
Real-time DSP Implementations of Voice Encryption Algorithms

Cristina-Loredana Duta1, Laura Gheorghe2 and Nicolae Tapus1
1Department of Computer Science and Engineering, University Politehnica of Bucharest, Bucharest, Romania

2Research and Development Department, Academy of Romanian Scientists, Bucharest, Romania
cristina.duta.mapn@outlook.com, {laura.gheorghe, nicolae.tapus}@cs.pub.ro

Keywords: Digital Signal Processor, Voice Encryption, Blackfin Processor, TMS320C6X Processor, AES, RSA, NTRU.

Abstract: In the last decades, digital communications and network technologies have been growing rapidly, which
makes secure speech communication an important issue. Regardless of the communication purposes, military,
business or personal, people want a high level of security during their conversations. In this context, many
voice encryption methods have been developed, which are based on cryptographic algorithms. One of the
major issues regarding these algorithms is to identify those that can ensure high throughput when dealing with
reduced bandwidth of the communication channel. A solution is to use resource constrained embedded
systems because they are designed such that they consume little system resources, providing at the same time
very good performances. To fulfil all the strict requirements, hardware and software optimizations should be
performed by taking into consideration the complexity of the chosen algorithm, the mapping between the
selected architecture and the cryptographic algorithm, the selected arithmetic unit (floating point or fixed
point) and so on. The purpose of this paper is to compare and evaluate based on several criteria the Digital
Signal Processor (DSP) implementations of three voice encryption algorithms in real time. The algorithms
can be divided into two categories: asymmetric ciphers (NTRU and RSA) and symmetric ciphers (AES). The
parameters taken into consideration for comparison between these ciphers are: encryption, decryption and
delay time, complexity, packet lost and security level. All the previously mentioned algorithms were
implemented on Blackfin and TMS320C6x processors. Making hardware and software level optimizations,
we were able to reduce encryption/decryption/delay time, as well as to reduce the energy consumed. The
purpose of this paper is to determine which is the best system hardware (DSP platform) and which encryption
algorithm is feasible, safe and best suited for real-time voice encryption.

1 INTRODUCTION

Security and privacy represent a fundamental issue
when transmitting information through insecure
communication channels.

There are many channels available for
transmitting speech signals, for instance telephone
networks and private or public radio communication
systems. Speech signal can be represented in two
forms: analogue and digital form. In analogue
representation, it is a waveform which describes the
frequency and amplitude of the signal. In digital
form, it is the numeric representation of the analogue
form, where the signal is composed of zeros and ones.

There are some situations when the information
transmitted has to be confidential, such as diplomatic
and military communications during war and peace.
Since speech has a lot of redundancy compared with
written text, it becomes a very difficult task to provide
security for it.

There are two distinct approaches to achieve
speech security: analogue scrambling and digital
ciphering. In the past, the researchers have been
interested in speech scrambling because it uses small
bandwidth, has simple implementations and good
capabilities when dealing with asynchronous
transmission.

The purpose of voice coders in digital
telecommunication systems is to reduce the required
transmission bandwidth. Several vocoders have been
invented – LPC-10 (Linear Prediction Coding),
CELP (Code Excited Linear Prediction), MELP
(Mixed Excitation Linear Prediction) and so on. In
general, secure communication systems are based on
LPC techniques. The main reason is that LPC voice
coding can ensure low bit rates and high voice
intelligibility.

Applications that use cryptographic algorithms
often demand a set of strict requirements for
implementations, such as low resource consumption,

Duta, C-L., Gheorghe, L. and Tapus, N.
Real-time DSP Implementations of Voice Encryption Algorithms.
DOI: 10.5220/0006208304390446
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 439-446
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

439

reduced number of logic gates and memory, and
efficient power consumption. In this context,
designing implementations that fulfil all these
requirements it’s a very challenging task and
represents a wide area of research.

