
Practical Large-scale Model-Driven Development of Business 

Applications with an Executable UML1
 

Dragan Milićev 
University of Belgrade, Faculty of Electrical Engineering, Department of Computing,  

P.O. Box 35-54, 11120 Belgrade, Serbia 

dmilicev@etf.rs  

Keywords:  Unified Modeling Language (UML), Model-Driven Development, Rapid Application Development, 

Business Applications, Data-centric Applications, Information Systems, Web Applications. 

Abstract:  Despite intensive work in academy and industry around it in the last two decades, the discipline of model-

driven development with UML apparently has not become the industrial mainstream for building large-scale 

information systems. In this paper, we present our attitude toward two probably mostly debated topics: 1) 

the lackluster adoption of MDD with UML in this field; we try to identify and explain what we believe are 

the main reasons for it, and 2) the controversial debate about general-purpose modeling languages, UML in 

particular, versus domain-specific modeling languages (DSLs). We present our approach to building large-

scale business applications based on an executable profile of UML, named OOIS UML, and implemented as 

a framework named SOLoist. We also briefly report on our experiences and lessons learnt from successfully 

using the approach and the framework in industrial projects of different size and domains over the last 

fifteen years. 

1 INTRODUCTION 

Model-driven development (MDD), as a general 

software engineering discipline, along with the 

accompanying technologies and standards such as 

OMG’s Model-Driven Architecture (MDA) and the 

second generation of the Unified Modeling 

Language (UML 2.x) have been around for about 

fifteen years, but apparently have not become the 

industrial mainstream in large-scale development of 

information systems, i.e., of business (database) 

applications. Although there has been intensive work 

in academy and industry around this paradigm, and 

model-driven engineering in general is found to be 

widespread in industry in general (Whittle et al., 

2014), reports from recent research attempts 

indicate, among others, two interesting and to some 

extent controversial findings: 

1) UML is very poorly adopted in industrial 

practice (Petre, 2013; Petre, 2014): out of 50 

software practitioners interviewed in the stud 

(Petre, 2013), 35 did not use UML at all, 11 used     

1 This invited paper is a revised (updated and modified) 

version of the paper previously published (in Serbian only) in 

the InfoM journal, Vol. 43, 2012, UDC 004.438:004.42.045 

it selectively (in a personal and informal way, for 

as long as it was considered useful, after which it 

was discarded), 1 used to retrofit UML in order to 

satisfy management or comply with customer 

requirements, while only 3 used it for automated 

code generation (which could be treated as kind of 

MDD) and 0 used it “wholehearted”, meaning an 

“organizational, top-down introduction of UML, 

with investment in champions, tools and culture 

change, so that UML use is deeply embedded”. 

We must say that we were not at all surprised with 

these findings, as their fully coincide with our 

experience: apart from the few environments 

(except from our team) where we have 

successfully deployed MDD with UML, we have 

not come across any company or team that used 

MDD with UML “wholeheartedly”, although 

some of the teams used it occasionally and 

informally, mostly to comply with customer 

demands or for documenting requirements (use 

cases or business processes) or sketches of 

(usually partial) design. It also seems that the 

optimistic bubble around UML on its emergence 

in late 1990s have burst as many people got 

disappointed with using UML in its early stages 

(the reports in (Petre, 2013; Petre, 2014) indicate a 

590
Milićev, D.
Practical Large-scale Model-Driven Development of Business Applications with an Executable UML.
DOI: 10.5220/0006216205900604
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 590-604
ISBN: 978-989-758-210-3
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



large potion of those being disappointed with 

UML). 

2) The majority of those who exploit some 

kind of model-driven engineering use DSLs, 

usually small ad-hoc languages for narrow, well-

understood domains (Whittle et al., 2014). 

Although these DSLs are indeed sometimes UML 

profiles, it can be concluded that DSLs prevail 

over UML as a general purpose language. 

In Section 2 of this paper, we explain the 

reasons that we deem to be most relevant for the 

lackluster adoption of MDD with UML, while in 

Section 3 we briefly comment on the debate on 

DSLs versus UML. Then, in Section 4, we present 

our approach to effective MDD of large-scale 

information systems. The approach is based on an 

executable profile of UML, named OOIS UML, and 

is implemented as an open-source framework named 

SOLoist (SOLoist, 2016). Since the OOIS UML 

profile has been described in detail elsewhere 

(Milićev, 2009), we only outline some of its main 

elements and illustrate how it cures the problems 

identified in Section 2. In Section 5, we briefly 

report on our experiences and lessons learnt in using 

the approach and the framework in medium to large 

industrial projects over the last fifteen years. In 

Section 6 we also comment on some of the other 

findings from reports given in (Whittle et al., 2014) 

and (Petre, 2013) from our empirical viewpoint. It 

should be underlined that we focus on the 

development of information systems, i.e., of 

business, database (data-centric) applications of 

various application domains, especially those with 

complex Web-based UIs, which is the domain of our 

industrial practice. 

2 PITFALLS OF 

MODEL-DRIVEN 

DEVELOPMENT WITH UML 

What we deem the most critical pitfalls of modeling 

in general were identified and described long ago in 

the seminal book by Selic et al. (Selic et al., 1994), 

and were revisited in the context of UML modeling 

in a more recent book (Milićev, 2009). (Although 

the argumentation given long ago in (Selic et al., 

1994) was sound and reasonable, and are in our 

opinion the most relevant reasons for the lackluster 

adoption of MDD with UML, it is strange how little 

attention and recognition it gains nowadays, even 

though the problems described there still persist in 

practice in virtually the same form.) 

The first generation of UML (UML 1.x) was 

almost completely free of formal, executable 

semantics. This is because UML, in its initial 

conception inherited from some of its predecessors, 

was primarily designed as a descriptive language for 

specifying, visualizing, and documenting the 

construction and design decisions of programs 

developed in traditional object-oriented 

programming languages (OOPLs). Its scope of 

applicability was intended to be very wide: UML 

was designed to be used for specifying programs 

implemented in a variety of programming languages 

and for very different application domains, partly 

because UML was a synthesis of many other 

modeling predecessor methods. While UML 

provided some rough hints about the intended 

meaning of its concepts (mostly derived as 

generalizations of the concepts found in different 

OOPLs), the precise interpretation of the semantics 

of UML models was almost completely left to the 

way the models were mapped to the target 

implementation language. Obviously, such 

interpretation was highly dependent on the 

semantics of the target language, as well as of the 

mapping. Consequently, UML models were 

semantically ambiguous. It was completely up to the 

creativity and discipline of a development team to 

impose a certain unambiguous semantic 

interpretation of UML models in the domain of their 

interest. 

