
Analysis of Data Sharing Agreements

Gianpiero Costantino, Fabio Martinelli, Ilaria Matteucci and Marinella Petrocchi
Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy

firstname.lastname@iit.cnr.it

Keywords: Data Sharing Rules, Policy Analysis and Conflict Detection, Performance Evaluation.

Abstract: An electronic Data Sharing Agreement (DSA) is the machine-processable transposition of a traditional paper
contract regulating data sharing among different organizations. DSA conveys different information, like the
purpose of data sharing, the parties stipulating the contract, the kind of data, and a set of rules stating which
actions are authorized, prohibited, and obliged on such data. Possibly edited by different actors from various
perspectives - such as the legal and the business ones - a DSA could quite naturally include conflictual data
sharing rules: the same data access request could be permitted according to some rules and denied according
to others. Starting from the DSA definition, this paper describes the design of a DSA analysis framework and
the development of the associated analysis tool. The DSA-Analyser proposed here evaluates the DSA rules
by simulating all the possible contextual conditions, which may occur at access request time and which are
linked to the vocabulary associated to the rules themselves. The output of the tool conveniently guides the
editor, pointing to those rules, which are potentially conflicting, and highlighting the reasons leading to those
conflicts. We have experimented the DSA-Analyser performances in terms of execution time, by varying the
number of rules in the DSA, as well as the terms in the DSA vocabulary. Our findings highlight the capability
of the analyser to deal with hundreds of rules and dozens of contexts in a reasonable amount of time. These
results pave the way to the employment of the analyser in a real-use context.

1 INTRODUCTION

Sharing data among individuals and organizations is
becoming easier and easier with the support of highly-
connected ICT systems. Data sharing, however, poses
several problems, including privacy and data misuse
issues, as well as uncontrolled propagation of data.
Decades of research have shown how a technical ap-
proach based on the definition and enforcement of
data sharing policies represents a valid support in au-
tomatising, easing, and assuring the process of elec-
tronic data sharing (Ferraiolo and Kuhn, 1992; Park
and Sandhu, 2004; Damianou et al., 2001; Casassa
Mont et al., 2015). This work considers Data Shar-
ing Agreements (DSA), electronic contracts specify-
ing rules for data sharing among the contracting par-
ties and - possibly, third parties. In the real world,
several actors, working in different fields and with
different expertise, may contribute to DSA definition:
a legal expert, familiar with the legal and contrac-
tual perspectives of the agreement, could set up ba-
sic aspects, like the kind of data whose sharing is be-
ing regulated, the purpose of such sharing, and, e.g.,
the rules specific for international data transfer, as de-
fined by national and international regulations; a busi-

ness expert at a specific organization - such as a pri-
vate company, a public administration, a healthcare
department - could further refine the agreement, by
inserting rules that are peculiar for that organization
(e.g., access rights within different units of the same
company). Furthermore, for some specific scenarios,
like the healthcare one, an end-user (a patient) could
both acknowledge the rules regulating her personal
data and add some rules, e.g., for delegation matters.

Different actors editing the agreement and the
multiplicity of data sharing rules envisaged in
medium to large contexts may cause the presence of
potential conflicts among the rules. Indeed, at time
of requesting the access to (or the usage of) the data
whose sharing is regulated by the DSA, an enforce-
ment engine will evaluate the rules in the agreement.
The evaluation could result in two - or more - rules,
all applicable to that access request, which give differ-
ent effects: according to some rules, the access/usage
would be granted; according to some others, the ac-
cess/usage would be denied. Here, we propose an
analysis tool, the DSA-Analyser, which considers the
rules in a DSA and spots potential conflicts before the
actual enforcement of the agreement. Conveniently
guiding the editor to the kind of conflicts and the rea-

Costantino, G., Martinelli, F., Matteucci, I. and Petrocchi, M.
Analysis of Data Sharing Agreements.
DOI: 10.5220/0006207501670178
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 167-178
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

