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Abstract: Image inpainting is an active area of study in computer graphics, computer vision and image processing. 
Different image inpainting algorithms have been recently proposed. Most of them have shown their 
efficiency with different image types. However, failure cases still exist, especially when dealing with local 
image variations. This paper presents an image inpainting approach based on structure layer modeling, 
where this latter is represented by the second-moment matrix, also known as the structure tensor. The 
structure layer of the image is first inpainted using the non-parametric synthesis algorithm of Wei and 
Levoy, then the inpainted field of second-moment matrices is used to constrain the inpainting of the image 
itself. Results show that using the structural information, relevant local patterns can be better inpainted 
comparing to the standard intensity-based approach. 

1 INTRODUCTION 

Image inpainting is a dynamic research field with 
different applications. It is used in video animations, 
video completion, frames merging, image 
restoration, image extrapolation, image editing and  
video compression (Kwatra et al., 2003, Bargteil et 
al., 2006, Yamauchi et al., 2003, Winkenbach and 
Salesin, 1994). It is also used to describe the 
geometry of a surface, to remove undesired objects 
from images and videos and to fill missing regions 
(Bertalmio et al., 2000). 

In the past decades, several image inpainting 
algorithms have been proposed. For instance, the 
image synthesis method of Paget and Longstaff 
(Paget and Longstaff, 1998) captures the local 
characteristics of an image into a statistical model 
describing the interaction between the pixels of this 
image. The Efros and Leung (Efros and Leung, 
1999) approach generates the inpainted image by 
directly sampling new values from the input sample. 
The exemplar-based algorithms in (Criminisi et al., 
2004) and (Aujol et al., 2009) consist in directly 
copying patches from the exemplar image. A 
method based on the graph cut technique, used to 
determine the patch region without choosing its size 
a-priori, is proposed in (Kwatra et al., 2003). Portilla 
and Simoncelli (Portilla and Simoncelli, 2000) rely 
on the wavelet transform used to parameterize the 
image by a set of statistics, at adjacent scales and 

locations. A total variation inpainting model is 
proposed in (Chan and Shen, 2001). It is based on 
the theory of Euler-Lagrange and on anisotropic 
diffusion. The non-parametric image synthesis 
algorithm of Wei and Levoy (Wei and Levoy, 2000) 
models the image as a realization of a local and 
stationary random process. 

It has been demonstrated that taking into 
consideration the structural information of an image 
can help in the synthesis of this image, especially in 
the case of local structural variations (Akl et al., 
2014, Akl et al., 2015).  

This paper presents a structure-based inpainting 
algorithm where the structure layer of the image, 
represented by the second-moment matrix field, is 
first inpainted, then the obtained structure field is 
used to help the image inpainting process. The 
proposed approach consists in adapting non-
parametric image synthesis methods to the 
specificities of the second-moment matrix. More 
precisely, the algorithm of Wei and Levoy (Wei and 
Levoy, 2000) is used in the inpainting of the 
structure layer stage and in the inpainting process of 
the image itself.  

The remainder of this paper is organized as 
follows: the second-moment matrix field 
computation is first reviewed in section 2. The 
proposed inpainting method is then detailed in 
section 3. Results are shown and discussed in section 
4, and section 5 finally presents conclusions and 
perspectives of future work. 
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2 THE SECOND-MOMENT 
MATRIX 

The second-moment matrix, also referred as the 
structure tensor, is a gradient-based matrix whose 
first eigenvector points in the direction of the 
greatest rate of increase of the scalar field (Bigun 
and Granlund, 1987, Akl and Iskandar, 2015, Akl 
and Iskandar, 2016). A second-moment matrix 
SM(z) at image position z summarizes the dominant 
directions of the gradient in the neighbourhood of z. 
Therefore, it can be used to represent and to describe 
edges. In image processing, the second-moment 
matrix represents partial derivatives and it is 
commonly used to describe local patterns (Bigun 
and Granlund, 1987). 

The second-moment matrix field SM of an image 
A is defined as the field of local covariance matrices 
of the partial derivatives of A, built using the 
gradient fields [ ],x yA A  with:  

* *, ,x x y yA A G A A G 
 

  (1)

where ‘*’ represents convolution, Gx and Gy are 
isotropic Gaussian derivatives kernels. 

