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Abstract: Early verification is essential in system development because late error detection involves a costly correction
and approval process. Modelling real life systems covers three aspects of a system (structure, dynamics and
functions) and one verification technique is not sufficient to check the properties related to these aspects.
Considering Service-based Component Models, we propose a unifying schema called multi-level contracts
that enables a combination of verification techniques (model checking, theorem proving and model testing) to
cover the model V&V. This proposal is experimented using the Kmelia language and its COSTO tool.

1 INTRODUCTION

Early verification is essential in system development
because late error detection involves a costly correc-
tion (and approval) process. In Model-Driven De-
velopment, the model correctness is essential to start
any transformation process and to develop software.
Since (abstract) Platform Independent Models (PIM)
are the starting points for MDD, we need to trust
them.

Despite the implementation details of Platform
Specific Models (PSM) are omitted, the complexity
of verification and validation (V&V) remains impor-
tant when the PIM elements cover three orthogonal
system aspects: structure, dynamic behaviour (inter-
action) and functional behaviour (computations). Ac-
cordingly one verification technique does not suffice
to check the properties related to these aspects.

We address the issue of verifying multi-aspect
models from the practitioner’s point of view. We
consider Service-based Component (SbC) Mod-
els (Crnkovic and Larsson, 2002; Beek et al., 2006)
that promote the (re)use of components and services
coming from third party developers to build new sys-
tems. The success of the large-scale development of
SbC depends on the correctness of the parts before
assembling them. A service specification covers the
three above aspects: structure (service dependency,
data), dynamics (service interaction, service protocol)
and functions (pre/post conditions, statements). Es-
tablishing their correctness is complex and requires
the use of various verification techniques.

We propose a method based on multi-level con-
tracts where the properties are classified by require-
ments levels and structure levels. The service con-
tract paradigm acts as a glue between the three above
aspects. Classifying the properties enables us to se-
lect the adequate technique to cover the V&V re-
quirements; model checking, theorem proving, model
testing. The interaction properties are verified us-
ing model checking; the consistency properties are
checked using theorem proving and the behaviour
conformance with the functional contract is checked
using a specific model testing technique. We exper-
iment this method on an embedded system using the
Kmelia modelling language and its associated COSTO
toolbox (André et al., 2010). This modelling language
is formal enough to specify SbC elements and con-
tracts.

Applying the proposed method increases confi-
dence in the SbC models early in the development
process: they are correct with respect to the speci-
fied properties and embed tests for code transforma-
tions. Thus the method allows one to apply thereafter
advanced development techniques such as agile ones
(thanks to the qualified test cases and data we con-
structed) or Design-by-Contract techniques (thanks to
the used contracts).

In the remaining of the article, we sketch the
Service-based Component model in Section 2; multi-
level contracts are introduced in Section 3. Section 4
describes the combination of V&V techniques. We il-
lustrate the proposed method and framework with the
Kmelia/COSTO toolbox in Section 5. Section 6 dis-
cusses related works and we conclude in Section 7.
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Figure 1: Component model of the Platoon system.

2 SERVICE-BASED COMPONENT
MODELS

In Service-based Component (SbC) models, a func-
tionality is implemented by the services provided by
some components. Provided services are not nec-
essarily atomic calls and may have a complex be-
haviour, in which other services might be needed
(called). These needs are either satisfied internally
by other services of the same component, or speci-
fied as required services in the component’s interface.
The required services can then be bound to provided
services from other components, which might also re-
quire others, and so on. A provided service needs all
its direct and indirect dependencies satisfied in order
to be available for use. Modelling languages, such as
UML2, AADL, rCOS or Sofa (Rausch et al., 2008),
can be used to specify SbC systems.

The support example is a reduced software model
of a platoon of vehicles. Using SCA (OSOA, 2007),
Figure 1 shows a small architecture composed of a
driver and two vehicle components. Each component
has a configuration service conf (used when instanti-
ating the component), a main service run to activate
the vehicle behaviour and services to give their posi-
tion and speed. The computeSpeed service reads the
vehicle’s state and the run and conf services assign
values to the vehicle’s state. Auxiliary services like
stop which interrupts a vehicle, have been omitted for
simplicity. We extend here the SCA notation to make
explicit the component’s state (its variables) and the
service calling, reading and writing.

