
Objecting to the Revolution: Model-Based Engineering and the
Industry

Root Causes Beyond Classical Research Topics

Gerald Stieglbauer and Igor Rončević
AVL List GmbH, Hans-List-Platz 1, Graz, Austria

{gerald.stieglbauer, igor.roncevic}@avl.com

Keywords: Model-Based Engineering, MBE in Industry, Domain-Specific Languages, DSL Vs. UML, Technology
Transfer.

Abstract: By now, Model-Based Engineering (MBE) has a long tradition in academics and research. In contrast to this
long tradition, however, adoption of MBE principles in the industry still remain limited. This led to
corresponding debates within the modelling community about the root causes of this limited adoption. This
paper highlights the importance of these debates and shares the experience gained during many years of
technology transfer activity from research to industrial applications. We are presenting two hypotheses
beyond classical research topics, for which we have observed in practice that they have the potential to make
the adoption of MBE principles in industry more successful. Since these hypotheses are currently based on
our observations rather than on scientific research, we want to encourage the modelling community to take
the presented aspects into account in their research work.

1 INTRODUCTION

By now, model-based engineering (MBE) has a long
tradition in academics and research. In recent years,
however, the question to what extend MBE has been
already adopted by industry has been raised with an
increasing number of discussions within the
modelling community. Despite some success stories,
the answers to the raised questions were rather
disillusioning and were followed by a debate about
the reasons and root causes for a limited adoption of
MBE in the industry (Selic, 2012). In this debate, the
role of standardized general purpose modelling
languages (such as UML) is critically reflected and
individually designed domain-specific languages
(DSLs) became more prominent. In addition,
usability and user experience factors were more and
more deliberated, especially if current available
modelling tools and frameworks are considered
(Hutchinson, 2011).

In this paper, we highlight the importance of these
debates and share the experience and observations
gained during many years of technology transfer
activity from research to industrial application (e.g.
by participating in large European research programs
involving both industry and research institutes).

Based on these observations, we derive two
generalized hypotheses, which provide - according to
our experience - strong indicators to overcome some
of the limiting factors and most essential
showstoppers for the industrial adoption of MBE.
Additionally, we argue that not only technical
disciplines but as well non-traditional MBE research
disciplines such as psychological and social-cultural
aspects as well as empirical engineering should be
considered (Whittle, 2013).

Hence, we want to encourage the modelling
community to take these aspects into account and to
evaluate our hypotheses scientifically to avoid that
the industrial adoption of MBE runs the risk of
remaining just a niche despite its undeniable
potential.

2 REASONS FOR OBJECTING
TO THE REVOLUTION

If competing with widely established traditional
development methods, the introduction of MBE in
industry is often judged as a kind of paradigm change
with a negative flavour in form of unpredictable risks
that may come along with it. When considering

Stieglbauer, G. and Rončević, I.
Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics.
DOI: 10.5220/0006216506290639
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 629-639
ISBN: 978-989-758-210-3
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

629

software, agile methods on a rather low-level of
abstraction using (object-oriented) languages such as
C++, C# and Java thus remain state-of-the-art in
many software development processes, despite the
long list of methods and tools proposed by the
modelling community. If models are applied, the
level of abstraction remains limited, e.g. considering
Simulink models to enable programming for non-
programmers, using UML models only for drawing
class diagrams and code skeleton generation, or using
models just for documentation purposes.

In this chapter, we want to re-enact a typical MBE
introduction scenario with three groups of
stakeholders: the modelling advocates, the
management and the development team. This scenario
illustrates common reasons for a limited MBE
adoption and acts as the basis for further analysis and
alternative strategies of introducing MBE in an
industrial environment.

If modelling advocates speak about essential MBE
ingredients, they usually mean the active process of
designing and introducing an abstraction layer in
order to reduce the effort of developing complex
systems or at least to describe complex relationships
in a more understandable manner to facilitate
discussions and comprehensibility. Furthermore, they
promote clearly defined semantics of the models
(including a mathematical foundation), which acts as
key enabler for effective automation features such as
model validation, code generation and model
composability (Broy, 2010). Last but not least,
separation of concerns is another essential ingredient
for MBE, which promises better structured views
depending on a particular aspect of a problem.

In the following sections, we briefly sketch the
difficulties with which the modelling advocates
usually have to deal when they try to convince both
the management and the development team. Then we
analyse why the corresponding attempts are likely to
fail. In Chapter 3, we present alternative approaches
in form of two hypotheses based on practical
observations and with the intention to overcome some
of the described difficulties.

