motion. The rigid 
stroboscope inserted orally is the most commonly 
used endoscope in these studies because good 
quality images can be obtained (Verikas et al., 
2009). Such acquisition systems tend to be used 
primarily in specialised voice clinics due to the need 
for specialist expensive equipment for the technique 
and its recording. In the UK, the majority of cases 
are examined and diagnosed with the flexible fibre-
optic endoscope by observing the opening 
(abduction) and closing (adduction) movements of 
the vocal cords, which are slow enough to be 
observed by the human eye and captured using an 
ordinary 25 frame per second camera. Moreover, the 
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nasal insertion of the endoscope allows the vocal 
cords to be viewed in a natural position and is better 
tolerated by patients.  

Therefore, in our study we aimed to exploit the 
flexible fibre-optic endoscope videos to analyse 
vocal cord abduction and adduction, in order to 
derive a measurable descriptor of vocal cord 
paralysis. To the best of our knowledge, an 
automated algorithm developed for this purpose has 
not been reported yet in the literature. 

The algorithm proposed in this study caters to 
two main challenges. Firstly, the techniques for 
quantification of vocal cord motion using vibration 
analysis cannot be directly applied to the slower 
abduction/adduction movements of paralysed vocal 
cords. For example, the accuracy of GAW based 
methods and the phonovibrography is limited by the 
precise identification of the glottal midline 
(Karakozoglou et al., 2012). Determining the 
midline becomes challenging when there is a shift in 
the position of the arytenoids (anatomical structures 
bordering the posterior side of the glottal area in a 
laryngeal image). Moreover, the normal vocal cord 
may cross the midline when adducting, in an attempt 
to compensate for the reduced motion of the 
abnormal vocal cord. For these reasons, for the work 
presented in this paper, we resorted to a technique 
that was not based on the identification of the 
midline or glottal area. The movement of each vocal 
cord is tracked using an optical flow algorithm and 
features are extracted from the resulting flow vector 
patterns. In (Zorrilla et al., 2012), a block matching 
technique has been used to differentiate between 
normal and paralysed vocal cords but the degree of 
paralysis was not measured by the authors. 
Secondly, the videos acquired using the flexible 
fibre endoscope are of poorer image quality than 
those recorded with the rigid laryngoscope. 
Therefore, video pre-processing is required to 
remove artefacts and enhance the image frames to 
enable proper segmentation of the vocal cord edges.  

The remainder of the paper is organised as 
follows: Section 2 explains the methodology for data 
acquisition, pre-processing, ROI detection and 
motion estimation using the optical flow technique. 
Section 3 contains the results and discussion. 
Finally, Section 4 concludes the paper and provides 
the course of future work. 

2 METHODOLOGY 

An outline of the methodology is provided in 
Figure1 and is explained in detail in the following 

subsections.  

2.1 Data Acquisition 

Routine clinical video data were acquired with the 
consent of the subjects. The motion of the vocal 
cords was acquired by inserting a flexible fibre-optic 
endoscope through the nose and recording the scene 
using a 25 frame per second camera. RGB video 
frames of resolution 768x576 were produced. Figure 
2 provides some sample frames of the raw data. The 
subject was asked to phonate making an "ee" sound, 
followed by taking a deep breath. This sequence was 
performed at least twice. A database consisting of 10 
videos of approximately 30 seconds’ duration each 
of normal and paralysed vocal cords has been 
created in our study so far. In this paper, we use 3 
videos (2 normal and 1 severe right palsy cases) 
from this database, with an aim to provide a proof of 
concept for automated processing of fibre-optic 
videos and quantification of left-right motion 
symmetry of vocal cords. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Overview of proposed technique. 

    

Figure 2: From left to right - selected frames from raw 
video sequence of right vocal cord palsy showing 
maximally adducted to maximally abducted positions, and 
zoomed region showing the right and left vocal cords, 
marked with ‘R’ and ‘L’, respectively. 

