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Abstract:  Multi-objective optimization is currently an active area of research, due to the difficulty of obtaining diverse 
and high-quality solutions quickly. Focusing on the diversity or quality aspect means deterioration of the 
other, while optimizing both results in impractically long computational times. This gives rise to 
approximate measures, which relax the constraints and manage to obtain good-enough results in suitable 
running times. One such measure, epsilon-dominance, relaxes the criteria by which a solution dominates 
another. Combining this measure with genetic programming, an evolutionary algorithm that is flexible and 
can solve sophisticated problems, makes it potentially useful in solving difficult optimization problems. 
Preliminary results on small problems prove the efficacy of the method and suggest its potential on 
problems with more objectives. 

1 INTRODUCTION 

Historically, in order to solve optimization 
problems, classical search methods were 
traditionally used. In every iteration, a single 
solution was modified in order to produce better 
solutions. However, this point-by-point approach 
was overshadowed by the introduction of 
evolutionary algorithms(EAs). These algorithms use 
the concepts of evolution and natural selection in 
optimization. Using populations of individual 
solutions, EAs try to capture multiple optimal 
solutions for problems lacking one global optimal 
solution. 

Some optimization, for example industrial, 
problems have multiple objectives that need to be 
optimized in the same time, which poses extra 
difficulties for algorithms that try to solve these 
problems. Two main solutions have usually been 
followed to reduce the complexities: 
 Reducing the number of objectives during the 

search process or a posteriori during the decision 
making process. This approach tries to identify non-
conflicting objectives and discards them. 
 Propose a preference relation that induces a 

finer order on the objective space. 
If the aforementioned solutions fail to reduce 

multi-objective optimization problems’ complexity, 
then the main difficulty facing EAs is incomparable 

solutions. Incomparable solutions happen in the 
following case. When one solution optimizes one (or 
more) objective better than a second solution, but the 
second solution optimizes another (or more) 
different objective better than the first one. 

If we divide the search space into regions based 
on how well each solution optimizes each objective, 
and assuming no bias towards any region, the 
probability of a solution falling into any of these 
regions is proportional to the volume of this region 
divided by the volume of the entire solution set. As 
the number of objectives increases, the number of 
regions increases, and the probability that a solution 
will fall into a region where one solution optimizes 
all objectives efficiently is reduced significantly.  

Problems with a large number of objectives, 
although apparently similar to problems with less 
number of objectives, can’t be solved efficiently 
using the same methods used for fewer objectives. 
They are computationally more intensive, and 
visualizing their solutions becomes harder as more 
objectives are added. To avoid these complexities, 
some approximate measures are used to obtain good-
enough results of the problem. Epsilon dominance, 
notated as ϵ-dominance from now on, is one of these 
approximate measures (Laumanns, et al., 2002).  

In this paper, genetic programming, a flexible 
and powerful type of evolutionary algorithms (EAs), 
is used in order to solve optimization problems 
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approximately using ϵ-dominance. We call this 
method ϵ-GP. Genetic programming, up to our 
knowledge, has not been used before to solve any 
optimization problem with an approximate measure. 
ϵ-GP is compared to regular genetic programming 
(Koza, 1992) in regards to speed, efficiency, and 
diversity, and it gives promising results.  

The paper is structured as follows. Section 2 
explains related work in the field of evolutionary 
algorithms. Afterwards, in Section 3 and 4, some 
background information is given about optimization 
and genetic programming, respectively. An outline 
and pseudocode of ϵ-GP are given in Section 5, 
while Section 6 deals with the experimentation and 
results. Finally, Section 7 contains a conclusion of 
the paper and explains future work. 

2 RELATED WORK 

Evolutionary algorithms have long been successful 
in solving MOPs. Schaffer (Schaffer, 1985) started 
the movement of EAs solving MOPs by introducing 
a vector-evaluated genetic algorithm (VEGA) that 
finds a set of nondominated solutions.  