More specifically, an implementation should be
fast enough to make sure that the execution of the
cryptographic algorithms doesn’t slow down the
system significantly. This can be achieved by
hardware acceleration (because it has been
demonstrated that software implementations cannot
achieve the desired level of performance with
reasonable costs (Pedre, 2016) and (Joao, 2009)).
Regarding the available resources, only a small part
of them are dedicated to cryptography, which makes
implementing high-security algorithms very
complicated.

Another important point for secure voice
communications is real-time processing. In this case,
the aspect of framing of the incoming data becomes
an essential task. A good balance of the block size and
all the parameters has to be found (short buffers can
cause buffer overflow and large buffers can lead to
delays depending on the sampling rate).

Because the cryptographic algorithms are
complex, they need to be implemented on flexible
platforms in order to meet real-time requirements for
voice encryption. In this context, we have chosen for
our implementations two DSP hardware platforms
from Texas Instruments: Blackfin ADSP-BF537 and
TMS320C6711.

In this paper, we study implementations of
cryptographic algorithms on existing embedded
architectures. We took into consideration three
algorithms, evaluate their performance (in terms of
encryption/decryption/delay time), their complexity,
packet loss, security level as well as their power
consumption. We implemented symmetric and
asymmetric algorithms on DSP platforms and
explored how to make use of the existing architectural
features to provide the best mapping between
cryptographic processing and the target embedded
systems and how to reduce the energy consumption.
We performed step by step optimizations in order to
meet real time requirements with the purpose to
determine which encryption algorithm and which
hardware platform is best suited for real time secure
communications.

The remaining of the paper is organized as
follows. Section 2 presents a brief overview of the
cryptographic algorithms and of the DSP platforms
considered in this paper. In Section 3 the related work
is described. Section 4 includes our optimization
approach and experimental setup as well as the

implementation of the system in detail. In Section 5
we present the results of the real-time
implementations of the algorithms and a comparison
between them based on several criteria. The
conclusions and future work are summarized in
Section 6.

2 BACKGROUND

This section includes a brief description of the
implemented cryptographic algorithms: symmetric
cipher such as AES and asymmetric ciphers such as
RSA and NTRU, and the description of general
aspects of DSP architectures used: Blackfin ADSP-
BF537 and TMS320C6711.

2.1 Speech Scrambling Techniques

There are several types of analogue voice scrambling,
which are described further on.

Time domain scrambling – the voice is being
recorded for some time and then is cut into small
frames, which are transmitted in a different time
order, based on a secret code. The main disadvantage
of this technique is the fact that the signal has the
same frequencies as before, which makes it easy to
recover basic information.

Frequency domain scrambling – the frequencies
of the voice are being inverted. The main problem is
that the fundamental characteristics of the voice
signal are not significantly changed which makes this
technique vulnerable.

Amplitude domain scrambling – the amplitude of
the signal is modified, but this doesn’t really change
the signal.

Compared with analogue scrambling, digital
encryption is a much stronger method of protecting
speech communications. The main advantage is that
it doesn’t matter what kind of signal is being
encrypted (text, video, voice and so on). Moreover,
there are little possibilities for cryptanalysis
compared to analogue scrambling. On the other side,
if the data is being corrupted, it will not be decrypted
correctly (degradation of voice quality) and if the data
are lost, then the synchronization and communication
will be lost.

Cryptographic algorithms can be classified based
on the number of keys that are used in the
encryption/decryption process. Secret Key
Cryptography (SKC) uses a single key for both
encryption and decryption (AES, for example).
Public Key Cryptography (PKC) uses one key for
encryption and another for decryption and includes

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

440

algorithms such as: NTRU, RSA and Elliptic Curve
Cryptography (ECC).

2.2 AES Block Cipher

AES (Daemen, 2001) is a block cipher which is
included in the symmetric-key algorithms category
and was designed as a replacement for Data
Encryption Standard (DES). The block size is 64 bits,
the key has variable length of 128, 192 and 256 bits
and a variable number of rounds based on the key size
(10, 12 or 14 rounds).