The service run calls computeSpeed which re-

quires pilotspeed and pilotpos services. We consider
only the speed and the position (X axis only) of the
vehicles. The vehicles are designed to follow their
predecessor (which they consider to be their pilot) ex-
cept the first one which follows a component taking
the role of the driver. The driver is assumed to be a
special kind of vehicle that controls its own values
according to a target position. Each running vehi-
cle can compute its own speed by considering its cur-
rent speed and position, its predecessor’s position and
speed and a safety distance with its predecessor. This
example serves to the experimentations in Section 5.

3 MULTI-LEVEL CONTRACTS

According to (Meyer, 2003), a Trusted Component is
a reusable software element possessing specified and
guaranteed property qualities. The notion of contract
is helpful to model various kinds of correctness prop-
erties. But it should be made precise and extended
to cope with the expressiveness of the SbC models.
The properties, e.g. interoperability, are classified at
hierarchical requirement level (RL) :

1. Static: the compatibility of interface signatures;
e.g. does a component give enough information
in order to be (re)usable by others?

2. Architectural: the well-formedness of compo-
nents and service assemblies; e.g. are required
components and services available?

3. Functional: the correctness of functional con-
tracts; e.g. do the services, components and com-
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posites do what they must do?

4. Behavioural: the correct interaction between ser-
vices; the properties depends on various features:
sequential vs. concurrent, call vs. synchronisa-
tions, synchronous vs asynchronous, pair vs. mul-
tipart communication, shared data, atomic/struc-
tured actions...

5. Quality of service: the non-functional require-
ments (time, size...) are fulfilled. Note that this
level will not be detailed in this paper.

The requirements level are inclusive: level 5 implies
level 4, which implies level 3, and so on.

A multi-level contract is a contract defined at
different SbC structure levels (SL) (service, compo-
nent, assembly, composition) according to different
expected requirement levels (RL) (Messabihi et al.,
2010). This vision of contracts provides a convenient
framework to master both the incremental construc-
tion of SbC and the verification of multi-aspect prop-
erties by combined techniques. Table 1 summarises
the crossing of the structure levels properties with the
requirement levels.

Table 1: Multi-level Contracts and Properties.

RL Structure Level
service component assembly composite

1 type type service signature ssic
checking checking compatibility (ssic)

2 well- service service structure sstc
formedness accessibility consistency (sstc)

3 functional component service sco
correctness consistency compliance (sco)

4 behavioural protocol behavioural bhc
consistency correctness compatibility (bhc)

Multi-level contracts are useful to define interoper-
ability levels between different SbC languages. e.g. a
Corba component with IDL interfaces can be compat-
ible with components defined with other SbC models
at the first level only. We detail now the main proper-
ties of each structure level.

Service Contract. It expresses that the service ter-
minates in a consistent state. This contract deals
mainly with two properties.

• The behavioural consistency property states that
the execution of the service actions does not lead
to inconsistent states (such as deadlock).

• The functional correctness property expresses
that a service achieves what it is supposed to
do. The functional correctness of a service
of is defined using the Hoare-style specification
(Pre-condition, Statement, Post-condition) where

Statement is the service behaviour. This prop-
erty should be checked with respect to the require-
ments of the owner component.

Component Contract. The component is confi-
dently reusable. It is ensured with three main prop-
erties.

• The service accessibility property states that the
services defined in the interface of a component
are available. This is related to intra-component
traceability of service dependency.

• The component consistency property states that
the invariant properties of the component are pre-
served by all the services embodied in the com-
ponent. Considering that a component equipped
with services is consistent if its properties are
always satisfied whatever the behaviour of the
services is, one can set a consistency preserva-
tion contract between the services and their owner
component to ensure that property.

• The protocol correctness property expresses that
the order in which the services are to be invoked
by clients is correct with respect to the rules given
by the services’ specification. A component pro-
tocol is defined here as the set of all the valid se-
quences of service invocations.

Assembly Contract. In an assembly, made of
linked trusted components, each component will con-
tribute to the well-formedness of the links by requir-
ing or ensuring appropriate assertions: this is the
coarse-grained contract. The link establishes a clien-
t/supplier relationship. The assembly contract covers
correctness properties with four requirement levels:

• The first level deals with service signature com-
patibility among the services of the interfaces
of the assembled components. The service call
should respect the service signature. The signa-
ture matching between the involved services of
component interfaces covers at least name reso-
lution, visibility rules, typing and subtyping rules.