2.1 The Modelling Advocates and the
Management

Despite the very strong conviction of the modelling
advocates, convincing the management implies not
only to provide good arguments that MBE fulfils its
promises, but it means in first place that risks of its
introduction are calculable and justifiable. Managers
have to make their risk assessment, and with too little
input, they reject the request for good reasons. They

will argue for instance, why to disturb an established
product development process by introducing the risks
of a paradigm change, when the company is able to
build reasonably well-designed products and sell
them with an acceptable margin to its customers. It is
difficult to convincingly praise specific long-term
effects of MBE, e.g. to emphasize that after an initial
phase, productivity and quality will rise. Mentioning
this initial phase (usually of unsure length) often
amplifies the management’s scepticism and the
modelling advocates are asked to provide clear
evidence if and when the initial efforts are
outweighed by the positive impact of MBE.

If no internal success stories are yet existent, the
modelling advocates often struggle to prove this
evidence caused by a lack of publicly available
industrial success stories. Rather rare exceptions such
as (Hutchinson, 2011) are unfortunately not credibly
outweighing this lack to ultimately convince the
management. This comes along as well with a kind of
a chicken-or-the-egg problem: who should provide
these stories first? For instance, intellectual property
issues or competitive considerations restrict the
publication of success stories, despite the remaining
problem of transferring one success story from one
particular domain to another domain or field of
application (and promote this transfer understandably
and convincingly to the management).

A rather pragmatic position is that profitable
corporations just do not experience enough ‘pain’ to
dare a radical and company-wide paradigm change.
Consequently, someone could propose to patiently
wait until this pain gets over a certain threshold.
Certainly this is very unconvincing for the modelling
advocates (and the modelling community) and their
vision about reducing the actual pain and increasing
development efficiency and product quality at the
same time.

However, if the modelling advocates take this
hurdle successfully and get a positive decision from
the management, then the even more challenging part
just begins: it is up to the modelling advocates to
evidently prove that modelling works in the given
context and fulfils its promises. Furthermore, since
management decisions are usually taken on a larger
scale, the modelling advocates have to prove it on that
scale as well.

This is usually the point, where companies are
internally announcing that they are introducing MBE.
Modelling tools are bought and – with the best
intentions – the tool department selects the tool for
which they can be sure that its features will cover
sustainably the state-of-the-art of MBE. Budgets for
MBE-centred development projects are released,

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

630

development staff is strongly motivated to participate
in modelling courses, and so on. It is not unusual that
this initiatives can last for a longer period (sometimes
even years), since the model advocates have
convincingly argued that this initial phase would need
that time. Consequently, monitoring the MBE
introduction process is hard, especially if concrete
numbers such as efficiency improvements are
concerned.

In parallel to all these efforts, the modelling
advocates do not only have to convince the
management about the advantages of MBE but they
have to get the development team on board at the same
time. In the next section, we argue that this may be
even the tougher job.

2.2 The Modelling Advocates and the
Development Team

Even if the management supports the MBE
introduction process, additional risks are added by the
often underestimated fact that the developer team still
can object to the introduction or slow it down
significantly for various reasons. This behaviour is
not necessarily on purpose, e.g. caused by a general
scepticism against MBE approaches. Besides a time-
consuming MBE introduction process, however,
companies still have to create new products at a high
(or even increasing) periodic rate. At the same time,
the complexity of making these products is constantly
raising, which makes the developers’ upcoming
deadlines even more demanding. Despite the
appreciated long-term perspective of MBE to exactly
address this increasing complexity, visiting
modelling courses under these short-term demands is
considered as an additional burden. This situation
gets even worse, if developers are confronted in these
courses with complex, feature-rich and poorly
integrated modelling tools. This contradiction leads to
postponing the adoption of the modelling tool after
the deadline, which is obviously just close before the
next deadline. What ultimately often overburdens the
development team under these circumstances is the
demand of abstract thinking or to consider other MBE
paradigms such as separation of concerns.

From the developers’ point of view, however, the
management still demands to square the circle, and
periodically wants to see results concerning the MBE
integration process. A common reaction is to use
modelling tools as documentation tools (e.g. to model
system interfaces) with a limited adoption of
automation features such as code generation.

However, using modelling just as documentation
and even using it as a code skeleton provider is

usually a dead end, since there is only a vague or weak
connection between the model and the
implementation as long as no automatisms such as
full code generation are established (and editing fully
shifts from the code to the model). The models are
sooner than later out of sync with the ‘real’
implementation (i.e. programming code) and keeping
them updated is skipped due to the maintenance effort
that is usually considered as ‘just’ an additional work.
The management is usually not in the position to
detect that inconsistency, while the developer can
argue nevertheless that the corresponding modelling
duty has been fulfilled (formally).

After some period, the models are pigeonholed
while code-based implementations move forward and
hardly anyone can explain the original purpose of the
models. Moreover, nobody can tell if they have
introduced any efficiency and/or quality
improvements, not to speak about the concrete
numbers the management is now asking for.
Consequently, at some point in time somebody has to
report the failure of adopting MBE to the
management. It will be argued that modelling was just
an additional effort, the maintainability of the models
was extremely costly and efficiency and quality
improvement is next to zero. This may confirm the
management’s initial doubts that MBE really works,
the topic will be buried for a very long time and the
modelling advocates have lost their reputation.

