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Abstract: Time series data are ubiquitous and their analysis necessitates the use of effective data mining methods to 
aid towards decision making. The mining problems that are studied in this paper are lag correlation 
discovery and classification. For the first problem, a new lag correlation algorithm for time series, the 
Highly Sparse Lag Correlation (HSLC) is proposed. This algorithm is a combination of Boolean Lag 
Correlation (BLC) and Hierarchical Boolean Representation (HBR) algorithms and aims to improve the 
time performance of Pearson Lag Correlation (PLC) algorithm. The classification algorithm that is 
employed for data streams is an incremental support vector machine (SVM) learning algorithm. To verify 
the effectiveness and efficiency of the proposed schemes, the lag correlation discovery algorithm is 
experimentally tested on electroencephalography (EEG) data, whereas the classification algorithm that 
operates on streams is tested on real financial data. The HSLC algorithm achieves better time performance 
than previous state-of-the-art methods such as the PLC algorithm and the incremental SVM learning 
algorithm that we adopt, increases the accuracy achieved by non-incremental models. 

1 INTRODUCTION 

The high volume of time series data in various 
domains (e.g. medicine, financial markets) 
necessitates the use of effective data mining methods 
to aid towards decision making. The mining 
problems that are studied in this paper are lag 
correlation discovery and classification. The purpose 
of lag correlation discovery is to detect correlations 
with lag that are present in time series. The most 
common way for detecting correlation is the Pearson 
correlation coefficient. In many applications, due to 
the fact that there is a great number of time series 
that have a high correlation, it is necessary for a 
method to accept only the pairs that have correlation 
greater than a threshold. Such a method is the 
Pearson Lag Correlation (PLC) algorithm that can be 
used, not only for time series, but also for data 
streams. However, for online applications, the time 
performance of the algorithm is questionable. There 
is a rich body of literature on lag correlation 
algorithms for data streams. The Muscles algorithm 
proposed by Yi et al. (2000) is able to adapt to 
changing correlations on data streams, handle a great 
number of long sequences efficiently and predict 

precisely the missing values. Another approach is 
the StatStream incremental algorithm proposed by 
Zhu et al. (2002) which is based on Discrete Fourier 
Transform (DFT) and a time interval hierarchy of 
three levels, to calculate efficiently high correlation 
among all pairs of streams. The Boolean Lag 
Correlation (BLC) algorithm proposed by Zhang et 
al. (2011) and the Hierarchical Boolean 
Representation (HBR) algorithm proposed by Zhang 
et al. (2009) calculate lag correlation among 
multiple data streams and are based on boolean 
representation. HBR is based on the fact that, in the 
majority of applications, only a small fraction of all 
possible pairs have a high correlation. Thus, in order 
to reduce the computational time, a technique that 
spots only the pairs which are correlated is used.  

The purpose of classification for time series on 
the other hand is to create a matching of a set of 
unknown features into some known categories. For 
classification of data streams there is a rich body of 
research work related to incremental SVM learning 
algorithms. A framework for exact incremental 
learning and adaption of SVM classifiers has been 
studied by Poggio et al. (2001) and Diehl et al. 
(2003). The algorithm that is used is able to learn 
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and unlearn manifold examples, adapt the current 
SVM to changes in regularization and kernel 
parameters and evaluate generalization performance. 

In terms of applications, the medical and 
macroeconomic environments are fields in which 
there has been extensive research regarding 
classification algorithms of time series. The 
prediction of certain events in EEG or ECG has been 
studied among others by Mporas et al. (2015). 
Similarly, indicators in the financial market and 
recognition of patterns in stocks, known as stock 
trends, has been studied among others by Edwards et 
al. (2007). Kim (2003) has used SVMs for the 
prediction of the trend of the daily Korea Composite 
Stock Price Index (KOSPI).  

In this paper, we focus on lag correlation 
algorithms for time series and classification 
algorithms for data streams and examine their 
applications on medical and financial data 
respectively. The main contributions of this work 
can be summarized as follows: 
 Better time performance on lag correlation 

discovery of time series: the new HSLC 
algorithm achieves better computational time 
than the PLC algorithm. 

 Better accuracy on classification of data 
streams: we improve the classification 
accuracy accomplished by Kim (2003) on the 
KOSPI dataset by employing the incremental 
SVM learning algorithm proposed by Diehl et 
al. (2003) concluding that the way of training 
models for streams should be incremental. 