• The second level deals with service structure con-
sistency of the assembled components. Assum-
ing that services can be composed from other
(sub)services, connecting services is possible only
if their structures are compatible (but not neces-
sary identical).

• The third level deals with service compliance of
assembled components. If the services use a
Hoare-like specification, post-conditions relate to
their pre-conditions (Zaremski and Wing, 1997).
The caller pre-condition is stronger than the called
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one. The called post-condition is stronger than the
caller’s one. Each part involved in the assembly
should fulfil its counterpart of the contract.

• The fourth level deals with behavioural compat-
ibility between the linked services of the assem-
bled components. It ensures the correct interac-
tion between two or more components which are
combined through their services.

Composite Contract. It is similar, up to specific ex-
pressions, to the one of assemblies.

4 COMBINING V&V
TECHNIQUES

Modelling and V&V are mutually dependent during
the PIM design. As depicted in Figure 2, multi-level
contracts are set during the specification activities and
checked during the formal analysis activities. The
structure levels are represented here by columns. The
design workflow is presented as a whole but the activ-
ities can be performed iteratively in any order.

Services Component Assembly/
Composite

Service 

Specifica�on

Consistency
Checking

Functional 
Correctness

Static Analysis 

APC 
Verification

Behavioural
Compatibility

Specification
activity

Verification
activity

Modelling

V&V

Trusted Components & Assemblies

ok okok

not ok not ok
not ok

System 

Design

ok
not ok

Workflow

Component 
Specifica�on

Figure 2: Integrated process for design verification.

From a practical point of view, the specifier would
switch from one activity to another according to a
customised methodology, inspired from top-down or
bottom-up approaches, with a component or system
orientation. For example the specifier may work only
at the service and component levels (the left part of
Figure 2) to deliver off the shelf components.

Modelling: Making Contracts Explicit. Mod-
elling includes three activities: software system de-
sign (assembly/composition), software component
specification and service specification. In a top-down
approach, the system design activity starts first. It de-
fines the system as a collection of interacting subsys-
tems and components. If components or assemblies

that match the requirements already exist on the shelf,
they can be directly integrated in the system design.
Otherwise, the component specification activity will
produce the new component(s). Once the component
structure is established, the detailed service specifica-
tion activity proceeds. The main concern is that the
contracts must be explicitly written at each level in
order to be checked.

V&V : Checking Contract Properties. The mod-
els produced during the specification are analysed by
checking the contracts properties. The verification
process iterates on five V&V activities as depicted in
Figure 2, each activity refers to the contracts proper-
ties of Section 3.

1. The Static Analysis (SA) activity checks the syn-
tactic correctness at all levels, the service acces-
sibility of the component level, and the static in-
teroperability of the assembly level, which itself
covers the service signature compatibility and the
service structure consistency.

2. The Functional Correctness (FC) activity checks
the behavioural consistency property at the ser-
vice level and a part of the protocol correctness
property at the component level.

3. The Consistency Checking (CC) activity covers
the component consistency property at the com-
ponent level.

4. The Behavioural Compatibility (BC) activity
checks the behavioural consistency property at
the service level, a part of the protocol correct-
ness property at the component level and the be-
havioural compatibility at the assembly level.

5. The Assembly/Promotion contracts (APC) veri-
fication activity checks the service compliance of
the assembled components at the assembly level
and the composite level.

Table 2 overviews how each technique contributes
to a verification activity of multi-level contracts.

Table 2: Multi-level contracts and verification techniques.

Static Theorem Model Model
Analysis Proving Checking Testing

types
SA structures

See details in assertions
FC Section 4.4 oracle

assertions
CC invariant

deadlock
BC liveness

refinement
APC aggregation
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Next sections provide insights on these techniques.

4.1 Structural Correctness by Static
Analysis

The static analysis checks the structural correctness
of models. It includes the syntax analysis, the
type checking and the verification of well-formedness
rules (WFR). For example, the service dependency
satisfaction WFR states: to be executable, all the ser-
vices called (directly or indirectly) by a service must
be available. The checking algorithm of verification
is specified here using the Z notation (Spivey, 1992),
which is a concise formal description. We consider
only a part of it, the abstract definition of types for
components, services, state spaces. Let Composition
be a specification of components, services and com-
positions where IP S is the power set of S, X ↔ Y is
the set of relations from X to Y and X 7→ Y is the set
of partial functions from X to Y .