2.3 Root Cause Analysis for a Failed
MBE Adoption

In the following, one out of many possible root causes
for a failed MBE adoption is briefly sketched. For
instance, the modelling advocates argue that models
are worth nothing if they are not ultimately connected
to the implementation, at best by establishing
automatism such as code generation.

At this point, they are confronted with a series of
practical problems during the MBE introduction
phase. UML is often considered to be applicable to
various domains due to its common perception as a
general purpose modelling language. In practice,
however, the concrete semantics of a model is often
implicitly redefined by the individual modeler, who
just ignores the (non-formal) UML specification
documents. Instead, he or she rather applies an
intuitive ad-hoc semantics, which seems to be
sufficient, e.g. if the model’s main purpose is
documentation. However, this ad-hoc semantics is
easily misinterpreted by other users, especially from
other domains, independently from the fact that
adapting the intended semantics to a specific domain

Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics

631

often makes sense.
However, if this adaption of the semantics is not

done systematically (e.g. by defining a UML profile),
the individual interpretability of models causes a
series of problems, especially if code generation is
considered. First, uncertainty about the model’s
semantics is intuitively mapped to the functionality of
the generated code. To be on the safe side and to get
control back about the generated code, self-written
code generators are created by the development team
in parallel to the standard one, which usually causes
maintainability problems.

Second, the costs of creating correct models in
traditional modelling tools that fulfill the intended
semantics of the (self-written) code generators are
considered to be high. Current tools usually lack in
features such as modelling guidance that support the
creation of such correct models. This is especially
true for self-written code generators and gets even
worse if the adapted semantics is not well
documented. In addition, accustomed developing
features such as debuggers are not available in most
modelling tools. This usually leads to time-
consuming bug fixing on code level again and thus
breaks the link to the model, which goes along with
the known fatal consequences and finally causes the
rejection of MBE by the development team.

3 EVOLUTION INSTEAD OF
REVOLUTION

So far, we have sketched a typical scenario based on
practical long-term experiences, which argues why
the adoption of MBE in industry is often designated
to fail. These reasons are not necessarily linked with
the theoretical background of MBE but are rather
caused by social-cultural and psychological
phenomena or just by the fact how companies
function (Whittle, 2013).

In the following, we introduce two hypotheses,
which attenuate the reasons for a limited adoption of
MBE paradigms according to our experience.
Hypothesis A is related to a strategy called MBE
micro injections, while hypothesis B is about favoring
information re-use as a key requirement and enabler
for MBE. Both hypotheses are derived from industrial
use cases as a direct consequence of failed adoption
attempts (such as sketched in the previous chapter)
and are currently under internal evaluation. Applying
the hypotheses to our practice showed first promising
results. However, to provide evidence of their general
applicability, more research studies are needed.

Together with the postulated requirements for
modelling methods and tools (reflected in Chapter 4),
we would like to handover all these aspects to the
modelling community to foster corresponding
follow-up research activities.

3.1 Hypothesis a: Introduction of MBE
Micro Injections

Instead of promoting a company-wide revolution, we
rather favor an MBE adopting strategy that
emphasizes manageable introduction steps and
supports an accurate monitoring process to provide
continuous and measurable feedback to the
management. We call this strategy MBE micro
injections. As this term implies, MBE micro
injections are limited in size and should have a strong
viral effect. They are thus intended to support the
convincing process of the development team and thus
to reduce the management risks caused by implicit or
explicit objects to MBE paradigms.

On the first glance, the term MBE micro
injections is in conflict with the argument that MBE
will only work, if used very consequently and not just
here and there (e.g. using models ‘just’ for
documentation reasons). However, we claim that if
these MBE micro injections are well designed and
introduced, no essential MBE paradigms need to be
violated or omitted at all.

In addition, we suggest to introduce the role of the
MBE micro injection designers (or injection
designers, for short). The injection designers
collaborate closely with both, the management and
the development team, which is outlined in the
following.

3.1.1 The Injection Designer and the
Management

The injection designers share with the modelling
advocates the conviction that MBE has great potential
to master complex systems, to speed-up development
and to improve the quality of related products.
However, instead of focussing just on good
arguments, the injection designer aims to proof the
advantages of MBE by concrete numbers from the
very beginning. In this manner, the injection designer
is setting-up an action plan composed of a series of
MBE micro injections. Each micro injection is
assigned to a short integration sprint and has a
measureable output regarding initial efforts,
efficiency increase and quality improvements. This
allows a constant monitoring of the action plan, which
is permanently communicated to the management in

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

632

order to keep their attention high and to enable the
possibility for adaptations, if the numbers are not
fulfilling the expectations.