The second-moment matrix field is computed as: 
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where [.] † is the transpose operator and s is a 

weighting function – usually Gaussian – used to 
smooth the gradient fields, which makes them more 
robust to noise. 
The second-moment matrix can be represented by an 
ellipse with its principle orientation, ranging 
between -π/2 and π/2, computed as: 
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where Uz = [Uz
x Uz

y] is the first eigenvector of 
matrix SM(z). 

3 PROPOSED ALGORITHM 

This section details the proposed image inpainting 
algorithm which consists of two stages; structure 
layer inpainting and image inpainting using the 

inpainted structure, i.e. the second-moment matrix 
field.  
For concision, we denote the missing area to be 
inpainted as “MA”, the reference from which the 
intensities are copied to the MA  as “exemplar”, the 
image showing the MA and the exemplar as “input 
image” and the obtained image after inpainting as 
“output image” (Fig. 1). 

Figure 1: Illustration of the inpainting principle. Left: 
input image showing the MA (missing area to be 
inpainted) marked as a black surface, and the exemplar 
(reference image from which the intensities are copied) 
contoured in red. Right: output image. 

3.1 Structure Layer Inpainting 

The inpainting process of the structure layer starts 
by computing the second-moment matrix field from 
the luminance component of the input image (cf. 
section 2). The luminance component is calculated 
as in (ITU-R, 2011). To ensure that the inpainted 
MA is locally similar to the neighbouring regions of 
the input image, the algorithm of Wei and Levoy is 
adapted to the specificities of the second-moment 
matrix as follows: the MA of the second-moment 
matrix field is first initialized as a random noise, i.e. 
second-moment matrices chosen randomly from the 
second-moment matrix field of the exemplar, then 
the neighbourhood (vector of matrices) of each 
second-moment matrix of the MA is captured, the 
neighbourhood of the second-moment matrix field 
of the exemplar having the best similarity with the 
current neighbourhood is determined, and its central 
structure tensor is copied to the current position in 
the MA, as illustrated in Fig. 2. In this latter, the 
second-moment matrix field is represented by its 
orientation image. The palette of orientations is 
shown on the right. Note that this palette is used for 
all the results that follow. 

The similarity between two second-moment 
matrices at positions z1 and z2 is calculated using the 
square of the Euclidean distance as follows: 
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and the similarity between two second-moment 
matrix neighbourhoods SM1 and SM2 is calculated 
using the Sum of Second-Moment Matrix 
Dissimilarity (SSMD): 
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where SMi(n) is the nth second-moment matrix 
within the neighbourhood SMi - i	 ∈	{1,2} and N is 
the number of second-moment matrices in each 
neighbourhood. 

 

Figure 2: Second-moment matrix field inpainting. The 
most similar neighbourhood (yellow square) of the current 
neighbourhood (blue square) is searched for in the 
exemplar (contoured in red), and the corresponding matrix 
is copied to the target position in the MA. The palette used 
to represent the second-moment matrix field orientations 
is shown on the right. 

Note that this synthesis process can be repeated 
iteratively in order to obtain an inpainted MA which 
is coherent with the remaining second-moment 
matrices of the input image, especially the 
neighbouring ones.   

It is trivial that the neighbouring system 
(neighbour size and shape) and the scan type used in 
the inpainting process directly influence the quality 
of the inpainted MA. In this paper, the inpanting 
process starts by filling the outer border of the MA 
and ends at its center while using a square 
neighbourhood of size 9×9. However, a random scan 
could avoid verbatim copies (Xu et al., 2000) i.e. 
when the inpainted MA seems more regular than 
neighbouring second-moment matrices of the input 
image.  

3.2 Image Inpainting 

The structure layer being inpainted, it will be used to 
help the inpainting of the output image. The 
inpainting process remains the same as the algorithm 
of Wei and Levoy, except that the neighbourhoods 
take into consideration the additional information 
provided by the inpainted second-moment matrix 
field.  