[COMP, SERV, STAT E] //the basic sets
Composition =̂
[components : IP COMP;states : COMP 7→ STAT E;
services : SERV 7→COMP; inter f ace : SERV 7→COMP;
provided,required : IP SERV ; intrequires : SERV ↔ SERV ;
extrequires : SERV ↔ SERV ;composite : COMP 7→COMP;
alink : SERV 7→ SERV ; plink : SERV 7→ SERV | ...]

The service dependency is the closure (denoted
with +) of the requires relations restricted (denoted
with -.) to the provided services (provided), while tak-
ing into account the assembly and promotion links
(alink, plink). Note that the closure should preserve
the component encapsulation.

∀Composition; dependency : SERV ↔ SERV •
dependency = (((intrequires∪ extrequires)+

-.provided)∪alink∪ plink)+

If the system is ready to run, its basic depen-
dency is valid if there are no unsatisfied services
i.e. dependency = /0. This constraint is too strong
when working with an incomplete architecture, so
we restrict the dependency to the target provided ser-
vices (the source), which are the services under test
(source / dependency = /0). If the source must be-
long to the root of the system component, we add
service(source) ∈ (components\domcomposite).

Building a test architecture is equivalent to apply-
ing a sequence of model transformations, also defined
by a Z operation. The operation precondition ensures
the preservation of the Composition system invariant.

Trans f ormation =̂ [∆Composition;
newComp? : SystemComponents
composite? : COMP 7→COMP;nalink? : SERV 7→ SERV
ralink? : SERV 7→ SERV ;nplink? : SERV 7→ SERV
rplink? : SERV 7→ SERV ; plink? : SERV 7→ SERV | ...]

A sequence of architecture transformations T1 o
9 ...

o
9

Tn is valid if there are no unsatisfied required services
(required′ /dependency′ = /0).

4.2 Consistency by Theorem Proving

Theorem proving techniques are helpful to prove the
Component Consistency (CC) and the Assembly/Pro-
motion Contract (APC).

The proving process (Figure 3) consists in writing
model transformations in the target prover language
and proving the theorems using the associated proof
support. Some expertise in the proof environment is
usually required.

TP

Transformation


SbC Model (PIM)
 Property to check


Analysis

Proof


Results


TP source


Theorem

Prover


Language


modify


Figure 3: Theorem proving process overview.

Component Consistency (CC). At the component
level, we have to check the Invariant consistency vs.
pre/post conditions for its observable features (a kind
of read-only visibility) and its non-observable fea-
tures. Powerful tools like Atelier-B1 and Rodin2 are
appropriate to prove that kind of property with high
level data types; the difficulty is to transform proper-
ties into the input language of the prover.

Assembly/Promotion Contract (APC). At the as-
sembly level, we have to check the Assembly Link
Contract correctness; this ensures that the contract
for a required service is compliant with the one of the
provider linked to it, up to data and message map-
pings. Based on a service assembly link, the main is-
sue is to decide whether the provided service matches
with the required service it is linked to. The match-
ing condition is: the pre-condition of required service
Req is stronger than the one of provided service Prov
and the post-condition of Req is weaker than the one
of Prov. In term of B proof obligations this property
is viewed as: the provided service refines the required
service.

1http://www.atelierb.eu/
2http://rodin-b-sharp.sourceforge.net
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At the composite level, we have to check the Promo-
tion Link Contract correctness; this ensures that the
contract for a promoted service is compliant with the
one of the original provider linked to it, up to data and
message mappings. In term of B proof obligations
this property is viewed as: the provided service re-
fines the promoted required service and the promoted
required service refines the base required service. Ac-
tually these are strong conditions but light alternatives
are detailed in (André et al., 2010).