At the same time, MBE micro injections should
be designed in a way that they do not disturb the daily
business and form up rather a smooth evolution than
a shocking revolution. At the end of each integration
sprint, the overall solution must not be broken by the
introduction of a MBE micro injection, but at the
same time, no MBE paradigms are fundamentally
violated. The most obvious strategy to achieve this is
to install them first in parallel to the traditional
solution. This has the advantage of a direct
comparison of the competing approaches manifested
in concrete numbers reported to management. If the
micro injection turns out to be successful it replaces
the established solution. If the traditional solution was
modified during the evaluation, updating the MBE
micro injection accordingly is still manageable due to
its limited size.

Furthermore, this strategy attenuates the chicken-
or-the-egg problem about the lack of success stories.
Each positively evaluated MBE micro injection
becomes an in-house success story on a tiny scale
indeed but with full access to its details and without
IP restrictions. Due to the latter, mapping the positive
experiences from one MBE micro injection to another
is more straightforward. If MBE micro injections are
additionally fulfilling composability criteria (e.g. the
same mathematical foundation), the related success
stories can be combined step-wise to larger ones in
order to ensure scalability. To summarize, these
success stories and the perspective of scalability gives
the injection designer a much better position when
arguing with the management.

3.1.2 The Injection Designer and the
Development Team

While modelling advocates may favour the design of
abstraction as the most important discipline, the
injection designers are not neglecting its importance
but set their highest priority on the needs of the
development team and afford them to master the
introduction of MBE in parallel to the upcoming
deadlines. The overall goal is to ‘infect’ the individual
user step-by-step with the MBE paradigms, but not to
overload them with a unified modelling philosophy
represented by a single, feature-rich tool. Instead,
individually designed MBE micro injections need to
be highly adaptable and easy to integrate in the
existing development environment.

In order to make this strategy viral, the injection
designers thus need to know two things at a very

detailed level: first, they have to have deep knowledge
about the applied development environment and
second, they have to gain knowledge about the
entered information (e.g. programming code in case
of software development).

Knowledge about the tool environment is
important for the following reason: any change to this
environment means practically a lot of disturbance
facing the next upcoming deadline. It may sound
trivial, but is practically a showstopper. For instance,
developers are usually not accepting an additional
tool, which they have to use in parallel to their well-
known development environment. However,
developers are much more appreciating new features
within their development environment, which can be
applied to current development projects
instantaneously.

In other words, whatever a MBE micro injection
is regarding a concrete use case, it has to be integrated
smoothly into the actual development environment
and should minimize entry barriers that hinder the
user to apply the intended MBE-related features. For
instance, instead of just offering a feature-rich UML
editor, a feature-reduced sub-editor (e.g. based on a
customized UML profile) is directly enabled within
the established development environment (e.g.
Microsoft Visual Studio). This practically reduces the
risk of objection and very much supports the viral
approach, since the potentially attracted developer is
permanently just one-click away from applying the
MBE-related feature.

Of course, the demanding factor here is the
smooth integration with a strong focus on the
usability of this integration. Consequently, the micro
injection designers have to have corresponding skills
not only on the technical aspect of a tool integration
but as well on user experience issues. User
experience, however, does not only comprise
usability topics. It includes for instance an adaptation
of MBE standard vocabulary such as abstraction,
modelling, model semantics and model
transformation to terms, which are well-known by the
user; or in the modelling advocates’ words: this
adaptation introduces an end-user optimized
abstraction layer for the theory of MBE.

User experience topics are also related to the
second central aspect of the MBE micro injections
concerning the knowledge about the entered
information. According to our experience, most
developers have already an internal meta-model for
their approaches in mind. However, it requires special
skills to turn an internal, implicit and informal meta-
model into an explicit and formal one.

Exactly this task should now be taken over by the

Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics

633

injection designer in a very close collaboration
activity with the development team. Close
collaboration means that the most essential modelling
elements are discussed, verified or falsified together
with the developers by applying the adapted MBE
standard vocabulary in order to avoid confusion.
Rapid prototyping facilities lead to a concrete and
integrated MBE prototype based on a co-designed
abstraction layer, which are from now on inherent
parts of the collaboration. In the following, four sorts
of MBE prototypes are briefly sketched.

The MBE prototype embraces a meta-model
prototype, manifested by a concrete meta-model
representation (e.g. an EBNF grammar or a list of
model constraints) reflecting the co-designed
abstraction layer, which is based on the development
team’s terminology. While the meta-model prototype
development is led by the injection designer mostly,
corresponding model prototypes, which adhere to the
meta-model should be created by the developers from
the very beginning to capture as many user
experience issues as possible during this activity.

To enter such models, model editor prototypes
have to be provided and continuously improved
regarding usability and integration issues. Initial
design solutions for model editor prototypes need not
be traditional model editors (e.g. a full-featured UML
editor). Instead the development of straightforward,
but well integrated solutions such as input masks or
wizards are often a good starting point. During the
meta-model design iterations, more sophisticated
model editors potentially enhance or replace this
initial approach. In this case, DSLs (textual or
graphical or even combined ones) or DSMLs (such as
a highly customized UML editor) are considered.