A round includes the following operations:
substitution of bytes, shifting of rows, mixing of
columns and XOR with the round key.

Regarding its security, until 2009 the only
successful attacks against full AES were side-channel
attacks. After that, several other attacks were
developed such as related-key (Biryukov, 2009) and
biclique (Bogdanov, 2011).

2.3 RSA Cipher

RSA (Rivest, 1997) represent the first developed
public-key cryptosystem that was used to securely
transmit information. The key size is variable, starting
from 512 bits until 2048 bits.

The security of RSA cryptosystem relies on the
problem of factoring large numbers and the RSA
problem (Rivest, 2003). In 2009, RSA with 512 bits
key was broken in 73 days and in 2010, a RSA
number with 768 bits was factorized. With the recent
emerge of quantum computer, many concerns
appeared regarding the possibility to break RSA using
it, but no practical attacks have been found until now.

2.4 NTRU Cipher

NTRU (US Patent, 1997), an alternative to RSA and
ECC, is a public-key cryptosystem based on the
shortest vector problem in a lattice (which is
considered to be unbroken when using quantum
computers) (Sakshaug, 2007). It includes two
algorithms: NTRUEncrypt and NTRUSign.

The main advantage of it is the fact that it is
resistant to attacks which use Shor algorithm. Due to
the fact that the encryption and decryption processes
are based on a simple polynomial multiplication, this
cipher is much faster compared with RSA.

NTRUEncrypt algorithm was standardized for
data encryption in 2011 by the Accredited Standards
Committee X9 and is widely used in financial
services industry.

2.5 DSP Platforms

Because intensive processing operations are
performed during speech encryption algorithms
(analysis, synthesis and encryption/decryption), it is
best suited to implement them in dedicated DSPs. An
important issue when dealing with DSPs, it to decide
between floating point and fixed point computational
core. Floating-point processors are not bit-exact, but
they provide faster implementations that fixed-point
processors. In this context, we have chosen Blackfin
ADSP-BF537, which is fixed-point and TMS320C6x,
which is floating-point.

The reason for choosing these DSPs were: high
speed arithmetic, robust data transfer to and from real
word, multiple access memory structure, less power
and cheap.

2.5.1 Blackfin Processor

Blackfin processor (Reference Manual, 2013) has a
high performance 32-bit embedded processor core,
with a ten stage RISC pipeline and full SIMD (Single
Instruction Multiple Data) support with instructions
for accelerated and multimedia processing. Two 32-
bit values can be read and written in a single clock
cycle.

Other advantages of Blackfin processor are:
supports instructions performed in parallel, multiple
power-down modes for periods where there is little
CPU activity and enables dynamic power
management.

Blackfin contains an internal Analog-to-Digital
Converter (ADC) and is much faster than
microcontrollers. Also, we have chosen this processor
due to its versatility in programming code, which
means we can write code in C/C++ and LabVIEW.

2.5.2 TMS320C6711 Processor

DSPs from TMS320C6x family (Reference Manual,
2005) are fast special-purpose microprocessors with
specialized architecture and an instruction set
dedicated for signal processing.

An advantage is the fact that the processor has
integrated peripherals (host interface, external
memory interface, multi-channel buffer serial ports,
and memory direct interface). It includes the VLIW
(Very-Long-Instruction-Word) technology, which
means that the CPU fetches in advance very-long
instruction words (256 bits) to provide eight 32-bit
instructions during every clock cycle.

The DSP consists of eight parallel-operation
functional units including two 16-bit multiplication
units, and has a performance of 1600 MIPS at 200

Real-time DSP Implementations of Voice Encryption Algorithms

441

MHz. The instruction processing system is of the
VLIW pipeline type and can execute conditional
operations and the maximum instruction code size is
64 Kbytes.

3 RELATED WORK

For a better understanding of the importance of our
work, in this section the results obtained by other
researchers are presented, as well as other speech
encryption algorithm implementations.