When information systems are concerned in 

particular, such usage assumes the following. Most 

UML tools can easily generate the relational 

database schema (DDL) as well as the class 

definition code in a target OOPL from a UML class 

model. However, the coupling between the space of 

objects of the OOPL and the data in the relational 

DBMS (RDBMS) is typically left to a separate 

object-to-relational mapping (ORM) framework, 

such as Hibernate or similar. Such ORM 

frameworks, on the other hand, do not have anything 

to do with UML and its semantics, especially with 

action semantics, but provide the semantic coupling 

between the OOPL and the RDBMS. In addition, 

such coupling often assumes that the database 

schema is developed separately and independently 

from the OOPL class structure.2 This means that the 

database schema is designed from the conceptual 

                                                           
2 In the extreme, some methods advocate the so called 

code-first or DB schema-first approaches, where high-

level models, such as Entity-Relationship or UML class 

models are obtained by reverse-engineering of already 

designed programs or database schemas. 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

591



(data) model of the problem domain and optimized 

for particular data access patterns according to the 

traditional practices of relational database 

normalization and optimization, while the OOPL 

code is designed according to the practices of object 

design. The task of an ORM is then to couple these 

two. In addition, ORMs often make it explicit to the 

developer that an OOPL object that resides in 

(volatile) operating memory and its (persistent) 

database representation are two distinct entities that 

have to be linked (typically over an object ID) and 

kept in sync by the ORM’s mechanisms. These 

mechanisms typically burden the developer with 

having to be aware of the “lifecycle” of the memory 

object and taking care of issuing the proper calls to 

the ORM, such as to “save,” “load,” or “discard” the 

memory object. This is one drastic example of 

unnecessary accidental complexity imposed by the 

imperfect technology of coupling two semantically 

different spaces (OOPL and RDBMS). 

A very similar situation is when the OOPL 

semantic space is coupled with the application’s 

presentation layer. Most user interface (UI) 

frameworks and libraries couple the presentation 

semantic space (e.g., HTML for Web-based UIs) 

with the OOPL space; this simply means that the UI 

components are constructed to work with memory 

objects that have the semantics of the OOPL. With 

more or less success of that coupling, virtually all of 

the popular approaches do not have any connection 

or provide any semantic coupling with UML and the 

application’s model. Yet again, the developer has 

very often to be aware of the purely technological 

implementation details, such as the separation 

between the Web page vs. the backing 

bean/controller object, the client code vs. the server 

code, the business layer vs. the entity (data) object, 

etc. 

With all this linguistic and semantic 

heterogeneity imposed by the mainstream 

development technologies, the OOPL code typically 

appears to be the central artifact, “the semantic 

master” to the semantics of which all other artifacts 

are adapted. This holds for the UML model too. In 

such circumstances, the model becomes just an 

additional and unnecessary burden: it is rather 

pointless to draw UML diagrams just to obtain 

skeletons of classes in OOPL code. In fact, UML is 

used just to “sketch and draw the code.” Apart from 

somewhat better clarity of the relationships between 

classes, due to diagrammatic visualization, this 

brings little or no additional value; quite the 

contrary. The very semantic heterogeneity, on the 

other hand, is a big problem for itself even without 

using UML models (Groenewegen et al., 2010), and 

is a typical example of undesired accidental 

complexity. 

As an effect, developers typically exhibit the 

“rush-to-code syndrome”: “a pervasive unease 

during the early development phases, a prevailing 

attitude among the developers that requirements 

definition and design models are ‘just 

documentation,’ and a conviction that the ‘real 

work’ has not begun until code is being written” 

(Selic et al., 1994). Although they would claim that 

requirements and design models provide useful 

insights into the nature of the system being 

developed, the more time is invested in building 

such models, the more uncertainties multiply. This is 

caused by the lack of objective evidence that the 

developed model is correct and complete. 

As a result, once the development passes to the 

implementation phase, the requirements and design 

models remain as documentation artifacts only, 

without executable semantics or any effect on the 

ultimate executable system. When the development 

process is iterative and incremental, it often calls for 

modifications. Such modifications on the initial 

design model are not enough to upgrade the running 

system and therefore, the developers are not forced 

to update it properly. Instead, they update what they 

merely have to – the implementation, i.e., the 

relational data definition code and the OOPL code, 

which directly affect their running system. This 

ultimately leads up to inconsistencies between the 

design model and implementation, which turns the 

design model into incorrect and thus harmful or at 

least useless documentation. To illustrate this, we 

cite a comment reported in (Petre, 2014): “Other 

[UML modeling] tools I’ve used... always end up 

being dropped after the initial thought stage simply 

because they end up being too painful to keep 

tweaking in order to sync the diagrams with code 

changes.” This often forces the development teams 

to discard the models and stick only to the 

implementation in later iterations. The reports in 

(Petre, 2013; Petre, 2014) indicate a large potion of 

those using UML this way; for example, one rather 

common opinion is quoted in (Petre, 2014): “For 

large, complex software projects, with continuous 

delivery, UML would slow down practice 

continually... The fastest software development 

teams don’ t use UML.” 

The essence of the described problem is called 

the semantic discontinuity and is well described in 

(Selic et al., 1994), (Milićev, 2009): it is the lack of 

formal coupling between the representations of 

different kinds of related detail, as we have 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

592



described. The central artifact that imposes the 

unambiguous semantic interpretation is the code, 

while the model is not the central, authoritative 

specification of the software and its semantics is 

interpreted via the semantics of the obtained code. 

This is certainly not the idea of MDD, where models 

are considered to be central artifacts of development 

from which all other artifacts are derived or 

subordinate. 

The problem of the lack of formal, executable 

semantics was recognized and tackled by the 

emergence of the second generation of UML 2.x 

(UML 2.5, 2015) and especially by the Foundational 

Subset for Executable UML Models (FUML) 

initiative of OMG (FUML 1.2.1, 2016). The latter 

initiative has the objective to identify a subset of the 

UML 2 metamodel that provides a shared foundation 

for higher-level UML modeling concepts, as well as 

to define a precise definition of the execution 

semantics of that subset. It is expected to cure the 

described essential problem of the lack of executable 

semantics of the core UML concepts. 

Unfortunately, nothing has changed in the 

mainstream yet. The FUML initiative seems to be 

still new and not yet widely supported by tools and 

frameworks. It is even less recognized in the wide 

development community. In addition, FUML 

provides a general-purpose programming platform 

that should be carefully profiled for various problem 

domains. For example, some UML concepts are not 

so important or necessary in building information 

systems, while the development of UI is of major 

importance and typically consumes most of the 

development resources. This has been also 

recognized and addressed by a most recent OMG's 

standard named Interaction Flow Modeling 

Language (IFML) (IFML 1.0, 2015). Being very 

new, it has very modest recognition yet. However, 

building large-scale information systems requires 

much stronger concept and tool support, covering all 

typical and important needs of this domain, such as 

querying of very large object spaces, massive and 

scalable concurrent and distributed processing, 

concurrency control (isolation) and transactions, etc. 

As a result, developers still use UML as before, 

selectively and informally, or do not use it at all 

(Whittle et al., 2014; Petre, 2013; Petre, 2014). 

MDD as a discipline, especially with UML, with its 

accompanying tool support, still seems to be 

immature at least for the information system 

domain. 

 

3 UML VS. DSL 

On the other hand, the report (Whittle et al., 2014) 

indicates that MDD is more widely applied with 

DSLs instead of UML. This claim contributes to the 

recent very intensive debate on UML (as a general-

purpose language) vs. DSLs. Without any ambition 

to resolve this dilemma, we would like to put 

forward some arguments based on our experience 

with the approach we successfully apply in the given 

domain (some of these being in accordance with the 

reports in (Petre, 2013)). 