4.3 Behavioural Compatibility by
Model Checking

Model checking techniques are helpful to prove the
Behavioural compatibility (BC). We assume that ser-
vices are neither atomic nor executed as transac-
tions. Checking the behavioural compatibility means
that services can synchronize and exchange data
with other services without any troubles and termi-
nate (Yellin and Strom, 1997; Attie and Lorenz, 2003;
Bracciali et al., 2005). It often relies on checking
the behaviour of a (component-based) system through
the construction of a finite state automaton. To avoid
state explosion problems (Attie and Lorenz, 2003)
we work with peer services instead of the whole as-
sembly. Ensuring dynamic behavioural compatibil-
ity of communicating processes is a property usu-
ally checked by model checkers. The checking pro-
cess (Figure 4) consists in writing model transforma-
tions to target languages (one per verification tool)
and proving the properties using the dedicated model
checker (Spin, Uppaal, CADP...). Depending on the
model checker, the properties can be defined sepa-
rately from the model (e.g. temporal logics) or not and
a transformation may be needed for a single property.
The verification process is improved when the result
of a property verification is re-injected at the model
level. Note that if the SbC formalism is very different
from the target language, the transformation is diffi-
cult and an expertise in the target language is required
to prove the properties.

4.4 Functional Correctness by Model
Testing

The basic idea of Functional correctness (FC) is to
evaluate all paths of a service behaviour and to deter-
mine whether it is compliant with the post-condition
or not. This is a non-trivial problem similar to the
one of model-checking a program. As soon as the
modelling language includes high level data types and
computation statements (e.g. loops) the provers reach
their limits to prove. Model testing is used here to

MC

Transformation


SbC Model (PIM)
 Properties to check


Model Checking
 Results


TP source


Model

Checker


Language


feedback

MC source


Figure 4: Model checking process overview.

supply the missing verifications of automatic and in-
teractive provers. In (André et al., 2013) we argued
for early testing at the model level to detect plat-
form independent errors without melting them with
implementation errors. Indeed, plunging the model
in a middleware decreases the testability and is of-
ten a burden to the V&V process. The model testing
(not model-based testing) process consists in building
a test application from a test intention (a test goal with
data definitions and an oracle expression) and running
it on test cases (Figure 5). It reduces the test complex-
ity and improves both the application and test evolu-
tivity.

Test Harness


Transformation


SUT Model (PIM)
 Test Intention (TI)


Test


Execution

Verdict


Data source


Harness + SUT


(TSM)


Code


Mappings


Transformation


Operational


Framework


(PDM)


Data


Figure 5: Testing process overview.

A tool must assist the tester in managing the way
the test data can be provided: some of them by the
configuration, other ones by mocks, and the oracle by
a test driver. To achieve this, the tool can:

• select a subset of the System Under Test (SUT)
model according to a test intention;

• check if the Test Specific Model (TSM) is satis-

AMARETTO 2017 - International Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

650



fying properties to be a SbC application: no bad
connections right, no missing data or services;

• bind required services to mocks provided by li-
braries;

• check the TSM consistency and completeness ac-
cording to its test intention (it may be improved/-
completed during the test harness building);

• generate a test component including the test case
services;

• launch the test harness with several test data val-
ues sets and collect the verdicts.

5 EXPERIMENTATIONS

We experimented the above techniques through the
Kmelia language and the related COSTO toolbox.
The tool and the case study material are available at
costo.univ-nantes.fr.

Modelling with the Kmelia Language

Kmelia is an abstract formal component model dedi-
cated to the specification and development of correct
components (André et al., 2010; André et al., 2010).
A Kmelia component system is an assembly of com-
ponents, which can themselves be composite. A com-
ponent is a container of services; it is described with
a state space constrained by an invariant. A service
describes a functionality; it is more than a simple op-
eration; it has a pre-condition, a post-condition and
a behaviour described with a labelled transition sys-
tem (LTS). Moreover a Kmelia service may give ac-
cess to other (sub)services. The behaviour supports
communication interactions, dynamic evolution rules
and service composition. Kmelia is supported with an
Eclipse-based analysis platform called COSTO (see
Figure 6).

Using Kmelia, the platoon system elements (vehi-
cles and driver) are components assembled through
their services. Figure 1 illustrates the design of the
platoonSyst assembly in the spirit of Kmelia: a com-
posite component including the component assem-
bly, which is statically defined over the three com-
ponents initialized by a internal service of a compos-
ite. Each component provides an initialisation service
(used when assembling), a main run to activate the
vehicle behaviour and a stop service to interrupt or to
end the vehicle. The driver and the vehicles are de-
signed similarly with a run main (asynchronous) ser-
vice. The goal to reach belongs to the driver state
space. The vehicles require their predecessor posi-
tion pilotpos and speed pilotspeed to update their own

Figure 6: COSTO Tool Architecture.

state. The start and stop services model the system
environment actions.