Afterwards, the first generation of Multi-
Objective Optimization Evolutionary Algorithms 
(MOEAs) started in the early 1990s by using Pareto 
ranking and fitness sharing. This generation 
consisted of the multi-objective genetic algorithm 
(MOGA) (Fonseca & Fleming, 1993), the niched 
Pareto genetic algorithm (NPGA) (Abido, 2003) 
which is the first algorithm to use tournament 
selection, and the nondominated sorting algorithm 
(NSGA) (Srinivas & Deb, 1994).  

The second generation of MOEAs, which 
emerged in the late 1990s and early 2000s, 
introduced the concept of elitism (keeping a record 
of the best-so-far solutions). It includes the strength 
Pareto evolutionary algorithm (SPEA) (Zitzler & 
Thiele, 1999) and its improved version(SPEA-2) 
which adds a fitness assignment technique, a nearest 
neighbor density estimation, and a preservation 
truncation method (Zitzler, et al., 2001); the Pareto 
archived evolution strategy(PAES) (Knowles & 
Corne, 2000); the Pareto envelope based 
algorithm(PESA) (Corne, et al., 2000) and its 
improved version PESA-II (Corne, et al., 2001 ); and 
an improved version of NSGA (NSGA-II) which 
splits the pool of individuals into different fronts 
according to their dominance and adds a crowding 
measure to preserve diversity (Deb, et al., 2002). 

NSGA-II is one of the most popular algorithms 
in the literature and is usually considered a 
benchmark for many new algorithms. This is 

because it is very quick in obtaining solutions. It 
also yields very efficient results. Although originally 
made for problems with smaller number of 
objectives, NSGA-II has shown to be somewhat 
successful over the years in solving some problems 
with more objectives as well. 

3 OPTIMIZATION 

An optimization problem is a problem where the 
goal is to find the best solution from all feasible 
solutions for a specific objective function. However, 
many of these problems (those that have more than 
one objective) exist in a setting that cannot be 
expressed using a single function, as different 
objectives are usually not measured using the same 
metrics. 

Furthermore, a multi-objective optimization 
problem is defined as simultaneously optimizing (ݔ)ܨ = ݉݅݊൫ ଵ݂(ݔ), … . , ௞݂(ݔ)൯, (1) 

ݔ	݋ݐ	ݐ݆ܾܿ݁ݑݏ ∈ തܺ, 
by changing n decision variables, subject to some 

constraints that define the universe	ഥܺ . 
In other words, a multi-objective optimization 

solution optimizes the components of  (ݔ)ܨ	where ݔ 
is an n-dimensional decision variable vector ݔ ,ଵݔ)= … , (௡ݔ  from some universe 	 തܺ . Thus, the 
problem consists of ݇  objectives reflected in the ݇ 
objective functions, a number of constraints on the 
objective functions reflected on the feasible set of 
decision vectors	ܺ	ഥ , and ݊ decision variables. 

In the case of optimizing multiple objectives, it is 
usually impossible to find a single solution that 
optimizes all of the objectives at the same time. This 
gives rise to the definition of nondominated 
solutions (also called Pareto-optimal solutions), 
which are solutions that optimize some objectives 
but are not worse than other solutions in the rest of 
the objectives. The Pareto front is the visualization 
of all these solutions on the search space. Since 
these solutions are nondominated, no one solution 
exists that can be said to be better than the other; all 
of them are presented to the decision maker as a set 
of solutions called the Pareto optimal set.  

Multi-objective optimizers usually have to 
conform to a few properties; namely, they should 
present solutions that are close to the Pareto front as 
possible. They should also present different, diverse 
solutions to the decision maker that show the 
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different tradeoffs with respect to each objective. 
Optimizers also need to present the best few, which 
means that overwhelming the decision maker by 
presenting too many solutions is not preferred. 

3.1 More Objectives 

Optimization problems that have more than 3 
objectives are named many-objective optimization 
problems, and problems with 2 or 3 objectives are 
named multi-objective optimization problems. In 
(Khare, et al., 2003), it was found after testing 3 
MOEAs from the 2nd generation of MOEAs (NSGA-
II, SPEA2, PESA) that these algorithms showed 
vulnerability on problems with a larger number of 
objectives. 