2.2 Video Pre-processing 

After extracting the image frames from a video, a 
sequence of frames representing abducted (opened) 
vocal cords were manually selected. This sequence 
of frames was provided as input to the automated 

Input video 

Pre-processing 

Automated glottal area segmentation 

Vocal cord edge tracing 

Motion estimation using Optical Flow 

Quantitative paralysis assessment 

Automatic Quantification of Vocal Cord Paralysis - An Application of Fibre-optic Endoscopy Video Processing

109



algorithm developed in this study using MATLAB. 
A honey-comb structure is observed in the 

original image frames as seen in Figure 3. This 
artefact is produced due to the sub-sampling of the 
scene by the amount of glass fibres present in the 
fibre-optic bundle. It was eliminated by spectral 
filtering using a star shaped band stop filter (Winter 
et al., 2006). The filtered image was smoothed with 
a wiener filter. Figure 3 shows the resultant image. 

The next step in the pre-processing stage served 
the purpose of automatically stabilising the video as 
well as cropping the region of interest from each 
frame. Video stabilisation is required to minimise 
the translational movement of the vocal cords from 
frame to frame due to the motion of the larynx itself 
or that of the endoscope. Since the structures in the 
larynx are mostly pink or red coloured, only the red 
channel was used for data processing from this stage 
onwards. The technique involved manually selecting 
a template containing the region of interest (ROI) in 
the first frame and then applying normalised cross 
correlation to find the best match for this template in 
the second frame. Subsequently, the ROI located in 
the second frame was used as the template to search 
for the ROI in the following frame, and then the 
process was automatically repeated for all the 
frames. This resulted in a new video sequence where 
every frame comprised the ROI centred in the frame. 
Figure 4a provides a sample image of normal vocal 
cords from a pre-processed video sequence. 

2.3 Glottal Area Segmentation 

The glottal area can be segmented with the 
knowledge that it appears darker than the 
surrounding anatomical structures due to limited 
illumination. A two-phase procedure was used to 
segment the glottal area. In the first phase, a 
preliminary segmentation of the glottal area was 
obtained by thresholding using a non-linear 
transform, followed by the use of morphological 
operations including dilation, boundary object 
removal, hole filling and selecting the largest object 
in the image. In the second phase, the segmented 
regions were used as masks to provide an initial 
contour for an active contour algorithm (Kass, 
1988), to identify the glottal area boundaries more 
accurately. 

 

Figure 3: Left- cropped section of original RGB image to 
illustrate the honey-comb structured artefact caused by the 
fibre-optic bundle; Right: pre-processed image with 
artefact suppressed. 

A non-linear transform, shown to be effective in 
the presence of uneven illumination (Andrade-
Miranda et al., 2015) was used for thresholding the 
image. Consider an image with intensity I(x,y) ∈ [0, 
255], where x = 1,2,…,N and y = 1,2,…,M denote 
the number of a pixel in the horizontal and vertical 
directions, i.e., column and row numbers, resp. The 
transformed image is computed as follows: 

,ݔ)௢௨௧ܫ  =(ݕ ቐ 255, ,ݔ)ܫ      (ݕ > ௬255ܮ ∗ ቆݔ)ܫ, ௬ܮ(ݕ ቇఊ , ,ݔ)ܫ  (ݕ ≤  ௬ܮ
(1)

where, ܮ௬ = ߙ ቀ∑ ூ(௫,௬)ಿೣ ே ቁ  

 

The factor Ly accounts for the row-wise varying 
lighting conditions. The parameters α and γ were 
determined empirically to be 1.5 and 2, respectively. 
Figure 4b illustrates the binarised image using this 
technique. Note the glottal area localised in the 
centre of the image. 

Thereafter morphological operations were 
performed on the binarised images, commencing 
with dilation operation. The images were then 
complemented and boundary object removal was 
performed because the glottal area is not expected to 
be near the image borders, as the ROI has been 
centred in the frames. Consequently, holes were 
filled and finally all the objects except the largest 
one were erased. The resultant image after all the 
morphological operations is shown in Figure 4c. 

