
Lag Correlation Discovery and Classification for Time Series

Georgios Dimitropoulos1, Estela Papagianni2 and Vasileios Megalooikonomou2

1Department of Mathematics, University of Patras, Rio-Patras, Greece
2Department of Computer Engineering and Informatics, University of Patras, Rio-Patras, Greece

Keywords: Data Mining, HSLC Algorithm, Data Streams, Time series, Classification, Lag Correlation, Incremental
SVM Learning Algorithm, Stock Trend Prediction, Features Extraction.

Abstract: Time series data are ubiquitous and their analysis necessitates the use of effective data mining methods to
aid towards decision making. The mining problems that are studied in this paper are lag correlation
discovery and classification. For the first problem, a new lag correlation algorithm for time series, the
Highly Sparse Lag Correlation (HSLC) is proposed. This algorithm is a combination of Boolean Lag
Correlation (BLC) and Hierarchical Boolean Representation (HBR) algorithms and aims to improve the
time performance of Pearson Lag Correlation (PLC) algorithm. The classification algorithm that is
employed for data streams is an incremental support vector machine (SVM) learning algorithm. To verify
the effectiveness and efficiency of the proposed schemes, the lag correlation discovery algorithm is
experimentally tested on electroencephalography (EEG) data, whereas the classification algorithm that
operates on streams is tested on real financial data. The HSLC algorithm achieves better time performance
than previous state-of-the-art methods such as the PLC algorithm and the incremental SVM learning
algorithm that we adopt, increases the accuracy achieved by non-incremental models.

1 INTRODUCTION

The high volume of time series data in various
domains (e.g. medicine, financial markets)
necessitates the use of effective data mining methods
to aid towards decision making. The mining
problems that are studied in this paper are lag
correlation discovery and classification. The purpose
of lag correlation discovery is to detect correlations
with lag that are present in time series. The most
common way for detecting correlation is the Pearson
correlation coefficient. In many applications, due to
the fact that there is a great number of time series
that have a high correlation, it is necessary for a
method to accept only the pairs that have correlation
greater than a threshold. Such a method is the
Pearson Lag Correlation (PLC) algorithm that can be
used, not only for time series, but also for data
streams. However, for online applications, the time
performance of the algorithm is questionable. There
is a rich body of literature on lag correlation
algorithms for data streams. The Muscles algorithm
proposed by Yi et al. (2000) is able to adapt to
changing correlations on data streams, handle a great
number of long sequences efficiently and predict

precisely the missing values. Another approach is
the StatStream incremental algorithm proposed by
Zhu et al. (2002) which is based on Discrete Fourier
Transform (DFT) and a time interval hierarchy of
three levels, to calculate efficiently high correlation
among all pairs of streams. The Boolean Lag
Correlation (BLC) algorithm proposed by Zhang et
al. (2011) and the Hierarchical Boolean
Representation (HBR) algorithm proposed by Zhang
et al. (2009) calculate lag correlation among
multiple data streams and are based on boolean
representation. HBR is based on the fact that, in the
majority of applications, only a small fraction of all
possible pairs have a high correlation. Thus, in order
to reduce the computational time, a technique that
spots only the pairs which are correlated is used.

The purpose of classification for time series on
the other hand is to create a matching of a set of
unknown features into some known categories. For
classification of data streams there is a rich body of
research work related to incremental SVM learning
algorithms. A framework for exact incremental
learning and adaption of SVM classifiers has been
studied by Poggio et al. (2001) and Diehl et al.
(2003). The algorithm that is used is able to learn

Dimitropoulos, G., Papagianni, E. and Megalooikonomou, V.
Lag Correlation Discovery and Classification for Time Series.
DOI: 10.5220/0006215901810188
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 181-188
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181

and unlearn manifold examples, adapt the current
SVM to changes in regularization and kernel
parameters and evaluate generalization performance.

In terms of applications, the medical and
macroeconomic environments are fields in which
there has been extensive research regarding
classification algorithms of time series. The
prediction of certain events in EEG or ECG has been
studied among others by Mporas et al. (2015).
Similarly, indicators in the financial market and
recognition of patterns in stocks, known as stock
trends, has been studied among others by Edwards et
al. (2007). Kim (2003) has used SVMs for the
prediction of the trend of the daily Korea Composite
Stock Price Index (KOSPI).