Our main conjecture is that the reason for the 

apparent prevalence of DSLs over UML (Whittle et 

al., 2014) may not necessarily be inherent in the very 

nature of these languages (domain-specific vs. 

general), but is due to several other facts. 

First, and maybe most important, is the presence 

of the proper semantic coupling, coherence, and 

formality of the language that is necessary for 

success, as already discussed. In the first instance, as 

described, UML lacks them in many parts. However, 

this can be solved with proper profiling of UML and 

with adequate tooling, as in our example. Making a 

small, semantically coupled and well defined DSL is 

presumably much easier than profiling UML in that 

way. 

Second, it is about the context: DSLs usually put 

their concepts in a very specific context of a 

particular domain, while UML does not by default, 

but this can also be done by profiling though. The 

need for context is also mentioned in (Petre, 2013; 

Petre, 2014), the lack of context being one of the 

main reasons for disappointment with UML. 

Third, it is about the size and complexity of the 

language: UML is often accused of its extreme 

volume, complexity, and heterogeneity, which is 

indeed true. In order to make it practical, one has to 

narrow its scope by selecting only a subset of 

concepts and features that are useful for a particular 

usage (domain, team, or project). This is again what 

profiles are meant for: UML is intended for selective 

use, as opposed to a common misconception that its 

selective use is wrong or against its spirit (Petre, 

2014). A DSL is, on the other hand, usually by its 

design confined to the selected (typically small) set 

of necessary concepts. 

UML is very broad, and although its size and 

complexity may really be treated as its drawbacks, 

they can also be taken as its potential, because it can 

be profiled for many different purposes. Its concepts 

are so diverse that one can very likely find a concept 

that fits into particular needs in the given context. 

Indeed, the report in (Whittle et al., 2014) confirms 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

593



that some DSLs used in practice can be defined as 

UML profiles; IFML (IFML 1.0, 2015) and our DSL 

for user interfaces (Milićev and Mijailović, 2013) 

are additional good examples of rather exotic DSLs 

that can be expressed as UML profiles. 

However, shaping a DSL into a correctly 

defined UML profile is not an easy task. In order to 

recognize the UML concepts that the conceived 

domain concepts fit into, one has to be an expert in 

UML and know its metamodel and semantics, 

including semantic variation points, and to 

understand the mechanisms of extending and 

profiling UML. It is thus often the case that defining 

a DSL from scratch with a powerful tool like 

(Tolvanen and Kelly, 2015) can be much easier. 

One should not totally give up profiling UML in 

favor of developing a DSL from scratch though, 

because staying within the boundaries of a standard 

language has many advantages: modeling tool 

support and model portability (interchange); 

modeling is more likely to be understood and 

adopted by newcomers and people external to the 

team, because they are more likely to be educated 

and trained with a standard language than with an in-

house DSL; better potential for reuse of profiles for 

different projects, products, or even domains, etc. 

4 MDD WITH SOLoist 

We now briefly describe how MDD looks like in a 

semantically homogeneous and coherent 

environment of SOLoist. 

Coupling of Structure and Behavior 

Once the UML class model of a problem domain, 

like the sample one shown in Figure 1, is developed 

using an ordinary UML modeling tool, SOLoist 

generates all necessary artifacts for the application 

automatically. This includes the relational database 

schema, as well as the code in the target OOPL used 

for implementation (Java in this case). The 

generated code is linked with the SOLoist runtime     

 

Figure 1: A sample UML model. 

environment, which provides the necessary UML 

action semantics and ORM, in a manner of a UML 

virtual machine. 

Objects that are instances of the modeled 

classes, as well as their attributes and links as 

instances of the modeled associations, comply with 

the UML semantics and are inherently persistent. An 

object is a single and coherent entity, and there is no 

any semantic distinction between its memory and 

database representations, nor is the latter visible or 

accessible to the application by any means.3 This is 

manifested by the way the object space is managed 

with actions. Actions are written in the notation of 

the hosting OOPL (Java in this case). For example, 

an object of Employee is created with a create object 

action that is simply written as: 

Employee anEmpl = new Employee(); 

Although the notation is (intentionally) exactly the 

same as the one in Java, this is not the case with the 

semantics. The created object is inherently persistent 

and lives until it is explicitly destroyed by a destroy 

object action; this can happen much later, 

independently of the execution of the program that 

created the object: 

anEmpl.destroy(); 

There is no need to save or load an object, or to deal 

with any kind of “persistence managers,” “entity 

objects,” “sessions,” object IDs, or other kinds of 

elements as in other ORM approaches. 

Values of objects’ attributes are accessed via 

read and write attribute value actions. For example: 

anEmpl.name.set(new Text("John Doe")); 
... 

if 

(anEmpl.dateOfBirth.val().isEqualTo(Date.tod

ay())) ... // Happy birthday! 

As it can be seen, reading or writing attribute values 

are explicit actions invoked through operations from 

the SOLoist API of the runtime environment (val() 

and set() in this example). The API offers a full 

set of operations on attribute values, supporting the 

semantics of multivalued attributes from UML, with 

optional ordering. This is somewhat different from 

the concealed actions in an OOPL, where read and 

write actions are implied from the position of a term 

within an expression (e.g., an assignment implies a 

write action to the left-hand side operand). 

The similar holds for managing links of 

associations. For example: 

                                                           
3 This is why we use the term object space instead of 

database. 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

594



anEmpl.dept.set(aDept); 

creates a link between the objects referred to by 

anEmpl and aDept. After that, the object referred to 

by anEmpl will be a member of the collection 

returned by the action that reads the slot 

aDept.members. 

The behavior is specified within methods of 

operations. The methods are written in Java code, 

which may include all available Java control flow 

structures (conditions, loops), expressions, and 

statements. The access to the object space is 

linguistically embedded by means of the API for the 

actions, as already described. In addition, methods 

can call operations of objects with the usual 

operation call semantics in Java, including argument 

passing and polymorphism. References to objects 

are ordinary Java references and comply with the 

usual Java typing rules (e.g., conversion). The only 

trick is that those references refer to proxies that 

provide the described action semantics and access to 

the data values that are stored in the database and 

cached in memory outside these proxies. However, 

this is a matter of the implementation and is 

completely hidden from the developer. 

The developer does not need to make any 

intervention or configuration in order to achieve the 

described semantics. As in Ruby on Rails 

(Viswanathan, 2008), we prefer convention over 

configuration. The relational database schema is 

obtained by a default set of ORM rules. For the 

purpose of performance tuning for large-scale 

information systems and huge object spaces, we 

provide a set of configuration options that can adjust 

the ORM if necessary. However, this fine tuning can 

be done completely independently from the 

application development, as it does not affect the 

model and the action code within methods. The 

entire ORM, the synchronization between the cached 

objects in memory and their database 

representations, as well as the semantics of UML 

actions, including concurrency control (isolation on 

the object level, not on the record level) and 

transactions, is provided by the SOLoist runtime. 