Combined Verifications with COSTO

We illustrate the above combination of verification
techniques on services at different specification levels
(service contract, interactions, behaviour) in Figure 6.

Structural Correctness by Static Analysis. The
structural properties (such as syntax, correctness,
consistency, accessibility, observability rules...) are
checked during the compilation of the Kmelia specifi-
cation by COSTO (cf. Figure 7).

Consistency by Theorem Proving. We developed
a series of plugins named Kml2B in the Figure 6 to ex-
tract B specifications. For each Kmelia component K
we build an (Event-)B model called C, its state space
is extracted from the component’s one. The provided
services srvi in K are translated into srv i operations
within the C model. The extracted specification is im-
ported and checked in Atelier-B or Rodin. The B tools
enable the verification of invariant consistency at the
Kmelia level.

CC. At the component level, we check the Invariant
consistency vs. pre/post conditions for both the
observable features (a kind of read-only visibility)
of it and the non-observable features.

APC. At the assembly and the composite levels, each
service link, up to data and message mappings,
leads to a refinement relation and a related proof
obligation.
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Figure 7: Specification of service computeSpeed.

In the case of the computeSpeed service, the Atelier-
B generated seven proof obligations. At first at-
tempt four of them were automatically proved. The
three others could not be proved because the orig-
inal Kmelia specifications was insufficiently precise
and complete: parameter ranges, over ranged speed
values, missing speed assignment. Once corrected in
Kmelia model and updated in the B specifications, the
seven PO were proved correct.

Behavioural Compatibility by Model Checking.
We developed a couple of plugins named Kml2Mec
(resp. Kml2Lotos) in the Figure 6 to extract finite
state machines (resp. processes) specifications. For
each assembly link, a corresponding MEC (or LO-
TOS) specification is generated that includes the syn-
chronisations of the communications. The promotion
links are gateways for the communications and need
no specific proof. The translation details are given
in (Attiogbé et al., 2006). The verification is achieved
using model-checking techniques provided by exist-
ing tools (Lotos/CADP3 and MEC4). The advantage
of MEC is that it preserves the finite state machine
(FSM) structure of Kmelia services, so we could de-
velop a plugin to interpret the result of the model
checking.

To prove the Functional correctness (FC) we first
tried model checkers but they could not support high
level data and functions. We then investigated B tools,

3http://www.inrialpes.fr/vasy/cadp/
4http://altarica.labri.fr/wiki/tools:mec 4

including ProB a model checker for B. We had to
turn back to more appropriate tools because B tools
needed additional material to prove loop invariants
and ProB was not powerful enough.

We also investigated the Key tool (Beckert et al.,
2007). Key accepts JML specifications as input; in
order to prove properties of Java programs. The idea
was to transform the Kmelia services into JML and
check with Key. However this fails in practice be-
cause plain Java is not sufficient to capture the service
multi-threading and communications. An execution
and communication framework is required. Hence we
adopted model testing.

Functional Correctness by Model Testing. We de-
veloped a Model Testing Tool (named COSTOTest) as
specified in section 4.4.

The test process is illustrated on the
computeSpeed service in the mid platoon vehi-
cle. Its specification is given in the Figure 7. The
result of the computeSpeed service depends on
several data: the recommended safe distance from
the pilot (previous vehicle), the position and speed of
the current Vehicle and the position and speed of the
pilot. This is represented by the test intention of List-
ing 1. For each test intention, a test harness (TSM)
is elaborated during an iterative building process.
As an example, Figure 8 represents a component
application for testing the service computeSpeed
in the mid Vehicle. The test and the corresponding
oracle are encapsulated into a testComponent tc,
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Figure 8: Test architecture for service computeSpeed.

and a Mock component has replaced the Driver to
offer better control. The last Vehicle has not been
selected here because it is not needed to test the
computeSpeed service of the mid Vehicle, but a
more complex architecture could have been retained.
The service testcase1 of testComponent contains
a simple computeSpeed call and oracle evaluation.
Every data is obtained by using abstract functions in
the model that are mapped to concrete data providers.