Along the meta-model design iterations, these
prototype editors and their features are iteratively
refined by the injection designer with regard to their
usability. Independent of the usability considerations,
these editor prototypes need to be created very fast,
usually within days or even better as discussions are
going on. To master this challenge, editor generator
features greatly produce relief.

If MBE is considered for software development,
code generators are absolutely mandatory to ensure
the link between the model and its implementation.
Instead of implementing handcrafted code generators,
which are almost impossible to maintain,
corresponding frameworks ease the task of creating
code generator prototypes. Such frameworks usually
comprise generated model parsers (based on the given
meta-model or grammar) and support model
transformation languages. Similar to the design
iterations of the meta-model, however, a developer

may not know right from start, how a generalized
form of the intended code may look like. Again, the
injection designer supports the developer in finding
the most appropriate form in several iterations. This
task is tremendously simplified, if the applied
transformation language is based on code templates,
since developers are then able to provide their input
in a language they already know. In the best case, they
are even able to migrate legacy code to these
templates to avoid a full reinvention of existing
approaches.

3.1.3 Psychological and Social-cultural
Aspects of MBE Micro Injections

It is essential that all four sorts of MBE micro
injection prototypes are developed in short and agile
sprints that minimize the disturbance of the
developer. First approaches are more or less designed
by the injection designer in the lead, but are rather
applied in parallel to the traditional methods of the
development team in order to compare and proof the
benefits of the MBE approach. The comparison
comprises a concrete performance benchmark in
terms of efficiency and quality improvement.

Before reporting immediately to the management,
the benchmark serves primarily to establish trust
between the injection designer and the development
team. The development team has furthermore the
possibility to evaluate the methods and tools on their
own with support of the injection designer to avoid
misconceptions. As cooperation develops during the
design iterations, the development team is
encouraged to take over more and more tasks from
the injections designer, such as modifying the model
or editing the model transformation rules.

Another psychological effect is the individual
perception among the development team members
that the introduction of high-level abstraction limits
their solution space compared to the use of low-level
abstractions. This perception is not so much caused
by vanity issues but is rather related to the fear of
losing control about the final implementation (e.g. in
case of code generation). This effect is reduced, if the
developers know where to put the right action and
what it takes to do corresponding adaptations to avoid
this problem (and not to endanger next week’s
deadline). Thus not only trust between the
development team and the injection designers is
mandatory but to give the development team the
perspective to retain control and to gain the ability to
do essential adaptations even without the help of the
injection designers. The use of template-based model
transformation approaches for instance, where

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

634

familiar programming languages are embedded,
supports this strategy. As an important side effect,
this is also mandatory for the viral aspects of the MDE
micro injections: without handing over some of the
MDE skills back to the development team adopting
MDE will not be sustainable.

Having this in mind, the injection designers
motivate the development team to present the
performance benchmarks to the management to give
them the opportunity to sell the results as their
achievement, while the injection designer remains in
the background. This should amplify the viral effect
of MBE micro injections within the development
team and complements the activities of the injection
designer to convince the management.

In some cases, however, the introduction of
abstractions may also affect the development team’s
pride of making their original solution less genius (i.e.
less complex), due to the fact that it can be generated
(a kind of substitution of their skills by an automated
process). In addition, if their original solution is
representable in a much simpler way, i.e. by a model,
and thus the solution can be understood now as well
by less educated people, there is a fear that the role of
individual members of the development team
becomes questionable.

All these aspects should be considered by the
injection designer and corresponding social skills are
mandatory here to attenuate the negative effects and
possible fears. The best way to cure a wounded pride
remains the involvement of the development team
and not release them from responsibility. Much more
could be said about optimized training conditions and
the responsibility of the management to promote an
open attitude by relieving the development team from
some of the pressure. However, being complete here
goes beyond the scope of this paper. What the
injection designer can do is to convince the members
of the developer team that MDE is not limiting their
skills but is rather a catalysts of their abilities to
master even more complex solutions in the future.

3.2 Hypothesis B: Information Re-use
as an Enabler of MBE Adoption

For our second hypothesis B, we want to present an
application field of MBE, which is usually not
nominated as a first-class driver for MBE. Instead,
issues such as the reduction of complexity by the
introduction of abstraction or the principle of
separation of concerns are usually designated as
primary reasons. However, finding and defining the
right abstraction layer in order to discover a global
minimum of complexity of a sophisticated system is

not a straightforward task. Instead, this task depends
on certain skills, which are usually covered only by a
perfectly trained and educated MBE designer.

In practice, this noble goal is thus sometimes
beyond the reachability and too high expectations
even increase the risk of failure. In addition, aiming
at a global minimum of complexity contradicts with
the postulated hypothesis A – the MBE micro
injections – which rather counts on the composition
of local improvements.

We claim, however, that there are some low
hanging fruits, which are much more likely to be
harvested and implicate a manageable form of
abstraction by a quite straightforward paradigm: the
paradigm of information re-use.