More precisely, the image inpainting algorithm 
takes as inputs, the exemplar, its second-moment 
matrix field, the inpainted second-moment matrix 
field (cf. section 3.1) and the output image with its 
MA initialized by random noise (i.e. intensity values 
chosen randomly from the reference image). Then 
intensity values of the missing pixels of the MA are 
updated iteratively in order to ensure their local 
similarity with neighbouring pixels in the rest of the 
input image: the neighbourhood of every missing 
pixel of the MA is captured, the most similar 
neighbourhood is searched for in the exemplar and 
copied entirely to the target position in the MA. 
However, the underlying neighbourhoods have two 
components: an intensity component in the exemplar 
(A2) and the MA of the output image (A1), and a 
second-moment matrix component in the structure 
layers of the exemplar (SM2) and the output image 
MA (SM1) as shown in Fig. 3.  

Note that the MA pixels update is patch-based 
(i.e. the most similar neighbourhood is entirely 
copied to the target position) and not pixel by pixel 
(i.e. the center value of the most similar 
neighbourhood is copied to the target position) as it 
is the case in the second-moment matrix field 
inpainting stage, in order to reduce the 
computational load of the inpainting process. In fact, 
this can be achieved without any blockiness effect, 
thanks to the additional structural information 
provided by the inpainted second-moment matrix 
field.  

To measure the similarity between two 
neighbourhoods, we propose to combine the Sum of 
Second-Moment Matrix Dissimilarity (SSMD), used 
for the second-moment matrix component (cf. 
equation (5)), and the Sum-square Distance (SD), 
used for the intensity component: 
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where SM1 and SM2 are respectively the second-
moment matrix components of the neighbourhoods 
in the inpainted second-moment matrix field of the 
MA and in the second-moment matrix field of the 
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exemplar, A1 and A2 are respectively the intensity 
components of the neighbourhoods in the MA and in 
the exemplar (Fig. 3), α is a weight factor  
(0 ≤ α ≤ 1 since SD and SSMD are normalized), and 
the Sum-square Distance (SD) is given by: 
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Figure 3: Illustration of the image inpainting process: for 
each current neighbourhood (A1 in MA and SM1 in its 
inpainted second-moment matrix field), the most similar 
neighbourhood (A2 in the exemplar and SM2 in its second-
moment matrix field) is searched for, and the 
corresponding intensity component (A2) is entirely copied 
to the target position (A1). 

Note that, when α = 1, the second-moment matrix 
information is deactivated and a pure Wei and 
Levoy inpainting process is applied. On the contrary, 
when α = 0, the intensity information is deactivated 
and the choice of the best similarity depends only on 
the second-moment matrix information. 

The pseudocode of the whole inpainting 
algorithm is presented in Fig. 4. 
It is important to mention that in both inpainting 
stages of the proposed algorithm, the Wei and Levoy 
method is used due to its versatility and its pixel 
based principle which proved its efficiency in the 
synthesis of different types of images. However, 
other image synthesis algorithms could also 
incorporate this structure-based approach. 

4 RESULTS 

In this section, some practical results are presented, 
evaluated and analyzed subjectively and objectively.  

4.1 Qualitative Evaluation 

Fig. 5 presents inpainting results obtained using the 
proposed algorithm on three different input images.  

 

………………………………………………………    
Structure Layer Inpainting 

 SM        SECOND-MOMENTMATRIXCALCULATION (A) 

 MASM
        SMNOISEINITIALIZATION (SM) 

 loop  through all positions zo of MASM 

      z         argmax{BESTSIMILARITY(SM1
zovs SM2

z)} 

       SM1
zo(zo)        SM2

z(z) 
       

 endloop 

………………………………………………….…… 

Image Inpainting 

  MA        NOISEINITIALIZATION (A) 

 loop  through all positions zo of MA 

      z        argmax{BESTSIMILARITY(SM1
zo,  A1

zo
  

                                                                vs SM2
z ,  A2

z )} 

       A1
zo        A2

z 
       

 endloop 

………………………………………………….…… 

Figure 4: Pseudocode of the proposed inpainting 
algorithm. 