167

sons which may cause them, the DSA-Analyser is
available as a web service application, it exposes its
functionalities through APIs, and performs the actual
analysis of the rules by means of Maude, a formal en-
gine based on rewriting logic. This paper describes
the design and implementation of the DSA-Analyser,
also evaluating its performances in terms of execu-
tion time, varying the number of rules in the DSA and
the number of terms in each rule. For the majority of
our experiments, the performances results highlight
that up to hundreds of rules are analysed in less than
or around half a minute. Quite obviously, such an
outcome is appealing, because the automatic analysis
of hundreds of rules in a reasonable amount of time
outperforms the capability to manually investigate the
same set of rules to find conflicts among them. Fur-
thermore, such results improve those of past conflict
detection approaches, like the one in (Matteucci et al.,
2012a). As illustrated in the following, DSA regulate
data sharing in a quite channelled way: each DSA is
related to a specific category of data, and tied to a
specific purpose of use, thus limiting the number of
significant rules that a DSA may include. From our
practical experience of real case scenarios inherited
from public administration, healthcare, and even large
private companies, we argue that the DSA-Analyser
can be employed in real-use contexts to check consis-
tency and spot potential conflicts among the exposed
data sharing rules.

The paper is structured as follows: Next section
presents background notions on DSA and the kind of
conflicts we deal with. Section 3 describes the DSA-
Analyser and gives performance results. Section 4
highlights how to proceed towards rules enforcement,
once the DSA has been analysed. Section 5 discusses
related work and Section 6 concludes the paper.

2 BACKGROUND

Hereafter, we recall definition and description of Data
Sharing Agreements and report a definition of the
type of conflicts we consider in the current work.

2.1 Data Sharing Agreements

DSA are electronic documents regulating how parties
share data. Resembling their cousin legal contracts,
they consist of:

• the DSA title, a label which could be used to iden-
tify the DSA (DSA ID).

• the parties involved in the DSA. Parties can be
either natural or legal persons, and they are speci-

fied by means of their names, roles and responsi-
bilities. Borrowing the language from the privacy
and data protection context, as roles of the parties
a DSA usually involves the Data Controller, the
Data Processor, and the Data Subject1. Responsi-
bilities are legal duties of the parties expressed in
pure natural language, in terms of gathering, shar-
ing, and storing the data subject of the agreement.

• the validity period of the DSA, stating its start and
end date.

• the vocabulary, which provides the terminology
for authoring the DSA data sharing rules. The vo-
cabulary is defined by an ontology, i.e., a formal
explicit description of a domain of interest (like,
for example, a medical or a public administration
domain).

• the data classification, describing the nature of
the data covered by the DSA, such as personal
data (e.g., contact details, medical data, judicial
data) and non-personal data (e.g., business data,
as corporate strategy development analysis, cus-
tomer data, product development plans).

• the purpose of the DSA, which is linked with the
data classification. Example of purposes are the
provision of healthcare services (e.g., for diag-
noses), administrative purposes (e.g., for book-
ing and payments), marketing (e.g., for proposal
of commercials services), and fulfillment of law
obligations (e.g., to access data when needed by
public authorities).

Finally, a DSA contains the rules regulating data shar-
ing:

• the authorizations section contains rules on per-
mitted operations;

• the prohibitions section contains rules on opera-
tions which are not allowed;

• the obligations section contains rules which are
mandatory, in relation to the data sharing.

2.2 Conflicts

Intuitively, when editing a set of data sharing rules,
conflicts can arise. In particular, in this work, we
consider conflicts between authorizations and prohi-
bitions, and between obligations and prohibitions. At
time of DSA writing, different rules can be inserted,
even by different authors. Let the reader consider,

1Terminology adopted in the European Parliament Di-
rective 95/46/EC and in the new General Data Protection
Regulation (which will start to apply in 2018) to indicate
the parties involved in an agreement governing the sharing
of personal data.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

168

for example, an expert legal user composing legal au-
thorization rules that strictly descend from legislation
and regulations. Then, a policy expert at a particu-
lar organization may want to add to the DSA specific
data sharing rules, which apply to the organization it-
self. Two, or more, rules composing the DSA could
allow and deny the data access under the same contex-
tual conditions, which are a collection of attributes re-
ferred to subject, object, and environment describing
the conditions under which an action is authorized,
prohibited, or obliged. To give the flavour of what a
contextual condition is, let the reader suppose that the
DSA contains the following simple authorization rule:
Doctors can read radiological reports during office
hours. When a subject tries to access a data, accord-
ing to that authorization the access will be granted
if the following contextual conditions hold: the sub-
ject is a doctor, the data is a radiological report, and
the time at which the access request is being made is
within office hours.