Active contours have shown to be successful in 
glottal area segmentation and was therefore adopted 
as the technique for the final segmentation 
(Karakozoglou et al., 2012; Yan et al., 2006). The 
method is an energy minimisation scheme that is 
used to detect the boundary of objects by curve 
evolution influenced by internal and external factors 
(Kass, 1988). The energy of a curve ݒ௦ = (xs, ys) is 
given as: 
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௦ܧ =  න ቀܧ௜௡௧(ݒ௦) + (௦ݒ)௜௠௔௚௘ܧ + ቁଵ(௦ݒ)௖௢௡ܧ
଴ (2) ݏ݀

 

The internal spline energy, Eint, provides a 
measure of the tension and rigidity of the curve 
during bending. Eimage results in the curve being 
pulled towards lines, edges and corners. Econ 

represents the energy of the external constraint 
forces that influence the curve being attracted to 
local minima. The algorithm is initially provided as 
input a contour that closely matches the boundary to 
be detected; thereafter the curve is deformed by 
iteratively minimising its energy. Figure 4d provides 
the final contour bordering the glottal area detected 
by the active contour algorithm. 

2.4 Vocal Cord Edge Tracing 

In order to discard non-vocal-cord structures 
bordering the segmented area, empirically 
determined values of 40% and 5% of the vertical 
contour length were used to erase the top and bottom 
sections, resp., of the extracted boundary. This 
resulted in two curves, each corresponding to one 
vocal cord edge, as shown in Figure 4e. Note the left 
edge of the extracted boundary corresponds to the 
anatomic right vocal cord edge and vice versa. 

2.5 Optical Flow Analysis 

The movement of the vocal cord edges between 
successive frames were computed using the optical 
flow algorithm, which provides an approximation to 
the velocity field associated with each pixel in an 
image sequence. By assuming that pixel intensities 
are translated spatially between consecutive time 
frames, the velocity of a pixel can be computed 
using a least squares estimation (Barron et al., 1994) 
over a window of neighbouring pixels. For each 
block the following squared error is minimised: ෍ ܹଶൣܫ௫ݒ௫ ௬ݒ௬ܫ + ௧൧ଶܫ +

 (3)

where, Ix and Iy are spatial image intensity gradients, 
It the intensity gradient over time, and vx and vy the 
horizontal and vertical pixel velocities, resp. W is a 
weighting function to focus on constraints centred in 
the window and is implemented as a 5x5 kernel with 
1D weights (0.0625, 0.25, 0.375, 0.25, 0.0625) in the 
horizontal and vertical directions. The arrows, in the 
enlarged view of the image in Figure 4f, depict the 
motion velocities of the vocal cord edges.  

 
(a)             (b) 

 
                 (c)                      (d) 

 
                (e)           (f) 

Figure 4: Demonstration of methodology with a sample 
image frame of normal vocal cords: (a) Pre-processed 
image (b) Image thresholded using non-linear thresholding 
(c) Result after morphological operations on image b (d) 
Segmented glottal area by applying active contour method 
using image c as initial mask (e) Left and right vocal cord 
edges (note that the edge appearing on the left side of the 
image is the anatomical right vocal cord edge) (f) zoomed 
view of flow vectors indicating motion of vocal cords 
compared to the previous frame in the image sequence. 