We also support hierarchical UML state 

machines for modeling life cycles of objects. As a 

special feature, our state machines allow triggerless 

transitions, making state machines cover the 

semantics of classical flowcharts (because the 

control flow can leave the state as soon as its action 

ends and branch over decision vertices). Hierarchical 

state machines are not interpreted by the runtime, 

but Java code is generated from them, making the 

implementation efficient. We also support 

submachines with entry and exit points, as a very 

powerful concept for abstraction, decomposition, 

and high-level behavioral polymorphism. This way, 

we do not have to support UML activities, as most 

of the practical needs for modeling complex 

behaviors and business logic can be handled by state 

machines. 

To support large-scale processing of huge object 

spaces and especially lifetimes of objects modeled 

with state machines, our framework provides the 

notion of so-called agents. Agents are (profiled) 

active classes, whose instances are concurrent 

threads that process parts of object space. Each agent 

(as a class) can be configured with a query that 

selects a number of objects (e.g., objects residing in 

a certain state). The class can be automatically 

instantiated in a configurable number of concurrent 

instances that partition the selection of objects for 

concurrent processing. Each of the instances, in each 

of its processing iterations, takes a chunk of its own 

partition of objects (by executing the query) and 

performs the polymorphic operation upon each 

object; this can, but need not be, result in a call of an 

operation of the target object, or triggering its state 

machine. If the partition is empty, the agent instance 

goes to sleep for a while and then re-executes the 

query to fetch a new chunk of objects. 

The combination of these two notions, 

hierarchical state machines (as a general UML 

concept) and agents (as a profiled, domain-specific 

notion) provide a very powerful vehicle for abstract 

modeling and efficient and scalable concurrent 

processing, again thanks to proper semantic coupling 

and domain-specific profiling. 

Querying 

An important feature of a technology for building 

information systems is the possibility to pose 

complex queries in order to perform searches or 

make reports. For that purpose, we provide a variant 

of the ODMG’s Object Query Language (OQL). 

OQL inherits the syntax flavor of SQL, but supports 

the object data model. Our variant of OQL is 

adapted to UML. Its syntax and semantics is fully 

described in (Milićev, 2009) and briefly 

demonstrated here. 

For the sample model previously shown in 

Figure 1, in order to retrieve the names and dates of 

birth of all employees of the ‘R&D’ department, one 

can write in our OQL: 

SELECT empl.name, empl.dateOfBirth 

FROM Department d, d.members empl 

WHERE d.name=’R&D’ 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

595



It can be seen that an OQL SELECT query, in its 

FROM clause, uses navigation terms (e.g., 

d.members) over objects and links, instead of 

joining relations as in the relational algebra. The 

difference is especially noticeable when the 

navigation has to be done over a many-to-many 

association. The OQL query looks the same as 

shown above, while the equivalent SQL query has to 

join three tables (two for the entities on the ends and 

one for the many-to-many relationship). The more 

complex the navigation in the query, the bigger the 

difference between the OQL and SQL counterparts. 

OQL supports inheritance and polymorphism. 

For example, the following query includes the 

access to the inherited properties name and members 

of the class Headquarters: 

SELECT hq, hq.name, empl, empl.name 

FROM Headquarter hq, hq.members empl 

The following query will return the set of all 

departments that have members having ‘John’ in 

their names; the set will include headquarter(s) too: 

SELECT dept 

FROM Employee empl, empl.dept dept 

WHERE empl.name LIKE ’%John%’ 

Our OQL supports specialization, too. If we want to 

retrieve only headquarters that have members having 

‘John’ in their names, we can write: 

SELECT hq 

FROM Employee empl, empl.dept:Headquarter hq 

WHERE empl.name LIKE ’%John%’ 

The result of a query is a collection of tuples 

that can be iterated in the Java code or directly 

rendered by UI controls. The references to objects 

and values returned in the components of tuples can 

be used as already described. 

Our OQL supports many other features, like 

aggregate functions in the SELECT clause, 

equivalence for outer joins, GROUP BY, ORDER BY, 

and HAVING modifiers, unions and subqueries, and 

parameters of queries. 

Another particularly important and useful 

querying feature is the query builder, an API that 

allows declarative definition of (an internal 

representation of) queries that may have dynamic 

form, based on the presence or absence of certain 

query parameters. This is necessary to support 

complex searches required in typical applications. 

For example, a typical search for employees in our 

running example would allow an optional criterion 

to select only those employees that are assigned to a 

certain department, and satisfy some other optional 

criteria (in terms of attribute values of employees or 

departments). If the search includes the criteria 

related to the department of the employee, then the 

underlying query should have a navigation term in 

the FROM clause that joins the employee with the 

department (Employee e, e.dept d), and 

another term in the WHERE clause that filters only the 

requested department(s); if the search does not 

include criteria related to the department, the FROM 

and WHERE clauses should not include these terms. 

This dynamics of the query form is not easy to 

achieve via usual programming approaches, 

especially not by direct manipulation of a textual 

representation of the query. On the other hand, the 

declarative approach with the query builder makes 

definition of very complex and dynamic forms of 

queries rather straightforward, as it hides the 

complexity of the dynamics from the developer. 

Coupling with UI 

Typically, the most resource-consuming part of 

information system development is development of 

UIs. In order to reduce accidental complexity and 

ensure a proper impedance matching, our framework 

provides a full semantic coupling between the object 

space and the UI by using a novel paradigm for 

building UIs. It is briefly presented here, and 

described in details elsewhere (Milićev, 2009), 

(Milićev and Mijailović, 2013). 

The motivation behind our paradigm is 

illustrated in Figure 2. A simple UI form from the 

sample application whose model was previously 

shown in Figure 1 works as follows. The tree view 

on the left in Figure 2a is configured to render the 

hierarchy of departments. The three UI controls on 

the right display the properties of the department 

currently selected in the tree view. The first two 

controls are editable text boxes that render and edit 

the name and description attributes of the class 

Department. The third control is a list box that 

displays all employees who are members of the 

selected department. 

The behavior of the UI controls can be 

abstractly described like this. Whenever an object of 

Department is selected in the left-hand tree view, 

each of the three right-hand controls has to display 

the value of the corresponding slot of that object 

(name, description, or members – the collection 

of linked objects of Employee). Obviously, the 

object of Department selected in the tree view has 

to be dynamically provided as the input parameter of 

each right-hand control. Thus, the property (attribute 

or association end) of the class Department whose 

value will be displayed by each of these three right- 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

596



(a) 

depts members : SlotEditorComponent

resp : SlotEditorComponent

name : SlotEditorComponent

(b) 

Figure 2: (a) An example of a form with coupled UI 

components. (b) The message passing perspective to the 

functional coupling of UI components. 

hand controls can be configured at design time, 

when the UI is being constructed. On the other hand, 

what changes dynamically, by user’s actions, is only 

(a reference to) the object of Department whose 

slot (as an instance of the configured property) has 

to be displayed. 