Throughout the paper, we manage the following
three sets of conflicting rules - the nomenclature has
been inherited from (Jin et al., 2011):

Contradictions. Two rules are contradictory if one
allows and the other denies the right to perform
the same action by the same subject on the same
data under the same contextual conditions. In
practice, the rules are exactly the same, except for
their effect (deny/permit the access).

Exceptions. One rule is an exception of another one,
if they have different effects (one permits and the
other denies) on the same action, but the sub-
ject (and/or the data, and/or the contextual con-
ditions) of one rule belongs to a subset of the sub-
ject (and/or the data, and/or the conditions) of the
other one. As an example: an authorization stat-
ing doctors can read medical data and a prohibi-
tion stating doctors cannot read radiological re-
ports, where radiological reports are a subset of
medical data.

Correlations. Two rules are correlated if they have
different effects and the set of conditions of the
two rules intersect one with the other. As an ex-
ample, doctors can read medical data and who
is outside the hospital cannot read medical data:
these raise a conflict when a doctor tries to access
when she is not inside the hospital.

3 DSA-ANALYSER

In our scenario, we imagine a policy expert at an or-
ganization (such as a hospital, a public administra-

tion, or a private company): she aims at analysing
rules in a DSA, and rules have been possibly com-
posed by different actors - like the policy expert her-
self and a legal expert - who knows legal constraints
applicable to the data whose sharing is controlled by
that DSA. The DSA-Analyser has been developed us-
ing RESTful technology2. This allows the tool to be
reachable through a simple HTTP call, while the exe-
cution of the core component can be expressed using
a different programming language, such us Java. This
way, the interaction with the analyser is quite versa-
tile since it can be directly done from a generic web
browser as well as a client software developed to in-
teract with the tool. We develop the core of the DSA-
Analyser, as well as its functionalities, using Java v8.
Then, the DSA-Analyser runs as web-application into
an Apache Tomcat v7.0.70 server. To call the DSA-
Analyser, a simple web-client application specifies
the server URI.

The client specifies the call type - for the DSA-
Analyser is POST - and the DSA ID, which is sent as
payload in the call.

The inner analysis process is hidden to the user
and it is performed by Maude (Clavel et al., 2007)3, a
popular executable programming language that mod-
els distributed systems and the actions within those
systems. We let Maude group data sharing rules in
authorizations, prohibitions, and obligations. Each set
of rules is seen as a process, describing the sequence
of authorised, denied, and obliged actions, respec-
tively. Maude is executable and comes with built-in
commands allowing, e.g., to search for allowed se-
quence of actions within a set of rules. We simu-
late all the access requests which are possible given
the application domain of the rules (in Section 3.1 we
will detail how the access requests are built). When
Maude finds at least two sequences, in different sets,
which are equal (e.g., subject with role doctor reads
object of type radiological reports). When Maude fin-
ishes the computation, the analysis outcome is shown
to the user through a graphical interface.

The DSA-Analyser takes as input a DSA ID from
an external database, with the available DSAs for a
specific organization (Fig. 1). Then, it grabs the DSA
through its ID and it starts processing it. As shown in
Code 1, the DSA content follows an XML structure.
The analyser executes the following steps to check
conflicts:

2http://www.ibm.com/developerworks/library/
ws-restful/

3maude.cs.illinois.edu

Analysis of Data Sharing Agreements

169

Code 1. Source code of a DSA.

1 <?xml version=”1.0” encoding=”UTF−8”?><dsa xmlns=”...” encryption−key−schema=”organization default scheme”
2 governing−law=”General Data Protection Regulation (GDPR)” id=”DSA−8e9126eb.xml” purpose=”Provision of Healthcare

Services” status=”Customised”
3 title =”Example DSA” user−consent=”false”

version=”1.0”vocabulary−url=”http: // testcocodsa . iit . cnr . it:8080 / vocabularies / healthcare vocabulary .owl#”>
4 <description />
5 <expirationPolicy periodInDays=”0”><complexPolicy>DenyAll</complexPolicy> </expirationPolicy>
6 <revocationPolicy periodInDays=”0”><complexPolicy>DenyAll</complexPolicy></revocationPolicy>
7 <updatePolicy periodInDays=”12”> <complexPolicy>DenyAll</complexPolicy></updatePolicy>
8 <parties>
9 <organization id=”Hospital” name=”Hospital−Name” responsibilities=” ... ” role=”data− controller ”/>