In this paper, we focus on lag correlation
algorithms for time series and classification
algorithms for data streams and examine their
applications on medical and financial data
respectively. The main contributions of this work
can be summarized as follows:
 Better time performance on lag correlation

discovery of time series: the new HSLC
algorithm achieves better computational time
than the PLC algorithm.

 Better accuracy on classification of data
streams: we improve the classification
accuracy accomplished by Kim (2003) on the
KOSPI dataset by employing the incremental
SVM learning algorithm proposed by Diehl et
al. (2003) concluding that the way of training
models for streams should be incremental.

In Section 2 the Highly Sparse Lag Correlation
(HSLC) is presented, whereas in Section 3 the
incremental SVM learning approach is analyzed.
Both algorithms are experimentally studied in
Section 4 followed by some remarks. Section 5
concludes the paper.

2 HIGHLY SPARSE LAG
CORRELATION ALGORITHM

In the case of a large number of time series or data
streams the set of all possible correlated pairs is
rapidly increased. In order to be able to examine
them for possible correlation it is vital to use
algorithms which limit calculations to a smaller set
and provide faster implementation through accurate
approximations. The proposed approach, HSLC,
calculates lag correlation on time series and can be
used in applications where the number of highly
correlated pairs is much smaller than the number of

all possible pairs. Given k time series of length n,
the algorithm calculates lag correlation by first
calculating the pairs that have lag correlation which
is greater than a threshold and returning these
correlated pairs and the value of their lag l. It is
based on the HBR To cope with the high
computational cost, the algorithm uses a correlated
pair detection technique based on the BLC algorithm
including the Boolean Representation method. After
that, the lag correlation is calculated for the set of
pairs which were detected using the Pearson
correlation coefficient. Before the presentation of the
HSLC algorithm, we give some definitions:
Definition 2.1 (Pearson correlation coefficient)
The Pearson correlation coefficient for two time
series X and Y with the same length n for lag l with

0
2

n
l  is given by the formula:

1

2 2

1 1

() (Y)
()

() (Y)

n

t t l
t l

n n l

t t
t l t

X X Y
r lag

X X Y


 



  

  


  



 
 (1)

where:

1

1 n

t
t l

X X
n l  

 
  (2)

1

1 n l

t
t

Y Y
n l





 
  (3)

Definition 2.2 (Boolean series) The transformation
of a time series X of length n into the corresponding
Boolean series W of the same length n is given by:

1,

0,
t

t
t

x x
w

x x


  

 (4)

where:

1

1 n

t
t

x x
n 

  (5)

Definition 2.3 (Correlation coefficient for Boolean
series) The calculation of the lag correlation
coefficient for two Boolean series (,)i jW W is given

by the formula:

 () max (), () 0,1,...,
2pos neg

n
l l l for l    (6)

() 1 ()pos l corr l   (7)

() ()neg l corr l   (8)

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

182

1()

n
i j
t l t

t l

w XORw
corr l

n l


 





(9)

The proposed algorithm is described below:

HSLC algorithm

Input: k time series 1 2 kX ,X ,...,X

_ , _detection threshold correlation threshold ,C .
// detection threshold: used to find
if the boolean series have a
correlation; correlation_threshold:
used to find if the time series,
which were detected through the
previous calculation of their
corresponding boolean series, have a
correlation; set C: contains the
pairs of time series (Xi,Xj)which have
corresponding boolean series with
correlation coefficient bigger than
the detection_threshold //
Output: (Xi,Xj), max, lag
// (Xi,Xj): the correlated pairs (if
any); max: the maximum value of the
Pearson correlation coefficient for
every possible value of the lagl for
the pairs (Xi,Xj); lag: the value of
l where the Pearson correlation
coefficient takes its maximum value//

