used for the amplitude image recording and for 
storing information in the form of the Bragg 
gratings. 
ACKNOWLEDGEMENTS 
Research was funded by Russian Science 
Foundation (Agreement #14-23-00136). 
REFERENCES 
Babkina, A.N. et al., 2015. Spectral properties of copper 
halide nanocrystals in glasses of fluorine-phosphate 
matrix. Optics and Spectroscopy, 119(2), pp.243–247. 
Available at: http://link.springer.com/10.1134/ 
S0030400X15080032. 
Barkatt, A., Angell, C.A. & Miller, J.R., 1981. Visible 
Spectroscopy of Irradiated High-Alkali Borate and 
Mixed-Alkali Phosphate Glasses. Journal of American 
Ceramic Society, 64(3), pp.158–162. 
Bishay, A., 1970. Radiation Induced Color Centers in 
Multicomponent Glasses. J. of Non-Crystalline Solids, 
3, pp.54–114. 
Cardona, M., 1963. Optical Properties of the Silver and 
Cuprous Halides. Physical Review, 129(1), pp.69–78. 
Dotsenko, A. V., Glebov, L.B. & Tsekhomsky, V.A., 
1998.  Physics and Chemistry of Photochromic 
Glasses, New York: CRC Press. 
Efros, A.L. & Efros, A.L., 1982. Interband absorption of 
light in a semiconductor sphere. Soviet physics. 
Semiconductors, 16(7). 
Ehrt, D., 1992. Structure and properties of fluoride 
phosphate glasses. Proc. of SPIE, 1761, pp.213–222. 
Ekimov, A., 1996. Growth and optical properties of 
semiconductor nanocrystals in a glass matrix. Journal 
of Luminescence, 70(1–6), pp.1–20. Available at: 
http://www.sciencedirect.com/science/article/pii/0022
231396000403. 
El-Batal, F.H., 2008. Gamma ray interaction with copper-
doped sodium phosphate glasses. Journal of Materials 
Science, 43(3), pp.1070–1079. 
ElBatal, H.A. et al., 2013. Gamma rays interaction with 
copper doped lithium phosphate glasses. Journal of 
Molecular Structure, 1054–1055, pp.57–64. Available 
at: http://linkinghub.elsevier.com/retrieve/pii/ 
S0022286013007977. 
Goldmann, A., 1977. Band Structure and Optical 
Properties of Tetrahedrally Coordinated Cu- and Ag-
Halides. Phys. Stat. Sol (b), 81(9), pp.9–47. 
Golubkov, V.V. et al., 2012. Precipitation of nanosized 
crystals CuBr and CuCl in potassium aluminoborate 
glasses. Glass Physics and Chemistry, 38(3). 
Golubkov, V.V. & Tsekhomskii, V.A., 1998. Composition 
and structure of copper halide phase in sodium and 
potassium aluminoborosilicate glasses. Glass Physics 
and Chemistry, 24(1). 
Golubkov, V.V. & Tsekhomskii, V.A., 1982. Phase 
changes in Copper Halide photochromic glasses. The 
Soviet journal of glass physics and chemistry, 8(4). 
Golubkov, V.V. & Tsekhomskii, V.A., 1986. Role of 
Sodium Chloride in the formation of a light-sensitive 
phase in Copper Halide photochromic glass. The 
Soviet journal of glass physics and chemistry, 12(2). 
Möncke, D. et al., 2014. Irradiation-induced defects in 
ionic sulfophosphate glasses. Journal of Non-
Crystalline Solids, 383, pp.33–37. Available at: 
http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.029. 
Morse, D.L., 1981. Copper halide containing 
photochromic glasses. Inorganic Chemistry, 20(3), 
pp.777–780. Available at: http://pubs.acs.org/doi/abs/ 
10.1021/ic50217a028. 
Narayanan, M.K. & Shashikala, H.D., 2015a. Physical, 
mechanical and structural properties of BaO–CaF2–
P2O5 glasses. Journal of Non-Crystalline Solids, 430, 
pp.79–86. Available at: http://linkinghub.elsevier.com/ 
retrieve/pii/S0022309315302106. 
Narayanan, M.K. & Shashikala, H.D., 2015b. Thermal and 
optical properties of BaO–CaF2–P2O5 glasses. 
Journal of Non-Crystalline Solids, 422, pp.6–11. 
Available at: http://linkinghub.elsevier.com/retrieve/ 
pii/S0022309315300119. 
Onushchenko, A.A. & Petrovskii, G.T., 1996. Size effects 
in phase transitions of semiconductor nanoparticles 
embedded in glass. J. Non-Cryst. Sol., 196, pp.73–78. 
Ruller, J.A. & Friebele, E.J., 1991. The effect of gamma-
irradiation on the density of various types of silica. 
Journal of Non-Crystalline Solids, 136(1–2), pp.163–
172. 
Sheng, J. et al., 2009. UV-light irradiation induced copper 
nanoclusters in a silicate glass. International Journal 
of Hydrogen Energy, 34(2), pp.1119–1122. Available 
at: http://dx.doi.org/10.1016/j.ijhydene.2008.10.063. 
Shirshnev, P. et al., 2015. Copper-containing potassium-
alumina-borate glass: Structure and nonlinear optical 
properties correlation. PHOTOPTICS 2015 - 3rd 
International Conference on Photonics, Optics and 
Laser Technology, Proceedings, 1, pp.108–112. 
Tsai, T.E. et al., 1989. Radiation-induced defect centers in 
glass ceramics. Journal of Applied Physics, 65, 
pp.507–514. 
Tsai, T.E. et al., 1987. Radiation effects on a low-thermal-
expansion glass ceramic. Journal of Applied Physics, 
62(8), p.3488. Available at: http://scitation.aip.org 
/content/aip/journal/jap/62/8/10.1063/1.339272. 
Tsai, T.E., Griscom, D.L. & Friebele, E.J., 1990. Si E’ 
CENTERS AND UV-INDUCED COMPACTION IN 
HIGH PURITY SILICA. Nuclear Instruments and 
Methods in Physics Research B, 46, pp.265–268. 
Vázquez-Vázquez, C. et al., 2009. Synthesis of small 
atomic copper clusters in microemulsions. Langmuir, 
25(14), pp.8208–8216.