10 <organization id=”Hospital−Partner” name=”Partner−Name” responsibilities=” ... ” role=”data− controller ”/>
11 </ parties>
12 <validity>
13 <startDate>2016−10−27+02:00</startDate>
14 <endDate>2016−12−31+01:00</endDate>
15 </ validity>
16 <data>
17 <datum id=”DATUM X 2”>
18 <expression language=”CNL4DSA”>?X 2 is−a

<http://localhost:8080/vocabularies / healthcare vocabulary .owl#DelegateOfPatient></expression>
19 </datum>
20 <datum id=”DATUM X 3”>
21 <expression language=”CNL4DSA”>?X 3 is−a

<http://localhost:8080/vocabularies / healthcare vocabulary .owl#Medical></expression>
22 </datum>

23 <datum id=”DATUM X 5”>
24 <expression language=”CNL4DSA”>?X 5 is−a

<http://localhost:8080/vocabularies / healthcare vocabulary .owl#Patient></expression>
25 </datum>
26
27 </data>
28 <authorizations>
29 <authorization id=”AUTHORIZATION 1”>
30 <expression issuer =”Legal Expert” language=”NaturalLanguage”>DelegateOfPatient CAN Read a Data</expression>
31 <expression issuer =”Legal Expert” language=”CNL4DSA”>if (hascategory(?X 18,?X 3)) and (hasrole(?X 21,?X 14)) and

(haspurpose(?X 18, healthcare)) then { can [?X 21, Read, ?X 18]}</expression>
32 </ authorization>
33 </ authorizations >
34 <obligations>
35 <obligation id=”OBLIGATION 1”>
36 <expression issuer =”Legal Expert” language=”NaturalLanguage”>AFTER DelegateOfPatient Access a Data THEN the System

MUST Log the Event</expression>
37 <expression issuer =”Legal Expert” language=”CNL4DSA”>after [?X 17, Access, ?X 18] then must [?X 19, Log,

?X 20]</expression>
38 </ obligation>
39 </ obligations>
40 < dataClassification >MEDICAL DATA</dataClassification>
41 </dsa>

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

170

Client DSA-Analyzer Repository Maude Engine

Anayze DSA ID)

get(DSA ID)

DSA
Checking XML (Step 1)

Metadata (Steps 2)

Element (Step 3)

Rules (Steps 4)

Request DSA Vocabulary

Vocabulary

Parsing Vocabulary (Step 5)

Context generation (Step 6)
Parsed DSA (Step 7)

Detected conflicts (Step 8)

Show Conflicts

D
SA

Pa
rs

in
g

Ph
as

e

A
na

ly
si

s
Ph

as
e

Figure 1: Architectural sequence diagram.

Step 1 it checks that the XML file is well formed and
it can be properly parsed.

Step 2 it reads the root elements of the DSA, such as
the purpose, id, parties, roles, title (Code-1 line 2).

Step 3 it reads all DATUM fields written in the doc-
ument (Code-1 line 15-23).

Step 4 it converts the rules written in CNL4DSA to
the input language of Maude (Code-1 line 27-42).

Step 5 it loads all Terms and Property from the Vo-
cabulary associated to the DSA.

Step 6 it generates the contextual conditions used to
evaluate the rules.

Step 7 through Maude, it evaluates each pair in the
DSA, consisting of one authorization and one pro-
hibition, and one obligation and one prohibition.

Step 8 it reports the outcome of the analysis.

Code 2. Example of DATUM.

Expression : ?X_18 is-a
<http://localhost:8080/vocabularies/

healthcare_vocabulary.owl#Data>
language : CNL4DSA
Entity : Data
URL : http://localhost:8080/vocabularies/
healthcare_vocabulary.owl
idShort : ?X_18

Rules expressed in the DSA are specified both in nat-
ural language and in CNL4DSA, a controlled natu-
ral language firstly introduced in (Matteucci et al.,
2010). In Code 1 (line-31) is shown an example of
a CNL4DSA authorization rule. The terms specified

in the data section shown in Code 1 will replace the
place-holders (?Xi). As an example, ?X 18 refers to
the term #Data (see Code 2), while ?X 3 refers to the
term #Medical. The first part of Code 1 (line-31) is
a condition regarding a datum, which has category
medical.