Implementing cryptographic algorithms using
dedicated VLSI (Very Large Scale Integration)
hardware even though it provides high computing
power, lacks flexibility and involves high investment
costs. Other embedded hardware, such as DSPs
represent a better solution because they offer higher
flexibility compared with VLSI chips, provide more
computing power than normal microprocessors and
have a low cost due to mass production.

In (Wollinger, 2003) is presented an overview of
cryptography in embedded systems. Moreover, in
(Fiskiran, 2002), implementations of cryptographic
algorithms in assembly and their optimizations using
RISC instructions are described in details.

In (Wollinger, 2000) implementations of AES
finalists (Towfish, RC6, Rijndael, Mars and Serpent)
on TMS320C6201 processor is discussed and a
comparison is made by taking into consideration
criteria such as: total number of cycles and number of
Mbit/sec for DSP multi-block mode and for DSP
single-block mode. They obtained the best result for
Twofish, an encryption speed of 139.1 Mbit/sec and
a decryption speed of 148.8 Mbit/sec.

In (Thulasimani, 2010), AES implementations for
keys of 128, 192 and 256 bits are presented for a
single hardware unit.

In (Verna, 2012), the performance analysis (in
terms of execution time and resource utilization) for
three cryptographic algorithms: RC6, Twofish and
Rijndael (the predefined key length for all of them is
128 bits) is described.

In (Itoh, 1999), public key algorithms such as
RSA, Digital Signature Algorithm (DSA) and
ECDSA were implemented on TMS320C6201 and a
performance of 11.7 msec was obtained for 1024-bit
RSA signing, 14.5 msec for 1024-bit DSA
verification and 3.97 msec for 160-bit ECDSA
verification.

Energy evaluation of software implementations of
block ciphers is presented in (Grobschadl, 2007).

In our paper, we have developed hardware
implementations for three cryptographic algorithms

targeting embedded architectures and we have
optimized the implementations for execution time
and for power consumption.

To implement RSA on DSP is not trivial, because
RSA is based on the theory of large prime
factorization, which requires intensive modulo
computations and also a large storage for big number
processing. There are few papers in the specialized
literature that describe the implementation of RSA on
DSP hardware, such as (Yen, 2003), (Er, 1991). In
(Yen, 2003), in order to improve the performance,
additional DSP chips can be added and the
application is controlled by a PC application through
UART serial channels. In (Er, 1991), the authors have
developed a RSA encryption module using Motorola
56300 DSP family, solution which is hard to integrate
with existing e-commerce systems.

The main goal of (Ambika, 2012) is to illustrate
some widely-used methods for secure speech
communication systems starting with speaker
identification and speech coding and ending with
voice encryption and decryption (using symmetric or
asymmetric algorithms).

In (Bassalee, 2008), the implementations of AES,
DES, SHA1, TDEA, and ECDSA on Blackfin DSP
are presented. The authors analyse their performance
and try to reduce the encryption/decryption time and
the energy consumed, by taking advantage of several
architectural features that are available on the
platform. They were able to reduce the energy
consumption with almost 90% and to improve the
execution time by a factor of 4.

4 IMPLEMENTATION

In this section we present the details regarding real-
time and offline implementations of three speech
encryption algorithms: AES, NTRU and RSA on two
different DSP platforms: Blackfin ADSP-BF537 and
TMS320C6711.

For the implementation of the cryptographic
algorithms we have used as a baseline VisualDSP++
software development environment. The main
advantages are: optimizing C/C++ compiler,
enhanced user-interface, statistical profiling tool,
built-in performance analysis capabilities. Moreover,
VisualDSP++ can be used to estimate with accuracy
the energy consumption at instruction level.

At the beginning, the algorithms were tested
offline, using a single processor so that we could
verify if the implementations remain functional even
when they are included in this VisualDSP++
environment from Microsoft Visual Studio 2015.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

442

After thorough optimizations were performed at
hardware and software level (to include all
computation processes within the frame duration of
22.5 milliseconds), we were able to develop a real-
time secure communication system. The block
diagram of our system is presented in Figure 1.