Each result shows, from first to seventh row, the 
input image showing the missing area (marked as a 
black surface) and the exemplar (contoured in red), 
the structure layer of the input image, the inpainted 
structure layer obtained by the proposed approach, 
the output image obtained using the proposed 
algorithm with α = 1 (pure Wei and Levoy 
inpainting), the output image obtained using the 
proposed approach with α = 0.5, nearer view of the 
output images obtained with α = 1 and  
α = 0.5. As mentioned in section 3.1, square 
neighbourhoods of size 9×9 are used.  

It can be seen in the first result that the proposed 
approach succeeds in well reproducing the structural 
information of the exemplar. The obtained 
orientation field of the structure layer does not 
present distortions nor edge effects. Therefore, the 
output image obtained with α = 0.5 is of good 
quality and visually better than the one obtained 
with the intensity-based inpainting approach of Wei 
and Levoy.  

SM1 

SM2 

A1

A2 
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Figure 5: Inpainting results obtained by the proposed algorithm. For each result (1st to 7th row): input image, its structure 
layer orientation field, inpainted structure layer orientation field, output image obtained using the proposed approach while 
deactivating the structural information (α = 1, pure Wei and Levoy inpainting), output image obtained using the proposed 
algorithm with α = 0.5, nearer view of the output images obtained with α = 1 and α = 0.5. 

The inpainted missing area obtained by this latter 
looks over smoothed and presents dynamics 
degradation. The same applies for the second result 
where the inpainted area obtained with α = 1 appears 
more regular than the exemplar, i.e. repeated 
periodic patterns that do not exist in the exemplar 

are present. In the third result, both output images 
are of acceptable quality.   

4.2 Quantitative Evaluation 

Besides the subjective qualitative evaluation 
presented in section 4.1, this section presents a 
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quantitative analysis of the results. It consists in 
comparing the histograms of intensity and 
orientations of the exemplar and the inpainted area 
by computing the Kullback and Leibler (Kullback 
and Leibler, 1951) divergence between them as 
follows: 
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where HMA and Hexp are respectively the histograms 
of intensity (or orientation) of the missing area and 
the exemplar. 
The Kullback and Leibler difference values obtained 
on the histograms of the output images of Fig. 5 are 
shown in Table 1.  

Table 1: Objective results obtained on the images of Fig. 
5. 

Imag
e 

Intensity 
Histograms 

Orientation 
Histograms 

α = 1 α = 0.5 α = 1 α = 0.5 
A 0.412 0.201 0.399 0.297 
B 0.308 0.31    0.402 0.289 
C 0.398 0.356 0.3 0.306 

The objective evaluation of Table 1 generally 
confirms our subjective analysis. In result A, both 
intensity and orientation histogram differences are 
higher with α = 1 than with α = 0.5, which verifies 
that the dynamics of the inpainted missing area are 
distorted with the pure Wei and Levoy inpainting. 
The high orientation histogram difference (0.402) in 
result B is due to the undesired repetitive patterns 
shown in the inpainted area with α = 1. Finally, the 
success of both, Wei and Levoy’s algorithm and the 
proposed approach, in leading to output images of 
roughly similar quality, is verified in the last row of 
Table 1.  

5 CONCLUSIONS 

We have proposed an image inpainting algorithm 
which consists in first inpainting the structure layer 
of the image, then using it to constrain the inpainting 
process of the image. The proposed approach relies 
on adapting the algorithm of Wei and Levoy to the 
specificities of the second-moment matrix. The 
obtained results quality was highly encouraging, in 
terms of dynamics and structures preservation, and 

proved that using the structure layer in the inpainting 
process could be advantageous comparing to pure 
intensity-based approaches.  

However, using other non-parametric methods 
than Wei and Levoy, and evaluating their efficiency 
in the structure and image inpainting processes, is of 
our interest. We also aim at comparing the 
performance of the proposed algorithm with several 
existing inpainting methods, using a large database. 
In addition, we aim at reinforcing the use of the 
proposed approach with different inpainting scan 
types, different neighbourhood shapes and size. 
Finally, it is necessary to consolidate the proposed 
objective evaluation using second order statistics, 
such as the autocorrelation, for example.  
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