By such observation we come to the perspective 

depicted in Figure 2b. The UI controls can be 

logically regarded as components with pins that 

form their interfaces. A pin is a connection point 

through which a UI component can send or receive 

signals or data to or from other components. For 

example, the tree view has one output pin through 

which it sends a reference to the object selected in 

the tree view each time the selection is changed; of 

course, this selection is changed dynamically, by 

user’s actions. Each of the three right-hand 

components has one input pin that accepts a 

reference to the object whose configured slot the 

component will display and edit. The internal 

behavior of the control ensures that each time a new 

value occurs on its input pin, the control accesses the 

underlying object space by reading the 

corresponding object’s slot and reflects its current 

value on the screen. 

In order to ensure the proper functional coupling 

of these components, the developer simply has to 

connect the output pin of the tree view component to 

the three input pins by wires. Wires specify the 

connections through which data will flow from an 

output pin to one or more input pins, whenever a 

new value is provided on the output pin, as shown in 

Figure 2b. The components are created as objects 

and wired through the SOLoist Java API or through 

models as described in a DSL that is defined as a 

UML profile (Milićev and Mijailović, 2013). 

SOLoist provides a rich library of built-in UI 

components for Web-based applications. These 

components, on one hand, wrap around usual UI 

widgets, such as textboxes, checkboxes, combo 

boxes, lists, tree views, pictures, grids, and many 

more, providing a usual appearance and behavior to 

the user, as well as interface pins to other 

components. On the other hand, these components 

raise the level of abstraction and directly match with 

the underlying object space with the UML semantics 

(Milićev, 2009). 

As another illustrative example, we present the 

UI component shown in Figure 3. The component 

shown in Figure 3 is an editor of a slot of an object 

provided on its elem input pin. In the presented 

example, the object is an instance of the class 

Employee. Let us refer to it as the host object. The 

slot is an instance of an association end from the 

UML model. The association end is configured as a 

construction parameter (and stored in an attribute) of 

the component. In this example, this is the 

association end dept that maps an employee to its 

department. The component shows a collection of 

objects of a certain class that are candidates for 

creating links with the host object over the 

configured association end (dept). The component 

can be configured to show this collection of objects 

as a list, obtained from a collection given on another 

pin, or as a tree, with the object given on another pin 

as its root and the tree spanned over the links on the 

given association end (subdivisions in this case). 

Whenever a new Employee host object arrives on 

the elem input pin, the component fetches the link 

(or multiple links in a general case) of the host 

object on its dept slot from the underlying object 

space and updates the checkboxes to reflect this link 

(or multiple links in a general case). Whenever the 

user changes the state of the checkboxes, the 

component updates the underlying object space by 

creating or deleting the links. As a result, in order to 

provide this typical behavior, the developer has 

nothing to code in a traditional way, i.e., in 

imperative code of components’ event handlers; 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

597



everything is done declaratively, by configuring the 

(construction parameters of) the component and 

connecting its pins with pins of other components in 

its environment. 

 

Figure 3: A sample UI component for editing an 

association end instance. 

Our library is full of sophisticated components 

that follow the same paradigm. Their 

implementation is Web-based. The Web client tier 

implements the entire UI layer, while the object 

space layer resides on the Web server. The client tier 

uses Google Web Toolkit (GWT) as its 

implementation platform. In particular, the off-the-

shelf components from our component library wrap 

up GWT widgets. The client tier accesses the object 

space via AJAX calls: whenever a component has to 

fetch or modify a piece of the object space, it issues 

an AJAX call, concurrently and independently of 

other components. Obviously, the reflectivity of the 

underlying UML object space plays a significant 

role in this paradigm, since the domain object space 

is accessed through UML reflection. 

5 EXPERIENCE 

We conceived the described MDD approach in early 

2000. Since then, we have developed four 

generations of the framework in different languages 

(Visual Basic, C++, and Java), and on different UI 

platforms and architectures (Desktop: Visual Basic, 

MFC, Qt; Web: GWT). These four generations had 

different sets of features, levels of semantic 

integration, and internal architectures and design. 

Using these four technology generations, we have 

implemented a few dozens of commercial, industrial 

projects of different size and from very different 

application domains, some of them resulting 

governmental systems of national scale.4 We will 

here briefly report on our experiences collected and 

lessons learnt from this practice. 

The main conclusion from our experience is that 

MDD really works and scales quite well for all sizes 

of projects, provided that it is applied properly and 

in a framework that ensures the proper semantic 

coupling as in our approach. 

We have also confirmed many other claimed 

benefits of applying MDD and using a semantically 

coherent environment. The accidental complexity is 

much reduced as compared to other mainstream 

approaches that are linguistically or semantically 

heterogeneous. This leads to more concise, but also 

more expressive development artifacts (model and 

code) due to the use of more abstract modeling 

concepts. 

As a result, the development cycle becomes 

shorter. This claim is difficult to quantify and prove, 

and we do not tend to do that here. Although we 

have not conducted experiments of independent 

development of the same systems by different 

approaches, because we focused on real-life, 

industrial projects that had very tight deadlines, we 

can say that our clients, as well as partners who were 

professionals experienced and trained in many other 

popular mainstream frameworks, were pleased with 

the complexity of the developed systems compared 

to the achieved performance and delivery time. 

Our experience also fully corroborates the 

statements given in a paper on the pragmatics of 

MDD (Selic, 2003), especially about the benefits 

and importance of automation, standards, model 

executability, and integration with external and 

legacy systems. 

We also agree with the conclusions on the 

importance of education and training (Selic, 2012), 

as well as of the skills for abstract thinking (Kramer, 

2007). From our experience of training in general 

and for our MDD in particular, we have found that 

the existence of runtime semantics is the key to 

successful adoption of new abstract concepts by 

engineers. If a concept has precisely defined, clear, 

and observable effects at runtime, so that one can 

immediately experiment with it, then it is more 

likely to be quickly adopted, even without too 

detailed and formal explanations. It is the same case 

as with learning any other classical programming 

language or environment, where new concepts are 

typically introduced with examples that 

                                                           
4 A selection of these projects can be seen in the Case 

Study section at www.sol.rs. 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

598



programmers can immediately experiment with 

(“hello world” is the classical ultimate and trivial 

example of this approach). Explaining runtime 

effects of a concept can be treated as a kind of 

operational approach to teaching and understanding 

semantics. One simple example can be the 

explanation of the concept of a pointer: taken 

abstractly and in an operational way, one can  

explain it by defining the meaning of the operations 

with the pointer (linking it with an object, 

dereferencing it). Another example from our domain 

is the notion of a link between objects, as an instance 

of association, described in terms of actions on links 

and linked objects. 

On the other hand, when a clear description of 

runtime semantics is missing, the concept becomes 

difficult to comprehend or remains unclear. In such 

cases, the alternative way people usually take to 

understand the concept is to map it to already known 

concepts (usually in a different semantic domain, 

that is, different language), i.e. to something the 

semantics of which they are already familiar with. 

This is a kind of denotational approach to capturing 

semantics. Although this can also be a viable and 

correct approach that can help with understanding, if 

treated carefully and in the right way, it can also be  

misleading, as already explained, as the semantic 

domain it is usually mapped to is the implementation 

(OOPL, relational, etc.). To take the previous 

examples, a denotational approach for teaching the 

semantics of pointers could explain its 

implementation in terms of an operating memory 

cell containing the address of another memory cell 

where the pointed object is located, while a link can 

be explained with how it can be implemented in an 

OOPL via pointers (references) between linked 

objects. 