Figure 1: Block diagram of real-time secure communication
system.

The voice analysis and synthesis algorithms based
on LPC methods have been deeply tested and
simulated before passing them to the DSP
implementation phase. We have chosen MELP
speech compression algorithm because it has some
additional features, compared to LPC such as: mixed-
excitation (reduces the buzz), pulse dispersion
(disperses the excitation energy with a pitch period),
adaptive spectral enhancement (provides a more
natural quality to the speech signal) and aperiodic
pulses (useful for transitions between unvoiced and
voiced segments of signal).

The steps performed to ensure real-time secure
communications are the following. The voice signal
is taken from the microphone and converted into
frames using the built-in ADC of the DSP,
compressed and stored in the buffering memory. The
buffered frame is encrypted and stored in another
buffering memory and then is transmitted to the
receiver. At the receiver end, the frame is decrypted
and stored in a buffering memory. The decrypted
frame is decompressed and then passed byte by byte
to the DAC at a rate of 8 kHz and outputted to the
speakers.

5 OPTIMIZATION AND
EXPERIMENTAL RESULTS

In order to reduce the power consumption, we took
into consideration optimizing the code in terms of
execution speed. We have used a C compiler as a first
step, because writing the entire program in assembly
language will exceed the performance gain (little
flexibility, lot of code and a large amount of time
necessary to implement the cryptographic algorithms

using assembler). After this, we created a detailed
profile and identified which were the time critical
code sections and wrote these in assembly language.

We developed C implementations for all
mentioned cryptographic algorithms. We then used
VisualDSP++ simulator to profile the execution of
the implementations and to correctly and efficiently
identify the code sections that can be improved using
different optimization techniques.

For AES cipher, we have used a key of 128 bits
and CBC mode of operation and for RSA, a key of
1024 bits.

We were able to observe from the beginning that
the complexity and packet lost are approximately the
same for all the algorithms and that the
encryption/decryption/delay time varies in a way
dependent of the number of bits per second. In this
context, in order to determine a real difference
between the algorithms’ implementations, we only
took into consideration the encryption time necessary
for one frame, which is approximately the same as the
decryption time.

Table 1 and Table 2 show the execution time in
milliseconds, when running the implementations for
the first time for compressing and encrypting a single
frame on both DSP platforms.

Table 1: Execution time per frame before code optimization
on Blackfin ADSP-BF537 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 140.125

RSA-1024 175.753
NTRUEncrypt 173.344

Table 2: Execution time per frame before code optimization
on TMS320C6711 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 128.111

RSA-1024 157.220
NTRUEncrypt 153.488

At the beginning of the optimization, we studied
the cryptographic routines starting with the
algorithmic level, before going into low-level target-
specific optimizations.

For instance, for AES, taking into consideration
that the main part of the cipher is the round
transformation, we simplified it to save execution
time for real time implementation. More exactly, all
operations of the round (substitution of bytes, shifting
of rows, mixing of columns), were combined into a
single set of look-up tables. We also stored the
possible resulting terms after pre-computing the finite
field multiplications (using only 1 Kbyte of memory).

Real-time DSP Implementations of Voice Encryption Algorithms

443

In the key expansion function, most operations were
implemented by 32-bit word exclusive OR.

The next step was to apply different optimization
techniques at C level such as: using pragmas for
optimizing loops, different memory banks, data
alignment, no alias and speed. From the
VisualDSP++ environment we enabled the
optimization for C code (automatic inlining and
interprocedural optimization). Also, in the
implementations we have used volatile and static data
types, arithmetic data types (int, short, char, unsigned
int, unsigned char, unsigned short), as well as runtime
C/C++ and DSP libraries, intrinsic functions and
inline assembly.

An advantage of the inline assembly is that it can
be used to rewrite a subroutine that involves
overhead. The intrinsic functions allow to reduce the
resource consumption because they are predefined
functions, which are managed differently that other
functions at compile time.