Information re-use can denote various things. It
could mean for instance that code fragments of one
project have to be re-used within another project with
a related purpose, eventually in a slightly modified
manner. In this case, the MBE designer would
introduce a certain layer that abstracts the similarities
away and introduce a meta-model, which focus on the
differences only, and generate the remaining, i.e.
schematic repetitive code automatically. For
someone, who has to re-use some code fragments in
his or her project, modelling just the differences is
much simpler than modifying the original code source
again and again. We think that applying this principle
leads to a clear methodology for defining abstraction
layers, but still make high demands on the person who
has to find the similarities or common semantics of
different code fragments (especially in case of legacy
code).

However, we claim that a slightly modified
variant of this principle could be applied more
straightforward, especially in large companies (for
which the introduction of MBE may be most
demanding). Large companies are usually comprised
of many departments. Here the situation is common,
that communication works well within a department,
but at the same time the efficiency of information
share and re-use across several departments is
limited.

Usually, when information is shared between
departments, e.g. between a software department, a
documentation department and a service department,
classical communication methods such as e-mail or
shared folders with informal documents (e.g.
presentation slides, textual documents) are common.
Sometimes, the situation is often worse since it is not
ensured that shared information originates from the
responsible author. Instead, information is re-phrased
and during this process it gets lost or is adulterated.

To overcome this situation, a primary source of

Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics

635

any kind of information needs to be established. Let’s
call this source the single source of truth (SSoT). An
SSoT, however, does not mean to install a single
physical source (e.g. a huge database) that covers
everything that has to be shared. This could take years
and such a database is likely to be outdated by the
time it comes to life. Instead it adheres to an adoption
of the MBE principle of separation of concerns: if an
SSoT X established within domain DX is based on
information of another SSoT Y within domain DY (and
potentially vice versa), information referencing is
used instead of information copying or translating. Or
in other words: SSoT X is enriching the information
of SSoT Y by further aspects needed in domain DX
(and potentially vice versa).

We postulate, when optimizing information
exchange in the described manner, the discovery and
the establishment of these SSoTs can go hand in hand
with very effective MBE approaches. A simple rule
here is that every SSoT has a single author A (e.g. a
software developer) and a series of consumer Cn (e.g.
service engineers or technical authors), which are
using and processing the information in their specific
domains. Consequently, only the author A is able to
edit the content, while the consumers Cn have read-
only access. The sum of all shared data items for a
specific SSoT defines the overall abstraction of the
SSoT, which is translated by the MBE designer to a
machine-readable SSoT meta-model. This approach
intends to ensure that the amount of shared data
between the stakeholders is reduced to a minimum
and relieves the consumers Cn from time-intensive
searches in overloaded and potentially outdated
documents.

On top of the SSoT meta-model, the most suitable
model representation in terms of an optimized user
experience has to be designed for the author A and for
the consumers Cn. Classical modelling approaches
(such as UML) suggesting a standardized modelling
language, which can be understood by both, the
author A and the consumers Cn and sharing
information means to share the same model
representation. In many situations, this makes sense
and increases the cross-domain knowledge since the
stakeholders are ‘speaking’ the same (model)
language and are modifying the same model, which
improves cross-department collaboration.

However, defining a universal representation for
various stakeholders from different domains can only
be a compromise in terms of the user experience. In
addition, learning the language means initial effort,
which is sometime hard to acquire in practice.
Furthermore, a stakeholder from one domain gets
access to details of another domain with no further

use. At the same time, accessing the relevant, domain-
specific data becomes harder.

The SSoT principle as defined in this section,
relax this dilemma, since only a single stakeholder
has to edit the content of a particular SSoT X. Due to
the principles of separation of concerns, other
stakeholders are editing other SSoTs and are just
referring to SSoT X. Consequently, different model
representations can be designed for various
stakeholders for the SSoT X. For instance, a textual
DSL editor EX is designed for the author A, who may
be a software developer. However, considering the
read-only model view VX for the consumers Cn, e.g. a
technical author CT and a service engineer CS, the
corresponding model representation might be
something completely different (e.g. a selection
dialog of relevant model elements). CT and CS may
not even share the same view. Instead, separate views
VT and VS show only that information to CT and CS to
which they have to refer in their domains DT and DS.
Both model views VT and VS and the model editor EX
of the author A for the SSoT X can now be optimized
in terms of user experience independently from each
other.

If we combine hypothesis B with hypothesis A, i.e.
the introduction of MBE micro injections, the
following aims become tangible: first, finding the
right abstraction layer is reduced to the method of
identifying the relevant information that is exchanged
between two stakeholders. This is achieved by a
series of interviews, where the MBE designer is
questioning the stakeholders regarding the essential
information they are currently obtaining from other
stakeholders via traditional methods. Second, the
MBE designer identifies where the shared
information originates and who is the author. Based
on both inputs, the MBE designer defines the list of
SSoTs according to the principle of separation of
concerns and creates a meta-model for each SSoT.
Finally, it depends on the context if these SSoTs are
physically combined to a single database or not.