In the following we will detail the process that al-
lows us to create test applications like the one we pre-
sented in Figure 8. The testing process is a sequence
of model transformations which successively merge
models, integrating features into them, as illustrated
in Figure 5. The input System Under Test is a PIM
of the SbC and a test intention is also a model de-
scribed in cf. Listing 1. The process is made of two
successive model transformations which return an ex-
ecutable code of the test harness.

Listing 1: Test intention for computeSpeed service.
TEST_INTENTION P la toonTes t I n ten t i on

DESCRIPTION " t e s t o f the serv i ce computSpeed ,

cover ing c o n t r o l f l ow graph "

USES {PLATOONTESTLIB}

INPUT VARIABLES

l as tpos : I n t ege r ;
vspeed : I n t ege r ;
safeDistance : I n t ege r ;
p i l o t p o s : I n t ege r ;
p i l o t speed : I n t ege r ;

OUTPUT VARIABLES

speed : I n t ege r ;
orac ledata : I n t ege r ;

ORACLE

speed=orac ledata

The first model transformation is a model-to-
model transformation. It builds the test harness as
an assembly of selected parts of the SUT with test

components (mocks, test driver), and returns a Test
Specific Model (TSM). It is semi-automatic transfor-
mation: the test intention is provided by the tester and
COSTOTest asks her/him to make choices that are se-
lected on the basis of static analysis of the PIM. Dur-
ing this step, the aim for the tester is to build a harness
as the one illustrated in the bottom of Figure 8.

The second transformation is a model-to-code
transformation; COSTOTest generates the code to
simulate the behaviour of the harness, then it merges
the harness with a Platform Description Model
(PDM) to get code (Java code in this case). It can be
executed, because the model of the components de-
scribes the behaviour of the services, in the form of
communicating finite state machines. The test data
and test oracle providers are designed in the PDM,
thanks to the input “Data”. A “data source” is gener-
ated, it is an XML file, with a structure corresponding
to the test intention, that should be fulfilled with con-
crete values by the tester.

Finally, the test execution consists in setting the
test data and then “run” the test harness component.
COSTOTest proposes interactive screens to enter all
the data values into the XML file generated by the
second model transformation. The tester can also
provide the test data values in a CSV file which is
transformed into the XML file. We consider the test
of computeSpeed service, covering its control flow
graph to generate test data. We create 45 test cases
and run them getting the verdicts. The data source
XML file will also store the verdicts (cf. Figure 9).

6 RELATED WORK

The combination of formal verification and testing is
not new but the way they are combined varies with
the verification goals (Bousse, 2013), e.g. hybrid
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Figure 9: Test harness assignments: verdict stored in the XML file.

approaches for functional verification (Bhadra et al.,
2007).

Many works that combine tests and proofs use fi-
nite state machines dialect as modelling DSL (Con-
stant et al., 2007; Falzon and Pace, 2012; Artho et al.,
2005). In the spirit of Model Based Testing (MBT),
the authors focus on conformance checking and the
goal is to generate test cases from a formal specifi-
cation to check whether an implementation conforms
to the model (Constant et al., 2007) or to monitor
runtime verification (Falzon and Pace, 2012). Her-
ber et al. generate conformance tests to complete the
model-checking of SystemC designs (Herber et al.,
2009). Conversely Dybjer et al. use testing to avoid
the effort of costing proofs (Dybjer et al., 2004), their
method interweaves proving steps and testing steps
while usually the proofs are done first on the model.
Similarly Sharygina and Peled use testing (with PET)
prior to the actual verification (with SPIN) and during
the evaluation of counter examples (Sharygina and
Peled, 2001), testing is thus a kind of heuristics to
reduce the state space explosion. However their ob-
jective is not to get a correct-by-construction code but
to check whether the C++ code is correct by translat-
ing to model (reverse-engineering); no tool support is
provided for the translations.