VisualDSP++ offers the option to use Profile
Guided Optimization (PGO) which allows to collect
data while the program is executing in order to
identify code sections which are called most
frequently. After using PGO, the execution time for
all the implemented encryption algorithms decreased
with approximately 50 milliseconds.

Table 3 and Table 4 show the execution time after
applying optimization techniques at algorithm level
and at C level.

Table 3: Execution time per frame after algorithm and C
level optimizations on Blackfin ADSP-BF537 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 52.340

RSA-1024 66.977
NTRUEncrypt 63.893

Table 4: Execution time per frame after algorithm and C
level optimizations on TMS320C6711 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 43.051

RSA-1024 57.115
NTRUEncrypt 54.209

As it can be seen, the smallest execution time is
obtained for AES algorithm, which is followed by
NTRUEncrypt algorithm. The highest execution time
is obtained for RSA (67 ms for ADSP-BF537 and 58
ms for TMS320C6711) which is expected, taken into
consideration that we have 1024-bit keys and we are
doing multiplication operations.

Regarding the hardware level optimizations, we
have rewritten time consuming code sections using

assembly language, used hardware loops and parallel
instructions, took advantage of the software pipeline
provided by the DSP platforms and used special
addressing modes (different data sections).
Moreover, the less frequently accessed data was kept
in SDRAM and the rest of the functions were cached.

Also, the energy consumed by a multi-issue
parallel instruction is less than the energy consumed
by the individual instructions that compose the multi-
issue instruction. In this context, we tried to use
parallel instructions as often as possible.

Table 5 and Table 6 show the execution time after
applying optimization techniques at hardware level.

Table 5: Execution time per frame after hardware level
optimizations on Blackfin ADSP-BF537 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 7.893

RSA-1024 10.644
NTRUEncrypt 8.053

Table 6: Execution time per frame after hardware level
optimizations on TMS320C6711 processor.

Encryption Alg. Execution time/frame (ms)
AES-128 5.662

RSA-1024 8.771
NTRUEncrypt 6.308

According to the results, after hardware level
optimizations, AES still has the best execution speed
(5.6 ms) and RSA still is the slowest (9 ms).

To be able to optimize the implementations of the
encryption algorithms previously described, we
identified which were the most time-consuming
functions. The results are shown in Table 7 and Table
8, which specify the number of cycles consumed by
each of the function before and after the optimization.

Table 7: CPU time before and after optimizations on
Blackfin ADSP-BF537 processor.

Encryption
Algorithm

Time functions No opt. With
opt.

AES-128 Key expansion 3.54
Mcycles

120
Kcycles

RSA-1024 Key generation

5.67
Mcycles

202
Kcycles

Modular
multiplications

4.51
Mcycles

184
Kcycles

NTRU
Encrypt

Key generation 5.43
Mcycles

188
Kcycles

Polynomial
multiplications

4.12
Mcycles

162
Kcycles

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

444

Table 8: CPU time per frame before and after optimizations
on TMS320C6711 processor.

Encryption
Algorithm

Time
functions

No opt. With
opt.

AES-128 Key expansion 3.34
Mcycles

102
Kcycles

RSA-1024 Key
generation

5.41
Mcycles

188
Kcycles

Modular
multiplications

4.23
Mcycles

165
Kcycles

NTRU
Encrypt

Key
generation

5.22
Mcycles

172
Kcycles

Polynomial
multiplications

3.89
Mcycles

148
Kcycles

For AES-128, the function which provides the key
expansion consumes the most, more than 3 Mcycles.
After all the optimizations, the results changed
significantly to approximately less than 125 Kcycles.

In case of RSA and NTRU encryption algorithms,
the most time-consuming functions are the key
generation and the multiplication operations. After
applying the optimizations, the number of cycles
decreased with more than 5 Mcycles for both
algorithms.