2.6 Quantitative Assessment 

In order to quantify the degree of paralysis, the mean 
value of the magnitude of the optical flow vectors 
for each vocal cord was computed in every frame. 
This produced two vectors, each representing the 
mean flow magnitudes per frame for the left and 
right vocal cords. The vectors, which can be plotted 
as one-dimensional signals as depicted in Figures 5a 
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and 5b, follow the change in average flow 
magnitude in the image sequence. Each signal can 
be considered as a signature or pattern of the motion 
of a vocal cord. A feature known as the waveform 
length, which has been widely used in EMG signal 
processing (Hudgins et al., 1993), was then 
calculated for the left and right sides. It is the 
cumulative length of a signal and provides a 
measure of waveform complexity. Finally, the 
contribution of each vocal cord to the overall motion 
is computed by the following equation: ܥ௟ = ௟ܮ௟ܹܮܹ  + ௥ܮܹ × 100% (4)

where, Cl represents the contribution of the left vocal 
cord edge to the overall motion occurring in the 
image sequence, WLl and WLr are the waveform 
lengths of the left and right vocal cords, 
respectively. Similarly, Cr can be calculated. Normal 
vocal cords move in synchronisation with each other 
and therefore motion symmetry can be used as an 
indicator of normal functioning. 

3 RESULTS AND DISCUSSION 

The results from applying the proposed algorithm to 
two normal cases and one right palsy patient are 
provided in Figure 5. The plots in Figures 5a and 5b 
show the mean flow magnitudes for individual vocal 
cords. It is observed that the blue waveform in the 
graph in Figure 5b, associated with the right vocal 
cord of the palsy subject, is smaller than the red one. 
An objective measure of the degree of paralysis is 
provided in Figure 5c. The measure depicts the 
contribution of a vocal cord to the total motion in the 
image sequence and is expressed in percentage. It is 
obvious that the normal cases demonstrate almost 
equal contribution by both vocal cords, whereas the 
palsy case shows reduced motion of the right vocal 
cord.  

While these results appear promising, further 
analysis of more videos needs to be performed in 
order to derive a calibrated measure that corresponds 
to the degree of paralysis identified by clinicians. 
This shall be done in future work and validation of 
the results by comparing with subjective evaluation 
by experienced clinicians will also be performed. 
Moreover, to achieve a robust quantitative 
assessment tool, other features that can be extracted 
from the motion vectors shall also be investigated. 

In order to prove the advantage of our method 
over other midline based approaches such as the 
GAW, a similar measure of contribution to motion 

using the waveform length was computed - but 
instead of using the motion magnitudes as the 
signature, the glottal area waveforms of the left and 
right sides were used to calculate the waveform 
length. The left and right sides were determined 
automatically by fitting an ellipse on the segmented 
glottal area and assigning its major axis length as the 
midline of the glottal area (Panek et al., 2015). As 
can be observed in Figure 6, the glottal area 
technique is inappropriate for identifying paralysis 
of the vocal cords. 

 
(a) Subject: Normal1 

 
(b) Subject: Palsy 

 
(c) Left to right: Normal1, Normal2, Palsy 

Figure 5: Results- (a) Plot of average flow magnitudes for 
a normal case (subject id Normal1) for right (blue curve) 
and left (red curve) vocal cords; (b) Similar plot for right 
palsy patient; (c) Quantitative measure of paralysis. 
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Figure 6: Quantitative measures using Glottal Area 
Waveform (GAW) as a signature of motion in the image 
sequence. 

4 CONCLUSIONS 

Our work emphasises the use of data acquisition 
procedures which are widely used in hospitals 
worldwide, in order to develop a generalisable 
technique that can be seamlessly integrated with 
current clinical practices, rather than utilising state-
of-the-art systems for developing techniques that 
have limited scope of implementation outside the 
laboratory. Towards this end, we aimed to utilise the 
commonly used fibre-optic videos in order to assess 
abduction/adduction movements of the vocal cords 
as done by clinicians in the current clinical practice. 
However, the diagnosis can be enhanced by 
introducing quantitative measures, potentially being 
useful for trainees or for very challenging cases, 
particularly where the degree of paralysis is subtle or 
where there may be subtle pathology of a vocal cord 
affecting its movement. 

Our results are very encouraging to further 
analyse fibre-optic endoscopy videos for 
quantification of vocal cord paralysis using motion 
estimation techniques. 
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