The main difficulties with many-objective 
optimization problems are visualization, how to 
handle high dimensionality and the exponential 
number of points needed to represent the Pareto 
front, the greater proportion of nondominated 
solutions, and stagnation of search due to larger 
number of incomparable solutions. Our work tackles 
the latter two difficulties by changing the definition 
of dominance to an approximate one, easing the 
criteria of acceptance of nondominated solutions.  

3.2 Dominance 

Multi-objective optimization algorithms insisting on 
both diversity and convergence to the Pareto front 
face Pareto sets of substantial sizes, need huge 
computation time, and are forced to present very 
large solutions to the decision maker. These issues 
effectively make them useless until further analysis, 
because speed and presenting few solutions are very 
important to decision makers.  

ϵ-dominance (Laumanns, et al., 2002) tries to fix 
these problems by quickly searching for solutions 
that are good enough, diverse, and few in number. It 
approximates domination in the Pareto set by 
relaxing the strict definitions of dominance and 
considering individuals to ϵ-dominate other 
individuals, whereas previously they would have 
been nondominated to each other.  

In Figure 1, a visual comparison between ϵ-
dominance and regular dominance is shown 
(Laumanns, et al., 2002).  

4 GENETIC PROGRAMMING 

Genetic    programming    (GP)    is    one    type    of 
evolutionary  algorithms. Its  main   characteristic  is 

 

Figure 1: Differences between (a) regular and (b) ϵ -
dominance. 

that it represents solutions as programs (Koza, 
1992). This representation scheme is the main 
difference between genetic algorithms and genetic 
programming. Each solution (program) is judged 
based on its ability to solve the problem, using a 
mathematical function, the fitness function. Each 
program, or solution, is represented using a decision 
tree. GP evolves a population of programs by 
selecting some candidates that score high on the 
fitness function and using regular evolutionary 
variation operators on them (mutation, crossover, 
and reproduction). New populations are created from 
these outputs until any specific termination criterion 
is met.  

We use strongly-typed genetic programming 
(STGP) in this paper, which is one of many 
enhanced versions of GP. STGP makes GP more 
flexible, explicitly defining allowed data types 
beforehand instead of limiting it to only one data 
type. Genetic programming, and STGP specifically, 
consists of the following. 

1) Representation: individuals are 
represented as decision trees, but unlike usual GP 
(Koza, 1992), STGP doesn’t limit variables, 
constants, arguments for functions, and values 
returned from functions to be of the same data type. 
We only need to specify the data types beforehand. 
Additionally, to ensure consistency, the root node of 
the tree must return a value of the type specified by 
the problem definition and each nonroot node has to 
return a value of the type required by its parent node 
as an argument. 

2) Fitness function: scores how well a 
specific execution matches expected results. 

3) Initialization: there are two main methods 
to initialize a population: full and grow. Koza (Koza, 
1992) recommended using a ramped half-and-half 
approach, combining the two methods equally. 

4) Genetic operators: crossover and mutation.  
5) Parameters: maximum tree depth, 

maximum initial tree depth, max mutation tree 
depth, population size, and termination criteria.  
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5 OUR PROPOSED METHOD 

Our algorithm, ϵ-GP, has three main characteristics. 
First, the performance of our algorithm, and of any 
general ϵ-dominance-based MOEA, depends on the 
value of ϵ, which is either user defined or computed 
from the number of solutions required. Bigger ϵ 
values mean quicker computation of solutions, while 
smaller values mean solutions that have more 
quality. Although the value of ϵ doesn’t have to be 
constant for each objective, we make it constant 
across all objectives in our method for ease of use 
and for quicker computations. 