Based on the results in Table 7 and 8, we
calculated the Clock Rate Reduction (CRR), which
can be expressed as a percent of: the number of clock
cycles before optimizations minus the number of
cycles after optimizations and divided by the number
of cycles after optimizations. The CRR values for the
implemented encryption algorithms are presented in
Table 9.

Table 9: CRR values for all speech encryption algorithms
on both DSP platforms.

Encryption
Algorithm

CRR
ADSP-BF537

CRR
TMS320C6711

AES-128 28.5% 31.74%
RSA-1024 27.06% 27.77%

NTRUEncrypt 27.88% 29.34%

In addition to all the previous described
experiments, we performed a subjective analysis for
the real-time implementations of the speech
encryption algorithms, as it can be seen in Figure 2.

In this scenario, the quality of the signal is based
on the listeners’ opinion. We took into consideration
20 listeners, which had 15 distinct audio files
encrypted for each algorithm and they had to give
grades from 0 to 10. The best results were actually
obtained by AES-12 8 cipher (8.35) and the worst
results were obtained for RSA-1024 (7.65).

Figure 2: Subjective analysis scores for real-time
implementations.

6 CONCLUSIONS

The main goal of the paper was to compare several
speech encryption algorithms (symmetric and
asymmetric ciphers) using two DSP platforms, one
fixed-point processor (Blackfin ADSP-BF537) and
one floating-point processor (TMS320C6711), in
order to identify which is best suited for a real-time
secure communication system.

We began with writing the implementations in C
and then we ported the code on DSP processors. We
started the optimization at algorithm level, continued
at C level and ended with hardware optimizations, all
of them being necessary to fulfil real-time
requirements (the execution time per frame had to be
smaller than the threshold 22.5 ms).

After thorough analysis, we can conclude that the
block cipher AES is suited for real-time applications,
because they have similar number of cycles and the
smallest execution time per frame.

The public-key ciphers, RSA and NTRU, are also
reliable and can be used, even though they are a little
bit slower than the symmetric algorithms. Moreover,
RSA and NTRU have a higher security level, so a
trade-off between performance and security has to be
made, taking into consideration the purpose of the
real-time secure communication system that is being
developed.

Based on the results of the subjective analysis, all
the algorithms implemented have a good audio
quality.

Referring to the choice of DSP platform, there are
some differences between the two processors, but the
execution time for the implemented algorithms
doesn’t change very much, so any choice is good for
developing real-time secure communication
applications.

We implemented an entire working system, which
is not restricted to any specific medium and we
respected all the security properties defined in the
standards for the implemented cryptographic
algorithms.

7,2
7,6
8

8,4

Sc
o
re

Speech encryption algorithms

AES‐128
RSA‐1024
NTRUEncrypt

Real-time DSP Implementations of Voice Encryption Algorithms

445

Our future work will include, modifying the filters
in the compression function (using faster filters or
filters that provide less losses) to decrease the
execution time for the already implemented
algorithms. Moreover, we intend to implement other
voice encryption algorithms, with the purpose to
provide a DSP platform that has security functions
integrated and that can be used with trust to secure
real-time sensitive communications.

ACKNOWLEDGEMENTS

This work has been funded by program Partnerships
in priority areas – PN II carried out by MEN-
UEFISCDI, project No. 47/2014.

REFERENCES

Pedre, S., Krajnik, T., Todorovich, E., Borensztejn, P.,
2016. Accelerating embedded image processing for
real time: a case study. In Journal of Real-Time Image
Processing, Vol. 11, No. 2, pp. 349-374.

Joao, J. A., Mutlu, O., Patt, Y. N., 2009. Flexible
Reference-Counting-Based Hardware Acceleration for
Garbage Collection. In Proceedings of ISCA 2009, pp.
1-11.

Daemen J., Rijmen V., 2001. Rijndael: The Advanced
Encryption Standard. In D r. Dobb's Journal, pp. 137-
139.

Biryukov, A., Khovratovich, D., 2009. Related-key
Cryptanalysis of the Full AES-192 and AES-256. In
Cryptology ePrint Archive: Report 2009/317.