Code 3. Example of rule expressed in CNL4DSA.

<expression issuer="Legal Expert"
language="CNL4DSA">if (hascategory(data
,medical)) and (hasrole(?X_21,?X_14))
and (haspurpose((data,healthcare)) then
{ can [?X_21, Read, data]}</expression>

To replace all the place-holders with their corre-
sponding values, the DSA-Analyser parses and stores
all the data specified in the data section of the XML
DSA file, see, for example, Code 2. Upon replac-
ing each place-holder in the DSA rules, the DSA-
Analyser translates the CNL4DSA version of the
rules into the Maude syntax, according to the trans-
lation process described in (Matteucci et al., 2012b).
Maude is the actual tool performing the analysis of
DSA rules. For instance, from Code 1 (line-31), we
obtain Code 4.

Code 4. A rule in MAUDE.

((hascategory(data,medical)) and
(hasrole(user,doctor)) and

(haspurpose(data,healthcare))) < user1,
’read, data > . 0)

All rules written in Maude are part of a bigger
template that is given as input to Maude to evalu-
ate the rules. The DSA-Analyser uses a single tem-
plate, filled in with the rules parsed from the DSA.
The STATEMENTS HERE placeholder in Code 5 is
the part in the template where the DSA-Analyser in-
serts the DSA rules, converted as in previous steps.

Code 5. Template excerpt.

...
mod EXAMPLE is
inc CNL4DSA .
eq dsa-auth = STATEMENTS_HERE
endm
...

STATEMENTS HERE is updated as in Code 6 (for
the sake of simplicity, we have shown only one autho-
rization rule).

Analysis of Data Sharing Agreements

171

Code 6. Authorization rules in the Maude template.

...

mod EXAMPLE is
inc CNL4DSA .

eq dsa-auth = (’Statement0 =def
((hascategory(data,medical)) and

(hasrole(user1,doctor)) and
(haspurpose(data,healthcare))) \ < user1,

’access, data > . 0)

3.1 Conflict Detection Algorithm

The data sharing rules are evaluated in Maude under
a set of contextual conditions (hereafter called con-
texts), which mimics valid properties at time of the
access request. Thus, contexts instantiate properties
of the subject, the data, and the external environment:
for a generic access request, when a subject will re-
quest the access to some data, such properties will be
checked against the DSA rules, to evaluate the right of
that subject to access those data. Contexts may spec-
ify, e.g., the role of the subject making the request,
the category of requested data, the time of the day
at which the request is being made, the geographical
location (both of data and subjects), and so on. An
example of context4 is in Code 7.

Code 7. Example of contexts.

Data has category medical = true;
Subject has role doctor = true;
Subject has location Hospital-Name = true.

A peculiar feature of the DSA-Analyser is its ability
to simulate all the possible contexts, given the DSA
vocabulary and the properties specified in the DSA
rules. The algorithm for contexts generation is de-
tailed in the following.

3.1.1 Algorithm for Context Generation

A DSA vocabulary is made up of properties p and
terms t. A single DSA document may contain a sub-
set of the properties. Examples of properties are has-
Role, hasCategory, hasID. Properties have a domain
and a codomain. Examples of domains are Subject
and Data. Examples of codomains are Doctor (e.g.,
for property hasRole), Medical (e.g., for property has-
Category).

To automatise the process of generating all the
possible combinations of properties, ranged over all

4For the sake of readability, we write contexts in a semi-
natural language format.

the different terms, we first consider the array P[pq],
0 ≤ q ≤ n, shown below. The array P lists all the
properties specified in the rules that appear in a DSA.