Second, ϵ-GP comprises two storage locations 
for solutions: 

• An archive that ensures elitism by keeping 
the best solutions so far and removing solutions 
iff other better solutions are found. We choose to 
give this archive a fixed size for several reasons. 
One is to limit computation time and to protect 
the decision maker from receiving a big number 
of nondominated solutions that are 
incomparable. Finally, due to ϵ-MOEA 
performing well on all test instances in (Li, et al., 
2013), while suffering from archive size 
instability, we will stabilize and fix the size. 

• A population that stores the current 
generation; this current generation can have 
worse solutions than a previous generation. This 
ensures diversity and keeps us from falling into 
local minima. 
Third, crossover is always between a solution 

from the current generation population and a 
solution from the archive. This guarantees both 
elitism and diversity. Offspring from crossover are 
embedded into the archive if the criteria of 
acceptance (to dominate another solution) are met. 
They are automatically inserted into the next 
generation population as well. 

To our knowledge, ϵ-GP is the first algorithm to 
combine genetic programming with an approximate 
measure, e.g., ϵ-dominance. ϵ-GP uses its 
approximation capability to make selection easier 
between points by reducing competition and 
tolerating a certain additive factor (ϵ) when 
calculating dominance. Selection is the most 
computation-intensive regular task in Many-O 
algorithms, and this is why ϵ-GP is considered 
useful. 

The initial random generation of the population 
and archive in our algorithm is done using the 
ramped half-and-half method discussed earlier. The 
user inputs in ϵ-GP are the number of runs, the 
population size (pop_size), the probabilities Go, Pr, 

Pc (respectively, probability of a binary or unary 
genetic operator, probability of reproduction or 
mutation, and probability of crossover).  

The pseudocode of ϵ-GP is as follows: 

for (i = 0; i < number_of_runs; i++) { 

  set gen, score to 0; //generation 
number 

  generate pop[gen], archive randomly; 

  while (score <= minimum_threshold && 
generation < max_generations) { 

    evaluate fitness of pop[gen]; 

    sort individuals in archive and 
pop; // this is where ϵ-dominance is 
used 

    for (j = 0; j < pop_size; j++) { 

      if (random(0,1) >= Go) { 

        if (random(0,1) >= Pr) { 

          reproduce (copy) individual; 

        } 

        else { 

          mutate individual; 

        } 

        put individual into pop[gen+1]; 

      } 

      else { 

        select two individuals from 
archive and pop; 

        if(random(0,1) >= Pc) { 

          crossover the individuals; 

        } 

        else { 

          reproduce both individuals; 

        } 

        j++;//because we insert 2, not 
1, individuals 

        put individuals to pop[gen+1]; 

      } 

      if (individuals(s) > 
archive.worse_result) {   

        put individual (s) in archive; 

        score = fitness of archive; 

      } 
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    } 

    generation ++; 

  } 

  set result[i] to score; 

} 

6 EXPERIMENTATION 

To measure the performance of our algorithm, it was 
tested on a basic genetic programming problem: the 
ant trail problem (Koza, 1992). Two variants of this 
problem are tested; namely, the Santa Fe Trail 
problem and the Los Altos Trail problem. The study 
used the MOEA Framework, version 2.8, available 
from http://www.moeaframework.org/.  Koza’s GP 
(Koza, 1992) was used as a reference for comparison 
in terms of speed and efficiency. We tested the 
reference against our algorithm with values of ϵ of 
0.1 and 0.01. 

We solved each test problem 30 times with 
different random seeds. In all runs, no more than 
500,000 evaluations were allowed to be made. We 
used a crossover probability rate of 0.9, with a point 
mutation rate at 0.01. Population size was set to 500. 

Since GP is a stochastic algorithm that is affected 
by the chosen random seed, it was more suitable to 
make a stochastic comparison instead of a static 
comparison with the best absolute values. For this 
purpose, we analyzed the mean, median, and 
standard deviation of the 30 independent runs. 

The Santa Fe problem results are shown in Table 
1, with better results highlighted in bold when 
applicable. The goal is to capture as much pieces of 
food as possible, with as little moves as possible. We 
also take into consideration how quickly a run 
reaches a suitable result. 

Table 1: Santa Fe Trail Results. 