In Section 2 the Highly Sparse Lag Correlation 
(HSLC) is presented, whereas in Section 3 the 
incremental SVM learning approach is analyzed. 
Both algorithms are experimentally studied in 
Section 4 followed by some remarks. Section 5 
concludes the paper.  

2 HIGHLY SPARSE LAG 
CORRELATION ALGORITHM 

In the case of a large number of time series or data 
streams the set of all possible correlated pairs is 
rapidly increased. In order to be able to examine 
them for possible correlation it is vital to use 
algorithms which limit calculations to a smaller set 
and provide faster implementation through accurate 
approximations. The proposed approach, HSLC, 
calculates lag correlation on time series and can be 
used in applications where the number of highly 
correlated pairs is much smaller than the number of 

all possible pairs. Given k  time series of length n, 
the algorithm calculates lag correlation by first 
calculating the pairs that have lag correlation which 
is greater than a threshold and returning these 
correlated pairs and the value of their lag l. It is 
based on the HBR To cope with the high 
computational cost, the algorithm uses a correlated 
pair detection technique based on the BLC algorithm 
including the Boolean Representation method. After 
that, the lag correlation is calculated for the set of 
pairs which were detected using the Pearson 
correlation coefficient. Before the presentation of the 
HSLC algorithm, we give some definitions: 
Definition 2.1 (Pearson correlation coefficient) 
The Pearson correlation coefficient for two time 
series X  and Y with the same length n for lag l with 
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Definition 2.2 (Boolean series) The transformation 
of a time series X of length n into the corresponding 
Boolean series W of the same length n is given by:  
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Definition 2.3 (Correlation coefficient for Boolean 
series) The calculation of the lag correlation 
coefficient for two Boolean series ( , )i jW W is given 

by the formula:  
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The proposed algorithm is described below: 

HSLC algorithm 
 

Input: k time series 1 2 kX ,X ,...,X

_ , _detection threshold correlation threshold ,C . 
// detection threshold: used to find 
if the boolean series have a 
correlation; correlation_threshold: 
used to find if the time series, 
which were detected through the 
previous calculation of their 
corresponding boolean series, have a 
correlation; set C: contains the 
pairs of time series (Xi,Xj)which have 
corresponding boolean series with 
correlation coefficient bigger than 
the detection_threshold // 
Output: (Xi,Xj), max, lag 
// (Xi,Xj): the correlated pairs (if 
any); max: the maximum value of the 
Pearson correlation coefficient for 
every possible value of the lagl  for 
the pairs (Xi,Xj); lag: the value of 
l where the Pearson correlation 
coefficient takes its maximum value// 

C  
for each time series iX  do 

Calculate iX ; //mean value of iX // 

Calculate iW ; //the transformed 
Boolean series of time series iX  
calculated by eq. 4 (Def. 2.2.)// 

end for 
for each pair of series iW  and jW  do 

=0max ; //maximum positive or 
negative correlation// 
for =0l  to n/ 2  do 

Calculate the Boolean 
correlation coefficient δ(l) 
using eq. 6(Def. 2.3) 
If δ(l) > max  then 

max=δ(l) ;  
end if 

end for 
if |max|>=detection_threshold then 

Add the pair i j(X ,X )
 
to the set C  

end if 
end for 
for each pair of time series iX and 

jX  that belong to the set C do 

max =0 ; //maximum positive or 
negative correlation// 
for l=0  ton/ 2  do 

Calculate the Pearson 
correlation coefficientR(l) 
using eq. 1 (Def. 2.1) 
If  R(l) > max then 

max= R(l) ;  
lag = l ;  

end if 
end for 
if max correlation_threshold  then 

return i j(X ,X ),max,lag  

end if 
end for 

For k time series of length n, the time complexity 
of the HSLC algorithm for the transformation of the 
initial time series into the Boolean ones is O(kn). 
The corresponding time complexity for the 
calculation of the correlation on the Boolean series 
is O(1) as it only involves calculations on bits. So, 
the total time of detecting the correlated pairs is 
O(kn). Finally, the time complexity for the 
calculation of the correlation on the pairs which 
belong to the set C using the Pearson correlation 
coefficient is O(ck) where c is the number of the 
correlated pairs which is very small. Thus, the 
aggregate time complexity of the algorithm is O(kn) 
in contrast to the time complexity of O(k2n) of the 
naive PLC method. 