P[p0] -> T0[t0
0 , t

0
1 , t

0
2 , . . . , t

0
i]

P[p1] -> T1[t1
0 , t

1
1 , t

1
2 , . . . , t

1
j]

...
P[pn] -> Tn[tn

0 , t
n
1 , t

n
2 , . . . , t

n
k]

For each position of the array P, another array Tq
contains the list of terms representing the codomain
for the specific property pq. The DSA-Analyser grabs
from the DSA vocabulary the properties and asso-
ciated terms to form P and T, by filtering out those
properties that do not belong to the rules of the spe-
cific DSA under investigation. Instantiating the above
structure with an example, we have:

[hasRole] -> [Role1,Role2]
[hasDataCategory] -> [Category1]
[hasID] -> [id1, id2]

We then create a matrix M whose values are point-
ers to a property with an associated term. The number
of rows in the matrix is equal to all the possible com-
binations of properties and terms:

Mrows = |hasRole| ∗ |hasDataCategory| ∗ |hasID|
The number of columns is equal to the number of
properties: Mcolumns = |Properties|. In our example,
we have Mrows = 2∗1∗2 = 4 and Mcolumns = 3.

We start filling the content of the matrix from the
last column on the right. This last column will con-
tain pointers to the last item of P, i.e., P[pn] (and
to the corresponding values in Tn). We initialise a
counter, which starts at zero, and stops increasing at
[hasID].length−1 (in the example, 2-1=1, thus, lead-
ing to only two possible values, 0 and 1). Once the
counter reaches [hasID].length−1, it starts again un-
til the numbers of rows are all filled in. Thus, we get
a partially filed matrix, as follows:

M =

X X 0
X X 1
X X 0
X X 1

Then, the algorithm starts processing the second
array from the bottom, P[pn−1] (in our example,
we consider the element [hasDataCategory]). The
counter stops at [hasDataCategory].length−1 = 1−
1= 0. This means that, for all rows of the correspond-
ing column in the matrix, we put 0:

M =

X 0 0
X 0 1
X 0 0
X 0 1

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

172

As last step in the example, we proceed with the el-
ement, [hasRole], which still range over two terms:
even in this case, the counter can have two possible
states, 0 and 1. Differently from the way we acted
when filling the right-hand column, the algorithm fills
the column by repeating a counter value for a number
of times equal to:

hasID.length∗hasDataCategory.length = (2∗1) = 2

Concluding, the algorithm generates a combination
matrix:

M =

0 0 0
0 0 1
1 0 0
1 0 1

The DSA-Analyser uses the matrix and it works at
row level for generating all the possible contexts. At
the first iteration, the DSA-Analyser generates the
context in Code 8:

Code 8. Automated context generation.

#1
Subject hasRole Role1 = true;
Data hasDataCategory Category1 = true;
Subject hasID id1 = true;

Then, at the second iteration, the context produced
by the DSA-Analyser is:

#2
Subject hasRole Role1 = true;
Data hasDataCategory Category1 = true;
Subject hasID id2 = true;

Finally, third and forth iterations are:

#3
Subject hasRole Role2 = true;
Data hasDataCategory Category1 = true;
Subject hasID id1 = true;

#4
Subject hasRole Role2 = true;
Data hasDataCategory Category1 = true;
Subject hasID id2 = true;

Algorithm 1 shows the pseudo-code for the gener-
ation of the combination matrix M.

3.2 Performances

Here, we evaluate the DSA-Analyser execution time,
varying i) the number of rules in a DSA, and ii) the
dimension of the DSA vocabulary. We test the tool
on three real use cases: data sharing i) among dif-
ferent health organizations, ii) through mobile de-
vices within a corporate environment, and iii) among

Table 1: Tests results.

Number of rules Total Analysis Time (s) Single Analysis Time (ms)
HV PAV MV HV PAV MV

3 44 7 21 250 247.4 167.64
10 74 10 31 293.65 249.21 249.98
20 74 10 31 291 249.11 250.21
40 79 10 31 382 250.42 249.04
60 67 10 31 392.48 248.78 248.55
120 85 10 31 464.6 250.73 250.74
250 137 12 39 690.89 284.45 313.85
480 391 19 75 1317.82 466.73 595.09
960 1946 49 246 2726.22 1178.07 1940.61

different municipalities. Each scenario is associated
to a vocabulary defined by the Web Ontology Lan-
guage (OWL). An ontology is a formal way to de-
scribe taxonomies and classification networks, essen-
tially defining the structure of knowledge for various
domains: the nouns representing classes of objects
(terms of the vocabulary) and the predicates repre-
senting relations between the objects (properties of
the vocabulary).