One important characteristic of our method and 

framework is its adherence to the basic principle of 

software design – localization of design decisions. 

Namely, it has turned out in practice that the number 

of ways in which a certain requirement can be 

implemented or retrofitted to an existing application 

is limited to only few or one in most cases. This is 

good, because the implementation becomes 

straightforward and independent of the developer 

who makes it, while the applications are easier to 

understand and maintain. 

As a special case of this principle, one piece of 

design can be maintained at only one place, either 

code or model in most cases. For example, although 

theoretically possible, the approach makes it 

extremely difficult to make any change to the class 

structure of the system, such as to introduce a new 

(persistent) class or change any detail of an attribute 

of a class, in the generated code, because it will not 

guarantee the full consistence of all artifacts (the 

UML reflection, the database schema) and ensure 

proper functioning of the system. In fact, such a 

change is almost as difficult and unreliable as 

changing a piece of binary code produced by a 

compiler. For that reason, it is much easier and 

secure for the developer to follow the strict 

procedure of changing the relevant piece of model 

only and regenerate all other implementation 

artifacts automatically. The similar holds for state 

machines. Consequently, we do not exploit reverse 

engineering and round-trip engineering (generate the 

code from the model, tweak the code when a small 

change is necessary in the running system, and then 

reverse engineer the code to update the model in 

order to keep it in sync): we find round-trip 

engineering inappropriate, and reverse engineering 

useful only for the purpose of extracting information 

from legacy systems to understand their design, and 

not as a tool for round-trip engineering in 

developing new systems. 

As a proof of our claims, we give the only 

exception to this rule that represents a weak point of 

our framework: operations of classes can be 

specified in model as well as in sections of code 

preserved by the code generator. And as soon as it is 

possible to do one thing in different places, different 

people will really do it in different places: some 

define operations in the model, while the others take 

the much easier and quicker approach and define 

operations in the code, resulting in not fully 

complete models (but without any impact on the 

executable software). Although this weakness does 

not represent a big problem in practice, we plan to 

tighten it up by better coupling of the modeling and 

coding environments in the future. 

Not surprisingly, we have often been faced, 

especially in the early period of our practice, with 

“one of the first questions asked about MDD: how 

the automatically generated code’s efficiency 

compares to handcrafted code”  (Selic, 2003).  This 

is definitely one of the fears of pitfalls of MDD most 

frequently expressed by customers and partners, 

especially managers, having no experience with 

MDD. MDD or any other highly abstract and 

reflective approach is often accused of introducing 

additional and unacceptable overhead, especially in 

terms of execution time or space consumption, as 

compared to more traditional approaches.  

Our reply is also classical: “This is nothing new; 

the same question was asked when compilers were 

first introduced. The concern is the same as before: 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

599



humans are creative and can often optimize their 

code through clever tricks in ways that machines 

cannot. Yet, it is now common knowledge that 

modern optimizing compilers can outperform most 

practitioners when it comes to code efficiency. 

Furthermore, they do it much more reliably (which 

is another benefit of automation)” (Selic, 2003). We 

would add that the same situation was with Java in 

its early stages, when it was suspected of “being 

much slower because it is interpreted by a virtual 

machine;” nowadays, real-time and embedded 

software runs on JVM. 

Our practice has shown that efficiency problems 

may arise, but that the automation and abstraction 

can also provide the right means and place to solve a 

problem in a generic way, without affecting the 

application, because the problem and its solution can 

be localized in the runtime or the code generators 

and thus isolated from the application. One such 

problem arose in one of our large governmental 

projects, which had to handle an object space with 

hundreds of millions of objects and with temporal 

dimension (i.e., keeping all versions of modified 

objects and links). At the beginning, some large-

scale queries in the system suffered from 

performance problems. This forced us to dig deeply 

into the problem, and as a result, we conceived some 

advanced optimizations, such as placing redundant 

values in the database or avoiding unnecessary joins 

in queries. Once we have implemented the 

optimizations in our query translator and ORM, the 

achieved performance was often even better than 

what could have been achieved with manual coding 

or with a purely relational approach (and orders of 

magnitude better than initially). Namely, the 

redundancy is handled in a generic way, by the 

ORM only, and is completely transparent to the 

application; if it had been done manually, it would 

have been very difficult to design the schema 

consistently and then maintain the redundant data 

copy on every write action, or to optimize each 

critical query. On the other hand, unnecessary joins 

are very difficult to identify manually (while the 

algorithm behind is not so complex), and is not 

automatically feasible on the relational database 

level, because this level of abstraction lacks the 

necessary information about the semantics of 

relationships that are known to the more abstract, 

UML model level. This experience has also opened 

a completely new field of our ongoing research that 

investigates even more sophisticated and aggressive 

optimizations that are completely impossible to 

implement manually and on the level of a relational 

model. 

Our second example is related to state machines 

and massive processing of objects by agents. 

Initially, we used to store the current state of an 

object in its textual attribute, encoding the fully 

qualified name of the state (note that it can be nested 

within other states or submachines). Such encoding 

is very convenient, because it allows for flexible 

searching of objects residing in different composite 

states (making composite states a kind of 

abstraction, union, or generalization of nested 

states), by simple substring expressions in queries 

(searching for state names having a certain prefix). 

However, when agents select their chunks for 

processing, such queries can be very inefficient in 

case of huge object spaces. We have thus found 

another approach that benefits from both sides: 

objects can still be searched for states using path 

prefixes (composite states), but the queries are 

orders of magnitude more efficient, because they 

rely on integer search. 

In order to be successful, an MDD approach for 

a particular domain has to be full-fledged and cover 

all typical situations and support practical needs that 

may occur in practice (Selic, 2003), (Selic, 2012). In 

our case, one typical situation is the following. 

During development, until production, it is easy to 

regenerate the entire database schema each time the 

source UML model evolves. However, once in 

production, the database contains valuable user's 

data that have to be preserved and the database 

cannot be simply regenerated from scratch, but has 

to be carefully updated to ensure data preservation. 

Although manual maintenance is possible, it is 

tedious and error-prone, especially in case of 

complex models/schemas. For that purpose, we have 

designed a tool to solve this database schema 

evolution problem (Milovanović and Milićev, 2015), 

which is invaluable in our practice. A second 

example is a complex UI component designed to 

render results of complex queries, typically used for 

already described searches. It is, of course, coupled 

with the query builder. Our framework is full of 

such examples, and even more will come in the 

future. 