In the experiments the above algorithm was 
tested on EEG data from 22 different channels with 
a variety of sensors types and a frequency of 256 Hz. 
An example of features of an input series is as 
follows: {Sensor id: EEG1, Frequency: 256, Value: -
1.8, Sensor Type: Fp2AV, Time Stamp: 15/08/2016 
17:30:55}. 

3 SVM INCREMENTAL MODEL 

3.1 Support Vector Machines and 
Incremental Learning for Stock 
Prediction 

SVMs are among the best classifiers available today. 
They consider data items as points in a n-
dimensional space (where n is the number of 
features) and perform classification by finding the 
hyper-plane that best differentiates the classes that 
are present. In this paper the Gaussian function is 
used (due to its speed), expressed in the form of 
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where ( 12)mx R  , are the support vectors (margin, 

error and reserve), (1 12)z R  is the input vector, 
scale is the support vectors’ size and m is the 
support vectors’ number. 

Traditional data mining algorithms calculate 
their results for a pre-defined set of data. However, 
in the vast majority of applications, the set of data is 
not known from the beginning. Thus, it is vital for 
the algorithms to be adapted to the new upcoming 
data. This means that algorithms use the knowledge 
that had developed from their previous 
implementations and so are able to increase the 
precision in their results. This process is referred as 
incremental learning. Such approaches that have 
looked at the above problem through SVMs, have 
been employed by Poggio et al. (2001) and Syed et 
al. (1999). In our work, we adopt the case that is 
studied Poggio et al. (2001). 

The proposed model for stock trend prediction 
involves as a second step the extraction of features. 
These features should be able to be separated by the 
classification algorithm into two classes, the 
upwards and the downwards trend of the index 
respectively. These features are technical indicators, 
such as the William & R, A/D Oscillator, which are 
used for the creation of the SVM model that predicts 
the direction of the KOSPI and they have also been 
used by a variety of similar papers (e.g., (Shin, 
2005)). In this paper the twelve indicators case was 
adopted and implemented following the approach 
described by Kim (2003). 

3.2 SVM Incremental Model 

The streams in the aforementioned implemented 
model are the financial indicators previously 
mentioned. The constructed model is able not only 
to be adapted to the upcoming data but also maintain 
its existing knowledge through the adaption of the 
hyperplane of separation. More specifically, the 
incremental SVM learning algorithm (no instance 
memory) is used. Subsequently, our model classifies 
the test set into two classes, the upward and the 
downward trend of the indicators. Concurrently, this 
test set becomes part of the current training set, thus 
an increase of model’s knowledge is achieved. 
Finally, the model is used to predict the trend 
(upward or downward) that the stock is going to 
have in the next days.  

This model consists of the following parts and it 
constantly evolves as there are new input data, 

therefore the knowledge increases providing updated 
predictions: 

1. INPUT: It receives the data streams that consist 
of Date, Open, High, Low, Close, and Volume 
for each stock.  

2. FEATURE EXTRACTION: The system 
calculates the twelve technical indicators (Kim, 
2003) along with an additional feature, the 
trend which has the value (+1, if 
Close(t)<Close(t+1), upward trend), for time t, 
otherwise it has the value (-1, downward 
trend). 

3. MODEL INCREMENT: It receives the above 
indicators through overlapping windows of 
fixed size and is adapted to these in order to be 
able to increase its knowledge. It uses the 
incremental SVM learning algorithm (Diehl, 
2003). Every time that there is an increase in 
the knowledge through the algorithm, a new 
model is derived as an output. Thus, for time t, 
we have the model T(i), where i is the set of 
samples which has been already processed by 
the system, and for a new input window, we 
have the model T(i+w), where w is the 
predefined length of the input. The number of 
margin vectors (which are constantly increased 
as the system increases its knowledge), the 
number of reserve vectors (which are increased 
at a slower rate than the margin vectors) and 
the number of error vectors (which are only a 
few, during the whole implementation) are 
obtained as an output. 

4. PREDICTION: After the adaptation, the model 
predicts the trend of the stocks for the next 
days and finds the class that they belong to. 