The three vocabularies we considered in our tests
have different dimensions in terms of both number
of terms and number of properties. We performed a
series of experiments on DSA containing a different
number of rules (from 3 to 960 rules, see Table 1),
for a total of 27 DSA (9 DSAs per 3 different vocab-
ularies). The DSA-Analyser analyses each DSA by
evaluating - separately - the authorization, the prohi-
bition, and the obligation rules, with respect to all the
possible generable contexts. The healthcare vocabu-
lary (HV) leads to 83 iterations for set of rules, the
public administration vocabulary (PAV) leads to 10
iterations, and the mobile vocabulary (MV) leads to
42 iterations. We remind the reader that the test data
are practically relevant, since rules and vocabularies
are the ones from real use cases. Furthermore, the
DSA-Analyser execution time resulting from our ex-
periments is independent from the number of conflicts
actually occurring over the tested rules (meaning, the
analysis could, e.g., reveal no conflicts, or even one
conflict per each pair of rules, the execution time will
be the same). Tests were run on a 1,3 GHz Intel Core
m7 with 8 GB of RAM and SSD storage. Figures 2
and 3 report the execution time varying the number
of rules in the DSA and the vocabulary. Total analy-
sis refers to the whole analysis over the DSA, while
single analysis considers the average execution time
of the analysis of a DSA evaluated with respect to a
single context. Overall, the Maude engine execution
time is stable - and reasonably small - until it pro-
cesses nearly one hundred rules. In particular, from
the graphical representation in Figure 2, we observe
that the execution time starts growing polynomially
when the rules are greater than 120. This is partic-
ularly relevant when considering the healthcare sce-
nario: the difference in this scenario is the number of

Analysis of Data Sharing Agreements

173

Algorithm 1: Combination Matrix Algorithm.

Require: An array with all Properties P = [P1,P2 . . .PN] and n different Terms arrays where T1 = P1,T2 = P2, . . . ,Tn = Pn.
Each T is an array T = [t1, t2 . . . tK]

1: global P . The Properties array
2: function COMBINATIONMATRIX(P)
3: for i = 1 to P.length do
4: T = P[i]
5: if T.length > 0 then
6: numRows = numRows∗T.length . Counting the number of rows that the matrix will have
7: end if
8: end for
9: . Initialization of variables

10: numColumns = P.length . Numbers of columns of the Matrix
11: combinationMatrix = new [numRows, numColumns] . Creating the combination Matrix
12: counter = 0 . It contains the index to write in the matrix
13: previousArrayLength = 1 . It contains the length of the Terms array before that one it is processed
14: iterationNumber = 0 . it counts how many loops will be done
15: innerIterationNumber = 0 . it counts how many loops will be done in the inner FOR
16: arraySize = 0 . The size of the array processed
17: for i = (numColumns−1) to 0 do
18: if iterationNumber == 0 then
19: previousArrayLength = 0
20: else
21: T = P[i+1] . P[i+1] because it is a decrementing FOR
22: previousArrayLength = previousArrayLength∗T.length
23: end if
24: T = P[i]
25: arraySize = T.length
26: for j = 0 to j < numRows do
27: if iterationNumber == 0 then
28: combinationMatrix[j][i] = counter
29: if counter < (arraySize−1) then . It checks (arraySize−1) because the array starts from zero
30: (counter++)
31: else
32: (counter = 0)
33: end if
34: else
35: . Number iteration > 0
36: combinationMatrix[j][i] = counter . It writes the value of counter in the matrix
37: . It writes value of counter until the number of iterations does not reach the length of the previous array
38: . It stops to (previousArrayLength−1) because it counts starting from zero
39: if innerIterationNumber == (previousArrayLength−1) then
40: counter++
41: innerIterationNumber = 0
42: if count == arraySize then . When the counter reaches arraySize. Then, it is initialized to zero.
43: counter = 0
44: end if
45: else
46: inneriterationNumber++
47: end if
48: end if
49: end for
50: . Initializing everything for next loop
51: iterationNumber++
52: innerIterationNumber = 0
53: counter = 0
54: end for
55: end function

terms in the vocabulary, with respect to PAV and MV.
However, the polynomial growth in terms of rules

number does not sensitively affect those scenarios
where the number of terms in the vocabularies are