Similar to the MBE micro injections, this process
of SSoT establishment can be done in small
introduction steps. This improves already the status
quo if a certain kind of data set, which was formerly
exchanged by traditional methods, is now accessible
via an SSoT. Of course, a seamless integration of the
corresponding user front-ends (i.e. model editors or
viewers) is essential. Once this is successfully
established, the list of SSoTs can grow continuously
in size and number. For every new SSoT a
measurable before-after-comparison should be
possible, e.g. by measuring the efficiency increase of
the information exchange between two stakeholders.

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

636

This comparison is reported periodically to the
management and thus enables continuous monitoring
of the SSoT introduction process.

If the vision of this approach and the claim of our
hypotheses hold, then the involved stakeholders are
more and more infected with the ideas of MBE and
the SSoT paradigm. They have learned what is meant
by abstraction layers and are introducing further
layers by their own. To give just one example,
software developers may adopt this global approach
of information re-use locally as indicated before: they
introduce transformation rules based on code
templates to generate standardized implementations
and to enable code re-use. If a software bug has been
detected, it can be fixed within the standardized code
template and thus positively impact all applications
that are based on that template at once.

Thinking in abstractions is becoming more and
more common and the viral approach is continuously
growing, or in other words: once the way of thinking
of the development team has been successfully
shifted to a higher level of abstraction, it will remain
there and will infect other people autonomously.

4 STATUS-QUO AND DERIVED
REQUIREMENTS FOR MBE
TOOLS AND FRAMEWORKS

In this chapter, we want to summarize the
requirements for MBE tools and frameworks, which
are especially related to the hypotheses presented in
this paper, i.e. the MBE micro injections and
information re-use. In addition, we want to enhance
these requirements with further details and confront
them with our experiences with currently available
modelling tools and frameworks.

Out of our experience, the definition of MBE
micro injections contrasts the traditional introduction
of MBE by feature-rich modelling tools as an all-in-
one solution. Instead, customizability, adaptability
and composability as well as the ability of a
straightforward integration into existing
development environments are considered to be the
key requirements for MBE micro injections. All
requirements come along with a series of additional
user experience requirements, such as tool usability,
comprehensibility, the support for user guidance and
rapid prototyping, adequate learning curves,
collaborative modelling and trustworthiness for the
applied methods, tools and frameworks.

Especially customizability, adaptability and the
user experience requirements are strongly related

with actual discussions within the modelling
community about the pros and cons of general
purpose modelling languages (such as UML) and
domain specific languages (DSLs). Considering these
discussions, we are convinced that DSLs are most
suitable for the proposed MBE micro injections
approach and are targeting best in fulfilling the
mentioned requirements.

Current trends (e.g. within the Eclipse modelling
community) aim as well in this direction. For
instance, the Papyrus industrial consortium
(Bordeleau, 2014) is denoting customized UML
editors and extended support for UML profiling as a
so-called DSML and is considering the Papyrus
modelling tool rather as a customizable UML editing
framework than a full-featured UML standalone tool.
User experience is targeted by enabling collaborative
modelling features, for instance as achieved with the
seamless integration of EMF Compare and Egit
(Langer, 2015). Composability and the ability for a
straightforward integration is ensured by an
underlying unified data layer called Ecore and the
intended integration of fUML in Papyrus is intended
to bring formal semantics for UML into life
(Guermazi, 2015).

Pure DSL frameworks and Eclipse plugins such
as Xtext, Xpand and Sirius cover these requirements
and additionally capture the need for rapid
prototyping: Xtext, for instance, supports editor and
parser generation while Sirius enables the design of a
graphical model language with just a few clicks.
Xpand allows straightforward access to the generated
model parser and has support for a template-based
code generation approach with an adequate learning
curve. Generated DSL editors defined in Xtext are
covering usability aspects by providing features such
as syntax highlighting, automatic code completion,
tool tips and quick fixes more or less out-of-the-box.
These features are belonging as well to the demand of
user guidance, which gives the user immediate
feedback during modelling. In case of Xtext, some of
this feedback is embedded in the DSL grammar
definition and thus part of the MBE design. Related
to our hypotheses, this enables the MBE designer to
adapt the modelling feedback to the needs of the
development team and thus greatly helps to
encourage the development team to take over more
and more modelling tasks from the MBE designer.

Despite of all these promising developments
within the Eclipse community, many limiting factors
still remain when integrating these frameworks
within an industrial environment. In practice,
modelling frameworks often lack in maturity and the
MDE designer has to be a framework expert with

Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics

637

deep-insights about the framework internals in order
to apply adaptions and customizations with a
reasonable performance. The documentation usually
fundamentally lacks of many important details,
interfaces are unclear or redundant, and reasons for
framework malfunctions are hard to detect. All these
factors contradict the requirements of enabling rapid
prototyping and trustworthiness of the applied
solutions. This especially affects the close
collaboration between the MBE designer and the
development team in a negative way and raises the
probability to object to the MBE adoption process.