C
for each time series iX do

Calculate iX ; //mean value of iX //

Calculate iW ; //the transformed
Boolean series of time series iX
calculated by eq. 4 (Def. 2.2.)//

end for
for each pair of series iW and jW do

=0max ; //maximum positive or
negative correlation//
for =0l to n/ 2 do

Calculate the Boolean
correlation coefficient δ(l)
using eq. 6(Def. 2.3)
If δ(l) > max then

max=δ(l) ;
end if

end for
if |max|>=detection_threshold then

Add the pair i j(X ,X)

to the set C

end if
end for
for each pair of time series iX and

jX that belong to the set C do

max =0 ; //maximum positive or
negative correlation//
for l=0 ton/ 2 do

Calculate the Pearson
correlation coefficientR(l)
using eq. 1 (Def. 2.1)
If R(l) > max then

max= R(l) ;
lag = l ;

end if
end for
if max correlation_threshold then

return i j(X ,X),max,lag

end if
end for

For k time series of length n, the time complexity
of the HSLC algorithm for the transformation of the
initial time series into the Boolean ones is O(kn).
The corresponding time complexity for the
calculation of the correlation on the Boolean series
is O(1) as it only involves calculations on bits. So,
the total time of detecting the correlated pairs is
O(kn). Finally, the time complexity for the
calculation of the correlation on the pairs which
belong to the set C using the Pearson correlation
coefficient is O(ck) where c is the number of the
correlated pairs which is very small. Thus, the
aggregate time complexity of the algorithm is O(kn)
in contrast to the time complexity of O(k2n) of the
naive PLC method.

In the experiments the above algorithm was
tested on EEG data from 22 different channels with
a variety of sensors types and a frequency of 256 Hz.
An example of features of an input series is as
follows: {Sensor id: EEG1, Frequency: 256, Value: -
1.8, Sensor Type: Fp2AV, Time Stamp: 15/08/2016
17:30:55}.

3 SVM INCREMENTAL MODEL

3.1 Support Vector Machines and
Incremental Learning for Stock
Prediction

SVMs are among the best classifiers available today.
They consider data items as points in a n-
dimensional space (where n is the number of
features) and perform classification by finding the
hyper-plane that best differentiates the classes that
are present. In this paper the Gaussian function is
used (due to its speed), expressed in the form of

Lag Correlation Discovery and Classification for Time Series

183

2

22(,)
x z

scalek x z e




 

 (10)

where (12)mx R  , are the support vectors (margin,

error and reserve), (1 12)z R  is the input vector,
scale is the support vectors’ size and m is the
support vectors’ number.

Traditional data mining algorithms calculate
their results for a pre-defined set of data. However,
in the vast majority of applications, the set of data is
not known from the beginning. Thus, it is vital for
the algorithms to be adapted to the new upcoming
data. This means that algorithms use the knowledge
that had developed from their previous
implementations and so are able to increase the
precision in their results. This process is referred as
incremental learning. Such approaches that have
looked at the above problem through SVMs, have
been employed by Poggio et al. (2001) and Syed et
al. (1999). In our work, we adopt the case that is
studied Poggio et al. (2001).

The proposed model for stock trend prediction
involves as a second step the extraction of features.
These features should be able to be separated by the
classification algorithm into two classes, the
upwards and the downwards trend of the index
respectively. These features are technical indicators,
such as the William & R, A/D Oscillator, which are
used for the creation of the SVM model that predicts
the direction of the KOSPI and they have also been
used by a variety of similar papers (e.g., (Shin,
2005)). In this paper the twelve indicators case was
adopted and implemented following the approach
described by Kim (2003).

3.2 SVM Incremental Model

The streams in the aforementioned implemented
model are the financial indicators previously
mentioned. The constructed model is able not only
to be adapted to the upcoming data but also maintain
its existing knowledge through the adaption of the
hyperplane of separation. More specifically, the
incremental SVM learning algorithm (no instance
memory) is used. Subsequently, our model classifies
the test set into two classes, the upward and the
downward trend of the indicators. Concurrently, this
test set becomes part of the current training set, thus
an increase of model’s knowledge is achieved.
Finally, the model is used to predict the trend
(upward or downward) that the stock is going to
have in the next days.

This model consists of the following parts and it
constantly evolves as there are new input data,

therefore the knowledge increases providing updated
predictions:

1. INPUT: It receives the data streams that consist
of Date, Open, High, Low, Close, and Volume
for each stock.

2. FEATURE EXTRACTION: The system
calculates the twelve technical indicators (Kim,
2003) along with an additional feature, the
trend which has the value (+1, if
Close(t)<Close(t+1), upward trend), for time t,
otherwise it has the value (-1, downward
trend).