 

The results show that our algorithm, ϵ-GP, has 
very good performance with regards to all 
objectives, and runs quickly as well. At both ϵ 

values of 0.1 and 0.01, ϵ-GP has a better average 
runtime compared to Koza’s GP, and at ϵ of 0.1, the 
food gathered by ϵ-GP is, on average, more than the 
food gathered by Koza’s GP. 

Next, we test the Los Altos problem, a similar 
but harder problem with a more complex trail to 
follow to gather the food. 

Table 2: Los Altos Trail. 

 

The obtained results, shown in Table 2, prove 
that Koza’s GP, while quicker than ϵ-GP, trails ϵ-GP 
in both moves and food. ϵ-GP obtained the best 
absolute result by eating 129 out of 156 pieces of 
food, with 392 moves for ϵ value of 0.01 and 410 
moves for ϵ value of 0.1. With an ϵ value of 0.01,  
ϵ-GP was very consistent (low standard deviation) 
and scored better than the two other sets in both food 
and moves, although with a slower running time 
than Koza’s GP. Koza’s GP was not able to collect 
more than 116 pieces of food, which was achieved 
with 335 moves in 2 minutes and 28 seconds. As to 
the fastest run, it was achieved by Koza’s GP, where 
it collected 52 pieces of food with 493 moves. The 
lowest number of moves was achieved by ϵ-GP with 
a value of 0.1, where it took 2 minutes and 37 
seconds, collecting 55 pieces of food in the process 
(the lowest score in all runs). 

7 CONCLUSIONS 

The previous section shows promising results, as ϵ-
GP was shown to simultaneously optimize two 
objectives, with the algorithm guaranteeing 
competitive results in all objectives. These results 
are encouraging for future work as well, as genetic 
programming, up to our knowledge, has never been 
used to solve a problem with many (more than 3) 
objectives using an approximate measure. 

Consistency within stochastic algorithms is 
usually a problem due to the random nature of 
different runs, but with ϵ-GP with an ϵ value of 0.01, 

Mean Median St. Dev. Worst Best
Koza 400.533 451 88.1807 494 234
ϵ = 0.1 368.067 366 89.7241 492 226
ϵ  = 0.01 380.733 390 85.9386 496 230
Koza 80.3 88 10.3629 55 89
ϵ = 0.1 81.1 89 11.2322 52 89
ϵ  = 0.01 80.1 86.5 10.145 57 89
Koza 64.5333 64 8.91621 79 45
ϵ = 0.1 58.5 56.5 8.94331 85 46
ϵ  = 0.01 61.7 61 8.78145 81 46

Santa Fe Trail
Variables

Moves

Food

Time

Mean Median St. Dev. Worst Best

Koza 393.7667 414 80.32635 497 221

ϵ = 0.1 402.1 412 81.66346 499 132
ϵ  = 0.01 389.667 375 76.2425 498 250

Koza 96.36667 99.5 20.25609 52 116

ϵ = 0.1 99.43333 104 20.6843 55 129
ϵ  = 0.01 103.933 115 18.6768 65 129
Koza 142.933 138 22.27869 191 107
ϵ = 0.1 162.3 159.5 15.803 210 139
ϵ  = 0.01 161 150 27.37353 221 129

Variables
Los Altos Trail

Moves

Food

Time
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this is decreased to an acceptable degree. As 
problems increase in difficulty, the tolerance of a 
high ϵ value starts to decrease and problems can take 
longer times to find high-quality solutions and can 
face a possibility of falling into local minima due to 
the discarding of many solutions. Therefore, 
choosing the value of ϵ is very important. 

This paper serves as an introduction to further 
work that will test ϵ-GP on problems with more than 
2 objectives. Furthermore, future work includes the 
following: 

• The value of ϵ can be input from the user 
or dynamically computed. ϵ can also be changed 
to be variable for each objective. 

• A more detailed study with better test-set 
problems that contain more objectives is needed 
to prove that ϵ-GP is an efficient many-objective 
optimizer; 
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