5. OUTPUT: It receives the above results and 
presents the trend prediction (upward or 
downward). 

An example of features from an input stream as 
retrieved from the Google/Finance (2016) database 
is: {Date: 12-Dec-14, Open: 1921.6, High: 1926.6, 
Low: 1915, Close: 1921.7, Volume: 36347000}. This 
file had 2965 rows, where each row represents a 
different day. To create and handle the streams we 
used the Microsoft StreamInsight Platform (2016) 
and to implement our functions we used Matlab. An 
input adapter in Microsoft StreamInsight was 
generated, which reads the input file (.csv format) 
and matches each row to a sample stream, whereas 
each column is an input feature with the field Date 
to be the key for the creation of the streams. In order 
to create the model of incremental learning we run 
the incremental SVM learning algorithm proposed 
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by Diehl et al. (2003) through the library Diehl 
(2011) which is implemented in Matlab.  

4 EXPERIMENTS 

The experimental procedure includes two parts. In 
the first part, the lag correlation discovery on time 
series is considered, applying the HSLC algorithm 
on EEG data. In the second part, experimentation 
with data stream classification is conducted, by 
implementing the SVM incremental learning 
algorithm and testing it on the KOSPI data set.  

4.1 Time series Lag Correlation 
Discovery 

The algorithms HSLC, PLC and BLC were 
implemented in Matlab and compared. The 
experiments are separated into two parts. In the first 
part we split the time series in windows and in the 
second part the lag correlation on them was 
calculated in their whole length. The precision of an 
algorithm Y in comparison to the theoretical correct 
results of an algorithm X is given by the formula: 

 
(11) 

where TP (True Positives) are the correlated pairs 
that were detected correctly by the algorithm Y  
compared to the ones that the algorithm X  had 
detected, FP (False Positives) are the pairs that were 
detected as correlated by the algorithm Y but not by 
X, FN (False Negatives) are the pairs that were 
correlated according to X, but they were not detected 
by Y and ilag  is the output of the algorithms for the 

pair i, i=1,2,…,N, where N is the number of all pairs 
that we examined, except for the TN (True 
Negatives). The final value of the variable precision 
is the mean of the vector precision(i). 

4.1.1 Lag Correlation with the Use of 
Windows 

The input time series, where each of them has 2000 
values, are split in windows. In particular, we use a 
128-element sliding window in each EEG channel. 
Thus, the lag correlation on the subsets of the time 

series is calculated for every slide of the window. 
The results of the experiments follow below:  

 

Figure 1: HSLC algorithm. Time gain in detection 
threshold and in percentage of the correlated pairs of the 
time series (Number of time series =8). 

 

Figure 2: HSLC algorithm. Precision in detection 
threshold and in percentage of the correlated pairs of the 
time series. (Number of time series =8). 

Figures 1 and 2 show that the time gain ranges 
from 18.3% to 49.5% and the precision from 83.2% 
to 95.3%. Moreover, when the detection threshold is 
increased, the time gain is also increased but the 
precision is decreased. This happens due to the fact 
that, when there is a higher detection threshold the 
algorithm detects fewer correlated pairs and needs 
less time for the calculation of the correlation 
coefficients. Thus, there is a trade-off on time gain 
and precision. When the percentage of the correlated 
pairs is increased, the time gain is decreased and the 
precision remains the same. This is because when 
we have a higher percentage of correlated pairs the 
detection technique has a smaller time gain. 
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Figure 3: HSLC algorithm. Time gain in number of the 
time series and in detection threshold. (Percentage of 
correlated pairs = 10%-11%). 

 

Figure 4: HSLC algorithm. Precision in number of the 
time series and in detection threshold. (Percentage of 
correlated pairs =10%-11%). 

Figures 3 and 4 show that when the number of 
time series increases, there is a slight increase in 
time gain while the precision remains nearly the 
same. This is because for a greater number of time 
series there are more possible correlated pairs and 
the detection technique leads to a larger time gain. 

4.1.2 Lag Correlation without Sliding 
Windows 

Here we calculate the lag correlation on time series 
in their whole length. We also implemented the BLC 
algorithm which is the detection part of the HSLC as 
it has a very high time gain in the case that there are 
no sliding windows.  

 

Figure 5: HSLC & BLC algorithms. Time gain in 
percentage of correlated pairs. (Number of time series = 
25). 

 

Figure 6: HSLC & BLC algorithms. Precision in 
percentage of correlated pairs. (Number of time series = 
25). 