We can get inspired by the above techniques but

none is a direct answer to our goal which is (i) cen-
tred on the verification of correctness, (ii) at the
model level, (iii) for heterogeneous models and prop-
erties (structure, dynamics, functions) that suppose
some completeness. As mentioned by E. Bousse
in (Bousse, 2013), the question is "How to perform
effective V&V on such complex and potentially het-
erogeneous models?". He mentioned several pitfalls:
the V&V tools have limited application fields, low
expressive power, low scalability, low integrability,
semantic gap between domains... Consequently one
pivot language cannot catch all the aspects. Sev-
eral years later, he proposed a transformation based
approach to align SysML with B (Bousse et al.,
2012) that managed to prove safety properties. The
alignable subset of SysML is covered but the problem
remains open for the unaligned aspects.

We are convinced that the solution is a collabora-
tive approach for model testing instead of an unifying
approach. The forthcoming question is what makes
the glue between the heterogeneous aspects. A possi-
ble answer is the concept of contract because it has
the same underlying semantics that crosses the ap-
proaches, especially those related to services. A con-
tract is the agreement between clients and providers
and the interesting point is that it includes clauses that
can focus on the heterogeneous aspects (rights and
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duties, quality of service...) (Beugnard et al., 1999).
The notion of multi-level contract that we promote
here can be an unifying paradigm for the functional
contracts of Meyer (Meyer, 2003) or the behavioural
contracts (Acciai et al., 2013; Fenech et al., 2009).
Contracts are a basis for property verification as well
as for testing oracles (Le Traon et al., 2006). We
agree with Dwyer and Elbaum that noted the risk
of focusing on individual techniques (Dwyer and El-
baum, 2010); Table 2 defines a way to characterise
their property-behaviour coverage.

Contracts and services have been studied in the
context of service composition. From a service com-
position point of view e.g. BPEL, the behavioural as-
pect is preeminent (ter Beek et al., 2007). Consid-
ering only the formal models, composition is mainly
based on automata, Petri nets and process algebra, as
illustrated by the orchestration calculus of Mazzara
and Lanese (Mazzara and Lanese, 2006); therefore
the contracts focus mainly on dynamic compatibility.
Conversely the contracts (in the sense of design-by-
contract) are taken into account in (Milanovic, 2005)
(using abstract machines) but not the dynamic be-
haviour. Kmelia handles both aspects. In (Brogi,
2010), the contract is supported at four levels (sig-
nature, quality of service, ontology, behaviour) but
none of them handle the functional contract. The ser-
vice concept is a key one. The component architec-
ture (SCA) approaches (Ding et al., 2008) empha-
size the service concept, like Kmelia does; but un-
fortunately contract features are not introduced yet in
SCA. Testing LTS behaviours is performed in (Schätz
and Pfaller, 2010). The authors customize compo-
nent testing at the level of component in a system use.
Our framework also allows to customize the testing
through the definition of the testing perimeter and the
selection of mock services, then it applies the same
kind of tests with a mutation analysis. In (Lei et al.,
2010), the authors target robustness testing of com-
ponents using rCOS. Their CUT approach involves
functional contracts and a dynamic contract (proto-
col). Our approach does not target robustness, but the
mutation analysis exploits the kind of errors of (Lei
et al., 2010) (bad call sequence / invalid parameter) in
a more systematic manner.

7 CONCLUSION

Reusability and composability belong to the founda-
tions of service and components systems and their
confidence must be ensured at early stages of the de-
sign of systems, by verification and validation tech-
niques. In practice, to face this challenge, one must

combine several techniques and the notion of multi-
level contracts including the right/duty clauses on the
orthogonal aspects of a system (structure, dynamic
and functional behaviour) seems a promising uni-
fying paradigm. We experimented these idea with
the Kmelia language to specify SbC systems and the
COSTO tool which includes static checkers and trans-
formations to specific V&V tool support. But the
principle can be replayed with other SbC languages
and other V&V tools. For pedagogical reasons, the
example was simple. But thanks to service compo-
sition, the verification invest is not exponential when
the system grows.

The current state of the proposal requires addi-
tional work and tool improvement. Additional work
concerns the specification and verification of quality
of service, related to the non-functional properties.
New language primitives have to be implemented to
specify additional constraints on time and resources.
Related V&V techniques have to be experimented.
The main issues on tool improvement concern plat-
form facilities and abstraction because the verification
stages require expertise in domain specific provers.
At best, the modeller would need to know the proof
techniques but not the proof tools. This is mainly the
case with model checking and testing where the GUI
can hide the implementation level but additional work
has to be done for provers.
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