Finally, it is of utmost importance to preserve 

pragmatism in real-life situations. Although we 

advocate an “orthodox” approach to MDD, as 

briefly described here and in (Milićev, 2009), this 

does not mean that it has to be dogmatic or 

restraining in any way. An MDD approach or 

framework, especially while it is not yet full-fledged 

and mature to cover all possible situations and 

needs, has to be flexible and open to enable 

pragmatic escape from obstacles in real 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

600



development. Our practice is also full of such 

examples: although we we are planning to capture 

some of these in a more abstract and controlled way, 

we still use the traditional techniques and tools to: 

communicate with external systems via very 

different interfaces (e.g., Web services, REST, 

sockets, or even files), exchange data via different 

formats (XML or even spreadsheets), integrate other 

technologies in our applications (e.g. custom-made 

or third-party widgets, biometric capturing software, 

Google Maps, etc.), design reports (using external 

report generators), access legacy relational databases 

(though JDBC), or simply make certain ad-hoc 

tweaks in the system. Founding our implementation 

on mainstream platforms and Java code with 

sections for manual coding of methods that are 

preserved by the generator, keeps our door open to 

such important flexibility. In that sense, we have 

been challenged many times when presenting our 

approach, by being asked the same type of 

questions: “How is this or that done in your 

approach?” The concrete answers can be generalized 

to the following: we either offer an advanced, more 

abstract/automated/efficient 

concept/feature/technique  for what is asked, or we 

do it as usual (traditionally, as anybody else). Doing 

such things, however, does not mean that we escape 

from or give up the MDD and UML models: these 

are just pragmatic actions to cope with real-world 

problems in a traditional manner, in cases where 

there is no adequate support in the MDD framework. 

As long as manifestations of such actions are 

localized and properly placed, encapsulated, and 

coupled with the rest of the system, everything is 

under control and makes no harm to the overall 

approach; on the contrary, it makes it pragmatic, 

adaptive, and effective. 

6 REFLECTIONS ON OTHER 

REPORTS 

We now briefly comment on several other findings 

from the reports (Whittle et al., 2014; Petre, 2013; 

Petre, 2014), from the perspective of our experience. 

“It is common to develop small domain-specific 

languages (DSLs) for narrow, well-understood 

domains... Keep domains tight and narrow: In 

agreement with other sources, we have found that 

MDE works best when used to automate software 

engineering tasks in very narrow, tight domains. 

That is, rather than attempting to formalize a wide-

ranging domain (such as financial applications), 

practitioners should write small, easy-to-maintain 

DSLs and code generators.” (Whittle et al., 2014) 

Although our UML profile is dedicated to a 

particular kind of applications, its domain is not 

narrow at all. Instead of an application 'domain', its 

dedicated to a certain kind of systems with certain 

characteristics, as described before. They cover very 

different business domains. Although it might be 

much easier to apply MDD in a very narrow domain, 

we do not believe this is a necessary prerequisite for 

success. 

“There is widespread use of mini-DSLs, often 

textual, and there may be many such mini-DSLs used 

within a single project. A clear challenge is how to 

integrate multiple DSLs. Our participants tended to 

use DSLs in combination with UML; in some cases, 

the DSL was a UML profile.” (Whittle et al., 2014) 

Indeed, our approach combines profiling of UML 

with 'mini-DSLs', such as our OQL or DSL for UI. 

The key to integration is, in our opinion, proper 

semantic coupling and adequate tooling. 

“Most successful MDE practice is driven from 

the ground up. MDE efforts that are imposed by 

high-level management typically struggle... Top-

down management mandates fail if they do not have 

the buy-in of developers first.” (Whittle et al., 2014) 

“Investment is made in tools and education, and 

'champions' or visible early adopters are influential, 

because they provide authentic examples of 

relevance to the company, they help to develop and 

promote conventions (e.g., naming conventions) that 

assist communication, and because they are 

available for advice.” (Petre, 2013; Petre, 2014) 

This resonates with our experience too. Although we 

have had only very few cases where we introduced 

our MDD approach into external teams, and 

although in all of them it was strongly supported by 

the management, the key to the successful 

implementation was the presence of 'buy-in 

developers'. 

“Successful MDE practitioners use MDE as and 

when it is appropriate and combine it with other 

methods in a very flexible way.” (Whittle et al., 

2014) We have already emphasized the importance 

of flexibility and pragmatism too. 

“Code generation is not the key driver for 

adopting MDE... [There are] other benefits to MDE 

which are much more important than these relatively 

minor productivity gains... The real benefits of MDE 

are holistic.” (Whittle et al., 2014) Although not 

measured, our productivity gains are obvious and 

(subjectively) fall into a range from 30% to several 

times. However, we agree that other known benefits 

are much more important (better and clearer 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

601



architecture, improved expressiveness, improved 

comprehensiveness, easier maintenance, etc.). 

“MDE makes it easier to define explicit 

architectures, especially when MDE is a ground-up 

effort.” (Whittle et al., 2014) In a certain sense, 

many of the features of our approach were 

conceived ground-up, and it is still an ongoing 

process. 

“Success requires a business driver. MDE... 

marketed as a technology that can do the same 

things faster and cheaper... is not usually enough 

motivation for companies to risk adopting MDE; 

rather, companies that adopt MDE do so because it 

can enable business that otherwise would not be 

possible.” (Whittle et al., 2014) In all cases where 

our customers were interested in our technology 

(and not only in the final software product of it), 

there was a clear business driver. Sometimes it was 

related to a particular situation of a project (e.g., 

project got stuck) or particular domain (motivation 

similar to that described in (Whittle et al., 2014)). As 

an illustration of something that “otherwise could 

not be possible”, we can put it this way in the 

context of our approach: although the same basic 

functionality in the systems developed with our 

technology could have theoretically been 

implemented with traditional approaches (ultimately, 

everything could be, at least theoretically, 

implemented in assembly), the complexity that was 

covered by these systems was completely 

impracticable, if not impossible to develop with 

traditional approaches in the given timeframe and 

with the given resources. For example, a very 

complex searching feature that is rather easily 

implemented with our approach and is standard in 

our solutions, is very difficult to implement 

otherwise and thus often does not exist in other 

systems; a complex business logic that is rather 

easily captured by hierarchical state machines would 

never be so complex, flexible, and reliable if 

implemented without them. 

Certain types of individuals can be very 

resistant to MDE, such as 'code gurus', 'hobbyist 

developers', or 'middle managers' (Whittle et al., 

2014). We have encountered such situations in our 

practice, too, and agree with the explanations in 

(Whittle et al., 2014). 

“Since most MDE efforts are highly domain-

specific, domain knowledge is crucial” (Whittle et 

al., 2014). With this claim we only partially agree. 

For designing proper systems, with or without using 

an MBE approach, domain knowledge is really 

crucial, as it is for designing DSLs. But we 

challenge this claim for the success of MDE in 

general. Our successful projects from very different 

domains were all implemented with the same 

(generic) MDD approach. 

“Companies that target a particular domain... 

are more likely to use MDE than companies that 

develop generic software.” (Whittle et al., 2014) 

This observation coincides with our experience with 

other teams who adopted our approach: they 

produced domain-specific software solutions with 

our 'generic' solution. However, our team develops 

'generic' software and systems in very different 

domains. In our opinion, this has more to do with the 

kind of applications, not with a business domain, and 

to the already discussed business drive. For example, 

MDE has been very widely and successfully used in 

a broad field of embedded and real-time software (of 

different domains). 

“Developers are hired based on what 

technologies they are familiar with rather than what 

domains they have knowledge of.” (Whittle et al., 

2014) We agree with this criticism, but we would 

like to add the importance of other skills (other than 

domain knowledge), such as general programming 

skills and the already discussed capability of abstract 

thinking. 