3. MODEL INCREMENT: It receives the above
indicators through overlapping windows of
fixed size and is adapted to these in order to be
able to increase its knowledge. It uses the
incremental SVM learning algorithm (Diehl,
2003). Every time that there is an increase in
the knowledge through the algorithm, a new
model is derived as an output. Thus, for time t,
we have the model T(i), where i is the set of
samples which has been already processed by
the system, and for a new input window, we
have the model T(i+w), where w is the
predefined length of the input. The number of
margin vectors (which are constantly increased
as the system increases its knowledge), the
number of reserve vectors (which are increased
at a slower rate than the margin vectors) and
the number of error vectors (which are only a
few, during the whole implementation) are
obtained as an output.

4. PREDICTION: After the adaptation, the model
predicts the trend of the stocks for the next
days and finds the class that they belong to.

5. OUTPUT: It receives the above results and
presents the trend prediction (upward or
downward).

An example of features from an input stream as
retrieved from the Google/Finance (2016) database
is: {Date: 12-Dec-14, Open: 1921.6, High: 1926.6,
Low: 1915, Close: 1921.7, Volume: 36347000}. This
file had 2965 rows, where each row represents a
different day. To create and handle the streams we
used the Microsoft StreamInsight Platform (2016)
and to implement our functions we used Matlab. An
input adapter in Microsoft StreamInsight was
generated, which reads the input file (.csv format)
and matches each row to a sample stream, whereas
each column is an input feature with the field Date
to be the key for the creation of the streams. In order
to create the model of incremental learning we run
the incremental SVM learning algorithm proposed

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

184

by Diehl et al. (2003) through the library Diehl
(2011) which is implemented in Matlab.

4 EXPERIMENTS

The experimental procedure includes two parts. In
the first part, the lag correlation discovery on time
series is considered, applying the HSLC algorithm
on EEG data. In the second part, experimentation
with data stream classification is conducted, by
implementing the SVM incremental learning
algorithm and testing it on the KOSPI data set.

4.1 Time series Lag Correlation
Discovery

The algorithms HSLC, PLC and BLC were
implemented in Matlab and compared. The
experiments are separated into two parts. In the first
part we split the time series in windows and in the
second part the lag correlation on them was
calculated in their whole length. The precision of an
algorithm Y in comparison to the theoretical correct
results of an algorithm X is given by the formula:

(11)

where TP (True Positives) are the correlated pairs
that were detected correctly by the algorithm Y
compared to the ones that the algorithm X had
detected, FP (False Positives) are the pairs that were
detected as correlated by the algorithm Y but not by
X, FN (False Negatives) are the pairs that were
correlated according to X, but they were not detected
by Y and ilag is the output of the algorithms for the

pair i, i=1,2,…,N, where N is the number of all pairs
that we examined, except for the TN (True
Negatives). The final value of the variable precision
is the mean of the vector precision(i).

4.1.1 Lag Correlation with the Use of
Windows

The input time series, where each of them has 2000
values, are split in windows. In particular, we use a
128-element sliding window in each EEG channel.
Thus, the lag correlation on the subsets of the time

series is calculated for every slide of the window.
The results of the experiments follow below:

Figure 1: HSLC algorithm. Time gain in detection
threshold and in percentage of the correlated pairs of the
time series (Number of time series =8).

Figure 2: HSLC algorithm. Precision in detection
threshold and in percentage of the correlated pairs of the
time series. (Number of time series =8).

Figures 1 and 2 show that the time gain ranges
from 18.3% to 49.5% and the precision from 83.2%
to 95.3%. Moreover, when the detection threshold is
increased, the time gain is also increased but the
precision is decreased. This happens due to the fact
that, when there is a higher detection threshold the
algorithm detects fewer correlated pairs and needs
less time for the calculation of the correlation
coefficients. Thus, there is a trade-off on time gain
and precision. When the percentage of the correlated
pairs is increased, the time gain is decreased and the
precision remains the same. This is because when
we have a higher percentage of correlated pairs the
detection technique has a smaller time gain.