Figures 5 and 6 show that the time gain for the 
HSLC and BLC is in the range of 68.6%-77.6% and 
91.4%-91.5% respectively. The precision for the 
HSLC is 100% for all cases and for BLC it ranges 
from 90.2%-100%. Subsequently, the HSLC has a 
smaller time gain than BLC, but it has an 
infinitesimal error in precision in contrast to BLC. In 
HSLC, when the percentage of correlated pairs is 
increased, the time gain in decreased and the 
precision remains the same. In contrast, in BLC, 
when the percentage of correlated pairs is increased, 
the time gain remains nearly the same and the 
precision is decreased. Thus, the algorithms have an 
opposite behavior in time gain and precision. 
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Figure 7: HSLC & BLC algorithms. Time gain in number 
of time series. (Percentage of correlated pairs = 10%). 

 

Figure 8: HSLC & BLC algorithms. Precision in number 
of time series. (Percentage of correlated pairs =10%). 

Figures 7 and 8 show that in HSLC when the 
number of time series is increased there is a slight 
increase in time gain while the precision remains the 
same. In contrast, in BLC, when the number of time 
series increases the time gain remains nearly the 
same and the precision decreases. Figures 9 and 10 
show the general performance of the algorithms. In 
case that we use windows, the HSLC has a 
considerable reduction in computational time in 
comparison to PLC. The degree of the reduction 
depends on the value that the user provides for the 
detection threshold by taking into account the 
tradeoff on time and precision. When no windows 
are used HSLC has a dramatic reduction in 
computational time compared to PLC regardless of 
the value of the detection threshold  (0.825  in  this  
experiment).  Thus, in this case we do not have to 
take into account a tradeoff as we achieve the 
maximum precision (100%)  and a very high time 
gain with the above value of the detection threshold. 

In the implementation without windows, BLC 
could also be used as it achieves a smaller 
computational  time  than  HSLC.  However,  it does  

 

Figure 9: With sliding windows. Comparison of the 
computational time of HSLC & PLC algorithms in number 
of time series. (Percentage of correlated pairs =10%-11%).  

 

Figure 10: Without sliding windows. Computational time 
of BLC, HSLC & PLC for different number of time series. 
(Percentage of correlated pairs 10% ). 

not ensure an infinitesimal error as we noticed 
above. 

4.2 Data Stream Classification  

In the classification experiments we compare our 
model with three other versions of the SVM 
algorithm. In our approach, we train the incremental 
SVM learning algorithm with the first 3000 
examples then increase its knowledge with feedback 
from the next 3000 examples. Thus, the test set 
becomes part of the training set. We use a window 
that has a size of 10  examples. The second approach 
is the classic SVM which is trained with the same 
first set of 3000 examples and then tested with the 
next 3000 examples. The third version is the static 
incremental SVM algorithm which uses the same 
training and test sets of 3000 samples each. The 
difference in the latter case is the use of the SVM 
incremental learning algorithm instead of the classic 
SVM. However, it is only trained once, in contrast to 
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our approach. The fourth version is the online SVM 
algorithm which is trained with the same first 3000 
examples and then increases the initial training set 
with the following 3000 samples. The difference 
between this and our method is that this model is re-
trained every time a new instance arrives (full 
instance memory). Table 1 shows the average 
accuracy the methods achieved in predicting the 
price of stock for 3000 examples. The incremental 
SVM algorithm achieves the highest accuracy which 
is increased with the increase of the training set. It 
achieves 71% accuracy for the first half of the 
training set and 77% for the second half. 

Table 1: Accuracy of various SVM algorithms. 

ALGORITHM ACCURACY 

Classic SVM 52% 

Static Incremental SVM 60%

Online SVM 62%

Incremental SVM Learning 74%

5 CONCLUSION 

In this paper we proposed two different data miming 
techniques for time series and data streams. The first 
is associated with the problem of lag correlation 
discovery of time series. The proposed HSLC 
algorithm achieved a reduction in time complexity in 
contrast to the state-of-the-art method PLC while 
preserving high accuracy in the results. Furthermore, 
it has an infinitesimal error for both the value of the 
lag and the value of the correlation coefficient for 
every detected correlated pair of series. In the 
second part of this paper, we examined the problem 
of classification of data streams and evaluated 
several approaches on a stock prediction case. 
Specifically, an incremental SVM learning 
algorithm used for data mining on streams was 
employed on the KOSPI dataset. The algorithm 
achieved higher accuracy compared to three other 
versions of the SVM algorithm concluding that the 
training models for the stock prediction problem 
should follow an incremental iteration methodology. 
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