“Put MDE on the critical path... Avoid the 

temptation to try out MDE on side-projects which 

will not have sufficient resources or the best staff. 

MDE should still be introduced incrementally but 

each increment needs to add real value to the 

organization for it to succeed.” (Whittle et al., 2014) 

We fully agree. 

“Companies that do succeed invariably do so by 

driving MDE adoption from the grassroots: that is, 

small teams of developers try out aspects of MDE, 

which in turn lead them to recognize reusable assets, 

and eventually MDE propagates to the organization 

as a whole.” (Whittle et al., 2014) This is exactly the 

way we took in the situations where we trained the 

other teams for our MDD. 

“Selective (and often informal) use is the 

majority use – and is consistent with the intentions 

of the UML community.” (Petre, 2014) As already 

discussed, selective use (profiling being one 

controlled and disciplined way of doing it) is not 

against the spirit of UML – on the contrary, it is the 

key to its successful use, as in our example. The 

same holds for informal use: using UML diagrams 

to sketch a piece of design or convey an idea is 

certainly a valuable thing and is not against our 

philosophy: indeed, we also do it often. However, 

trying to persist with the same way of use for 

developing systems with MDD and UML leads to all 

the described problems and hazards. This is why this 

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

602



kind of use is limited, and what we have shown 

opens a much bigger potential of MDD with UML. 

7 CONCLUSIONS 

We have presented a semantically homogeneous and 

coherent environment for model-driven development 

of information systems based on an executable 

profile of UML. We have also briefly reported on 

our experience in using the environment in large-

scale industrial projects. Our experience has 

undoubtedly shown that MDD can work efficiently 

and as a powerful tool for tackling large essential 

complexity of information systems, provided that it 

is applied the right way. That right way, in our 

opinion, assumes using models as central and 

executable artifacts, just as code is in traditional 

approaches. As an effect, the models are not just 

sketches any more, but become accurate 

documentation of design decisions, as well as 

authoritative specifications of software. Because of 

that, the rush-to-code syndrome can be cured, while 

all benefits of using a language of higher level of 

abstraction can be gained. To cite one of the 

opinions quoted in (Petre, 2014), “The overhead [of 

using UML] usually outweighs the benefits unless it 

is very selectively used... Modeling a complete 

application in UML is just plain awkward.” This is 

indeed true, as we have explained, when a UML (or 

any other) model does not bring any additional 

value, but just represents a redundant and possibly 

unreliable information about the system. However, 

when one can get much more outcome and value 

from a piece of a UML model, as in our approach, 

than by traditional coding, then it is much easier to 

make a model than to write the code. Modeling 

should not be taken in a dogmatic way: one should 

select the most efficient way to express a design 

detail, be it a piece of model or code; for example, 

an algebraic expression, object query, or if-then-else 

construct will be most effectively expressed in the 

adequate (textual and possibly domain-specific) 

languages, while insisting on the use of activity 

diagrams to specify an implementation of 15 lines of 

structured code for a class method could bring us 

back to the times of flowcharts and spaghetti 

programming; on the other hand, a complex class 

structure or object life cycle will be much better 

expressed with a high-level UML model. 

The fear of pitfalls is one of the main 

impediments for adopting a new method such as 

MDD by a wider community (although MDD is not 

new at all, it still may appear so to the mainstream 

industry). Of course, as other new approaches or 

frameworks, our framework also suffered from some 

weaknesses, especially in its earlier versions. 

Although we fully understand this reluctance, we 

think it should never prevent a progress, provided 

that a real potential can be recognized (the 

proverbial “baby and the bathwater” scenario). 

Patience and effort should be invested in a 

technology so that it can get mature enough, 

provided it is inherently healthy. Our experience 

shows that a real problem should always be tackled 

with a pragmatic approach, technical sense, and 

care, and if the software is designed with all 

principles of software engineering obeyed (proper 

abstraction, localization of design decisions, 

encapsulation, clear and coherent architecture, etc.), 

most technical problems or risks can be overcome 

without jeopardizing the overall idea. 

REFERENCES 

Whittle, J., Hutchinson, J., and Rouncefield, M., "The 

State of Practice in Model-Driven Engineering," IEEE 

Software, vol. 31, no. 3, pp. 79-85, May-June 2014 

Petre, M., “UML in Practice,” Proc. 35th Int’l Conference 

on Software Engineering (ICSE 2013) 

Petre, M., “'No shit' or 'Oh, shit!': Responses to 

Observations on the Use of UML in Professional 

Practice”, Software and Systems Modeling, October 

2014, Volume 13, Issue 4, pp. 1225–1235 

SOLoist, http://www.soloist4uml.com, retrieved 

September 2016 

Milićev, D., Model-Driven Development with Executable 

UML, John Wiley & Sons (WROX), 2009 

Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-

Oriented Modeling, John Wiley & Sons, 1994 

Groenewegen, D., Hemel, Z., Visser, E., “Separation of 

Concerns and Linguistic Integration in WebDSL,” 

IEEE Software, Vol. 27, No. 5, Sept./Oct. 2010, pp. 

31-37 

Object Management Group, UML 2.5, http:// 

www.omg.org/spec/UML/2.5, June 2015 

Object Management Group, Semantics of a Foundational 

Subset for Executable UML Models (FUML) 1.2.1, 

http://www.omg.org/spec/FUML/1.2.1, January 2016 

Object Management Group, Interaction Flow Modeling 

Language (IFML) 1.0, http://www.omg.org/ 

spec/IFML/ 1.0, February 2015 

Milićev, D., Mijailović, Ž, "Capsule-Based User Interface 

Modeling for Large-Scale Applications," IEEE 

Transactions on Software Engineering, vol. 39, no. 9, 

pp. 1190-1207, September 2013 

Tolvanen, J.-P., Kelly, S., “Model-Driven Challenges and 

Solutions: Experiences with Domain-Specific 

Modeling in Industry”, Industrial Track of 

MODELSWARD 2015 

Practical Large-scale Model-Driven Development of Business Applications with an Executable UML

603



Viswanathan, V., “Rapid Web Applications Development: 

Ruby on Rails Tutorial,” IEEE Software, Vol. 25, No. 

6, Nov./Dec. 2008, pp. 98-106 

Selic, B., "The Pragmatics of Model-Driven 

Development," IEEE Software, Vol. 20, No. 5, 

Sept./Oct. 2003, pp. 19-25 

Selic, B., “What will it take? A view on adoption of 

model-based methods in practice”, Software and 

Systems Modeling,  October 2012, Volume 11, Issue 4, 

pp. 513-526 

Kramer, J., “Is Abstraction the Key to Computing?”, 

Communications of the ACM, April 2007, Vol. 50, No. 

4, pp. 37-42 

Milovanović, V., Milićev, D., „An Interactive Tool for 

UML Class Model Evolution in Database 

Applications,“ Software and and Systems Modeling, 

July 2015, Volume 14, Issue 3, pp. 1273-1295 1273-

1295  

IndTrackMODELSWARD 2017 - MODELSWARD - Industrial Track

604