, , for the TP pairs

() , , for the TP pairs

0,

i
i i

i

i
i i

i

lag X
lag X lag Y

lag Y

lag Y
precision i lag X lag Y

lag X

for theTPor FN pairs

 
 

 
    
 
 
 

 

Lag Correlation Discovery and Classification for Time Series

185

Figure 3: HSLC algorithm. Time gain in number of the
time series and in detection threshold. (Percentage of
correlated pairs = 10%-11%).

Figure 4: HSLC algorithm. Precision in number of the
time series and in detection threshold. (Percentage of
correlated pairs =10%-11%).

Figures 3 and 4 show that when the number of
time series increases, there is a slight increase in
time gain while the precision remains nearly the
same. This is because for a greater number of time
series there are more possible correlated pairs and
the detection technique leads to a larger time gain.

4.1.2 Lag Correlation without Sliding
Windows

Here we calculate the lag correlation on time series
in their whole length. We also implemented the BLC
algorithm which is the detection part of the HSLC as
it has a very high time gain in the case that there are
no sliding windows.

Figure 5: HSLC & BLC algorithms. Time gain in
percentage of correlated pairs. (Number of time series =
25).

Figure 6: HSLC & BLC algorithms. Precision in
percentage of correlated pairs. (Number of time series =
25).

Figures 5 and 6 show that the time gain for the
HSLC and BLC is in the range of 68.6%-77.6% and
91.4%-91.5% respectively. The precision for the
HSLC is 100% for all cases and for BLC it ranges
from 90.2%-100%. Subsequently, the HSLC has a
smaller time gain than BLC, but it has an
infinitesimal error in precision in contrast to BLC. In
HSLC, when the percentage of correlated pairs is
increased, the time gain in decreased and the
precision remains the same. In contrast, in BLC,
when the percentage of correlated pairs is increased,
the time gain remains nearly the same and the
precision is decreased. Thus, the algorithms have an
opposite behavior in time gain and precision.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

186

Figure 7: HSLC & BLC algorithms. Time gain in number
of time series. (Percentage of correlated pairs = 10%).

Figure 8: HSLC & BLC algorithms. Precision in number
of time series. (Percentage of correlated pairs =10%).

Figures 7 and 8 show that in HSLC when the
number of time series is increased there is a slight
increase in time gain while the precision remains the
same. In contrast, in BLC, when the number of time
series increases the time gain remains nearly the
same and the precision decreases. Figures 9 and 10
show the general performance of the algorithms. In
case that we use windows, the HSLC has a
considerable reduction in computational time in
comparison to PLC. The degree of the reduction
depends on the value that the user provides for the
detection threshold by taking into account the
tradeoff on time and precision. When no windows
are used HSLC has a dramatic reduction in
computational time compared to PLC regardless of
the value of the detection threshold (0.825 in this
experiment). Thus, in this case we do not have to
take into account a tradeoff as we achieve the
maximum precision (100%) and a very high time
gain with the above value of the detection threshold.

In the implementation without windows, BLC
could also be used as it achieves a smaller
computational time than HSLC. However, it does

Figure 9: With sliding windows. Comparison of the
computational time of HSLC & PLC algorithms in number
of time series. (Percentage of correlated pairs =10%-11%).

Figure 10: Without sliding windows. Computational time
of BLC, HSLC & PLC for different number of time series.
(Percentage of correlated pairs 10%).

not ensure an infinitesimal error as we noticed
above.

4.2 Data Stream Classification

In the classification experiments we compare our
model with three other versions of the SVM
algorithm. In our approach, we train the incremental
SVM learning algorithm with the first 3000
examples then increase its knowledge with feedback
from the next 3000 examples. Thus, the test set
becomes part of the training set. We use a window
that has a size of 10 examples. The second approach
is the classic SVM which is trained with the same
first set of 3000 examples and then tested with the
next 3000 examples. The third version is the static
incremental SVM algorithm which uses the same
training and test sets of 3000 samples each. The
difference in the latter case is the use of the SVM
incremental learning algorithm instead of the classic
SVM. However, it is only trained once, in contrast to

Lag Correlation Discovery and Classification for Time Series

187

our approach. The fourth version is the online SVM
algorithm which is trained with the same first 3000
examples and then increases the initial training set
with the following 3000 samples. The difference
between this and our method is that this model is re-
trained every time a new instance arrives (full
instance memory). Table 1 shows the average
accuracy the methods achieved in predicting the
price of stock for 3000 examples. The incremental
SVM algorithm achieves the highest accuracy which
is increased with the increase of the training set. It
achieves 71% accuracy for the first half of the
training set and 77% for the second half.