Many user experience aspects are still
underrepresented but must be treated as first class
requirements from our point of view. Compared to
off-the-shelf IDEs for traditional programming
languages, user guidance features have by far not
reached the same maturity level. Despite the better
situation for DSLs, traditional modelling tools
usually significantly lack in user guidance: hardly
anything is indicating to the users that they are doing
something right or wrong, nor any suggestions for a
certain modelling context are provided. Besides
increasing the probability of rejection, the lack of user
guidance is a reason for individual interpretation of
model semantics with the known fatal consequences.

Defining a formal meta-model semantics
underneath (such aimed by fUML), only partially
solves the problem of misinterpretation. The user still
has to understand the formal specification, but in
practice many formalism representations are
considered to be rather discouraging due to their
mathematical notation and the (subjectively) implied
poor comprehensibility. A promising approach here
could be to hide the formalism from the end user, but
instead derive user guidance features directly from
these formalisms.

On the other hand, formalized semantics are the
basis for the requirement of composability (Broy,
2010), which we consider as essential regarding our
hypotheses of MBE micro injections: if the applied
injections remain just local islands and are hard to
combine in form of a step-wise integration process,
the overall MBE adoption strategy will fail.

Finally, another potential showstopper has to do
with the dominance of the Eclipse community
regarding modelling frameworks. On the one hand, a
kind of monopolism is even an advantage here, since
the Eclipse frameworks are on the way to become the
de-facto standard for modelling tools and
frameworks, which makes tool decision and
integration much easier und supports the requirement
of trustworthiness in terms of long-term tool
availability, especially due to its open-source

philosophy (Bordeleau, 2014). On the other hand, it
still remains a challenge to integrate traditional of-
the-shelf development tools outside the world of
Eclipse-based modelling frameworks (e.g. Microsoft
Visual Studio). The existence and widespread use of
these development tools, however, cannot be
discussed away. It is practically impossible to migrate
extensive development projects with a significant
amount of legacy from one platform to another.
However, it would be unfortunate to exclude half of
the potential modelling advocates just because their
companies are not using Eclipse-based development
tools. Thus corresponding platform bridges are
fundamental and need to be much more promoted.

5 CONCLUSIONS

We have observed that the two hypotheses presented
in this paper have the potential to make the adoption
of MBE principles in industry more successful.
However, these hypotheses are based on long-term
experiences within an industrial environment rather
than on scientific research. Thus we want to
encourage the scientific modelling community to put
some attention on them in form of further evaluations.

In addition, the two hypotheses are related to a
series of requirements for MBE methods, tools and
frameworks. We have acknowledged corresponding
trends in the modelling community to address
requirements such as customizability and user
experience issues, which are currently mostly
reflected by DSL approaches. From an industry point
of view, however, many of the mentioned
requirements are still not manifested enough in MBE
tools and frameworks. Consequently, we would
appreciate if the modelling framework and tool
community put even more focus on these topics.

REFERENCES

Bordeleau, F., 2014. Model-based engineering: A new era
based on Papyrus and open source tooling. In
Proceedings of the 1st Workshop on Open Source
Software for Model driven Engineering co-located with
ACM/IEEE 17th International Conference on Model
Driven Engineering Languages, pp. 2-8.

Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, St.,
Ratiu, D., 2010. Seamless model-based development:
from isolated tools to integrated model engineering
environments. In Proceedings of the IEEE, pp. 526-
545.

Guermazi, S., Tatibouet, J., Cuccuru, A., Dhouib, S.,
Gérard, S., Seidewitz, E., 2015. Executable modeling

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

638

with fUML and Alf in Papyrus: Tooling and
Experiments. In Proceedings of the 1st International
Workshop on Executable Modeling co-located with
ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems, pp. 3-8.

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen,
St., 2011. Empirical assessment of MDE in industry. In
Proceedings of the 33rd International Conference on
Software Engineering, pp. 471-480.

Langer, Ph., Koegel, M., 2015. Integrating open-source
modeling projects: Collaborative modeling with
Papyrus and EMF Compare. In Proceedings of the
International Workshop on OpenSource Software for
Model Driven Engineering co-located with ACM/IEEE
18th International Conference on Model Driven
Engineering Languages and Systems, pp. 30-37.

Selic, B., 2012. What will it take? A view on adoption of
model-based methods in practise. In Software and
System Modeling, pp. 513-526.

Weigert, T., Weil, F., 2006. Practical experiences in using
model-driven engineering to develop trustworthy
computing systems. In IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy
Computing, pp. 208-217.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H.,
Heldal, R., 2013. Industrial adoption of model-driven
engineering: Are the tools really the problem? In
Model-Driven Engineering Languages and Systems –
16th International Conference, pp. 1-17.

Objecting to the Revolution: Model-Based Engineering and the Industry - Root Causes Beyond Classical Research Topics

639