Bogdanov, A., Khovratovich, D., Rechberger, C., 2011.
Biclique Cryptanalysis of the Full AES. In Advances in
Cryptology – ASIACRYPT 2011, Vol. 7073, pp. 344-
371.

Rivest, R., Shamir, A., Adleman, L., 1978. A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems. In Communications of the ACM, Vol.
21, No. 2, pp. 120-126.

Rivest, L. R., Kaliski, B., 2003. RSA Problem. In
Encyclopedia of Cryptography and Security, chapter
RSA Problem.

US Patent 6081597, 1996. Public key cryptosystem method
and apparatus. In Google Patents.

Sakshaug, H., 2007. Security Analysis of the NTRUEncrypt
Public Key Encryption Scheme. Available at
https://brage.bibsys.no/xmlui/bitstream/handle/11250/
258846/426901_FULLTEXT01.pdf (Last Accessed:
October 2016).

ADSP-BF537 Blackfin Processor Hardware Reference
Manual, Revision 3.4, 2013. Available at http://
www.analog.com/media/en/dsp-documentation/
processor-manuals/ADSP-BF537_hwr_rev3.4.pdf
(Last Accessed: October 2016).

TMS320C6711, Floating-Point Digital Signal Procesors,
2005. Available at http://www.ti.com/lit/ds/symlink
/tms320c6711c.pdf (Last Accessed: October 2016).

Wollinger, T., Guajardo, J., Paar, C., 2003. Cryptography
in embedded systems: An overview. In Proceedings of
the Embedded World 2003.

Fiskiran, M., Lee, R.B., 2002. Workload characterization
of elliptic curve cryptography and other network
security algorithms for constrained environments. In
Proceedings of the IEEE International Workshop on
Workload Characterization (WWC-5), pp. 127-137.

Wollinger, T., Wang, M., Guajardo, J., Paar, C., 2000. How
well are high-end dsps suited for the aes algorithms?
aes algorithms on the tms320c6x dsp. In AES Candidate
Conference, pp. 94-105.

Thulasimani, L., Madheswaran, M., 2010. Design And
Implementation of Reconfigurable Rijndael Encryption
algorithms for Reconfigurable Mobile Terminals. In
International Journal on Computer Science and
Engineering, Vol. 2, No. 4, pp. 1003-1011.

Verna, H.K., Singh, R. K., 2012. Performance Analysis of
RC6, Twofish and Rijndael Block Cipher Algorithms. In
International Journal of Computer Applications, Vol.
42, No. 16, pp. 1-7.

Itoh, K., Takenaka, M., Torii, N., Temma, S., Kurihara, Y.,
1999. Fast implementation of public-key cryptography
on a dsp tms320c6201. In CHES ’99: Proceedings of
the First International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 61–72.

Grobschadl, J., Tillich, S., Rechberger, C., Hofmann, M.,
Medwed, M., 2007. Energy evaluation of software
implementations of block ciphers under memory
constraints. In DATE, pp. 1110–1115.

Yen, SM., Kim, S., Lim, S., Moon, S. J., 2003. RSA speedup
with Chinese remainder theorem immune against
hardware fault cryptanalysis. In IEEE Transactions on
Computers, Vol. 52, No.4, pp. 461--472.

Er, M. H., Wong, DJ., Sethu, A., Ngeow, KS., 1991. Design
and implementation of RSA cryptosystem using multiple
DSP chips. In IEEE International Symposium on
Circuits and Systems, Vol. 1, pp. 49--52.

Ambika, D., Radha, V., 2012. Secure Speech
Communication- A Review. In International Journal of
Engineering Research and Applications, Vol. 2, No. 5,
pp. 1044-1049.

Bassalee W., Kaeli D., 2008. Resource-Conscious
Optimization of Cryptographic Algorithms on an
Embedded Architecture. Available at http://
www.ece.neu.edu/groups/nucar/publications/ODSPES
08bassalee.pdf (Last Accessed: October 2016).

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

446