Table 1: Accuracy of various SVM algorithms.

ALGORITHM ACCURACY

Classic SVM 52%

Static Incremental SVM 60%

Online SVM 62%

Incremental SVM Learning 74%

5 CONCLUSION

In this paper we proposed two different data miming
techniques for time series and data streams. The first
is associated with the problem of lag correlation
discovery of time series. The proposed HSLC
algorithm achieved a reduction in time complexity in
contrast to the state-of-the-art method PLC while
preserving high accuracy in the results. Furthermore,
it has an infinitesimal error for both the value of the
lag and the value of the correlation coefficient for
every detected correlated pair of series. In the
second part of this paper, we examined the problem
of classification of data streams and evaluated
several approaches on a stock prediction case.
Specifically, an incremental SVM learning
algorithm used for data mining on streams was
employed on the KOSPI dataset. The algorithm
achieved higher accuracy compared to three other
versions of the SVM algorithm concluding that the
training models for the stock prediction problem
should follow an incremental iteration methodology.

ACKNOWLEDGEMENTS

This work was supported in part by the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 690140.

REFERENCES

Diehl, C. P. and Cauwenberghs, C. (2003) SVM
Incremental Learning, Adaption and Optimization. In:
Proceedings of the IEEE International Joint
Conference on Neural Networks, pp. 2685-2690.

Edwards, R.D., Magee, J. and Bassetti, W.H.C. (2007)
Technical Analysis of Stock Trends, 9th ed.

Kim, Kyoung-jae (2003) Financial time series forecasting
using support vector machines. Neurocomputing
Journal, 55(1-2), pp. 307-319.

Mporas I., Tsirka, V., Zacharaki, E. I., Koutroumanidis,
M., Richardson, M., Megalooikonomou, V. (2015)
Seizure detection using EEG and ECG signals for
computer-based monitoring, analysis and management
of epileptic patients. Expert Systems with Applications,
42(6), pp. 3227-3233.

Poggio, T. and Cauwenberghs, C. (2001) Incremental and
Decremental Support Vector Machine Learning. In:
Proceedings of the 2000 Conference on Advances in
Neural Information Processing Systems, Vol. 13, MIT
Press.

Shin, K.S., Lee, T.S. and Kim, H. (2005) An application
of support vector machines in bankruptcy model.
Expert Systems with Applications, 28(1), pp. 127-135.

Syed, N. A., Liu, H. and Sung, K. (1999) Incremental
Learning with Support Vector Machines. In:
Proceedings of the International Joint Conference on
Artificial Intelligence.

Yi, B.-K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V.,
Faloutsos, C., Biliris, A. (2000) Online Data Mining
for Co-Evolving Time Sequences. In Proceedings of
the 16th International Conference on Data
Engineering, pp. 13-22.

Zhang, T., Yue, D., Gu, Y., Wang, Y. and Yu, G. (2009)
Adaptive correlation analysis in stream time series
with sliding windows. Computers & Mathematics with
Applications, 57(6), pp. 937-948.

Zhang, T., Yue, D., Wang, Y. and Yu, G. (2011) A Novel
Approach for Mining Multiple Data Streams based on
Lag Correlation. In: Proceedings of the Control and
Decision Conference, pp. 2377-2382.

Zhu, Y. and Shasha, D. (2002) StatStream: Statistical
Monitoring of Thousands of Data Streams in Real
Time: In: Proceedings of the 28th International
Conference on Very Large Data Bases, pp. 358-369.

Google/Finance. (2014). [Online] Available from:
http://www.google.com/finance. [Accessed 14/3/17].

Microsoft StreamInsight. (2016). [Software]
[Online]Available from: https://technet.microsoft.com/
enus/library/ee362541.

Diehl, C. (2011). Github, inc. [Online] Available from:
https://github.com/diehl/Incremental-SVM-Learning-
in-MATLAB.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

188