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

174

 0

 500

 1000

 1500

 2000
 0 5

0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

 5
50

 6
00

 6
50

 7
00

 7
50

 8
00

 8
50

 9
00

 9
50

Ti
m

e
(s

)

Number of Rules

Healthcare Vocabulary
PA Vocabulary

Mobile Vocabulary

Figure 2: Total analysis time

 0

 500

 1000

 1500

 2000

 2500

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

 5
50

 6
00

 6
50

 7
00

 7
50

 8
00

 8
50

 9
00

 9
50

Ti
m

e
(m

s)

Number of Rules

Healthcare Vocabulary
PA Vocabulary

Mobile Vocabulary

Figure 3: Single analysis time, per sets of rules.

lower (see Table 1, Total Analysis Time, 250 and 480
rules, PAV and MV columns). To the best of our ex-
perience with DSA, and also according to some pre-
vious work, as, e.g., (Liang et al., 2013), dozens of
rules represent a good estimation of real DSA. This
paves the way for the employment of the analyser in
a real-use context.

Notes on Complexity. To estimate the complexity
of the DSA-Analyser, we consider the steps described
at the beginning of this section. The time consuming
steps are mainly Step 6 and Step 7, while the other
steps have a constant cost that does not depend on the
number of rules. Step 6 and Step 7 consist of three
main functions:

1. the generation of the context matrix (Algo-
rithm 1);

2. the evaluation of the set of rules by Maude;

3. the pairwise comparison of the Maude evaluation
results (between each authorization and prohibi-
tion and each prohibition and obligation).

The generation of the context matrix is described
in Section 3.1.1 and Algorithm 1. The cost can
be overestimated considering the combinations of all
the properties of the vocabulary, without repetitions,
O(num propnum terms), where num prop is the num-
ber of the properties and num terms is the number of
terms in the considered vocabulary.

The cost of the second function depends on the
Maude engine. To evaluate the rules of a DSA, we
exploit the Maude built-in command red: the tool
performs as many red calls as the number of rules
of the DSA. Hence, the computational costs of this
functions depends on the number of rules, hereafter
denoted by n, and by the computational costs of the
red function in Maude.

The computational cost of the third function is of
O(n2) order, being the pairwise comparison of the
evaluation of the rules.

Thus, the DSA-Analyser complexity is strictly re-
lated to the complexity of the Maude engine (sec-
ond function), plus an additional factor that de-
pends on the third function, (O(n2)), all multiplied
by the number of iterations of the first function
(O(num propnum terms)).

4 NOTES ON RULES
PRIORITIZATION

The DSA-Analyser outputs either the confirmation
that no conflicts arise among the evaluated rules or
the complete list of conflicts, each of them associ-
ated to the related context. In Figure 4, the alert mes-
sage highlights two potential conflicts, one between
authorization #1 and prohibition #1, and one between
the same prohibition and authorization #2. Focusing
on the former alert, it says that, at DSA enforcement
time, there could be an access request that should be
authorized (according to authorization #1) and should
be denied (according to prohibition #1). The access
request is evaluated under the context specified in the
figure (i.e., the subject is a patient, s(he) is located in
a certain area, the data are medical ones, of type ECG,
they are stored within the European area, and so on).

To fix a conflictual situation, it is possible to re-
editing the rules which may lead to conflicts, and re-
running the analysis phase once again. However, it
is also possible to leave the rules as they are, and to
define ad hoc resolution strategies that will act at en-
forcement time. Indeed, well-known standard policy
languages, such as XACML (OASIS, 2010), intro-
duce combining algorithms, which solve conflicts by
prioritizing the application of the rules according to
some strategy. Standard and well known strategies are
Deny-Overrides, Permit-Overrides, First-Applicable,
and Only-One-Applicable. As an example, if the
Deny-Overrides algorithm is chosen to solve the con-
flict that could arise among the rules of the same pol-
icy, the result of the evaluation of the policy is Deny
if the evaluation of at least one of the rules returns
Deny. Instead, if Permit-Overrides is chosen, the re-

Analysis of Data Sharing Agreements

175

Figure 4: An output alert.

sult of the evaluation of a policy is Permit if the eval-
uation of at least one of the rules in the policy returns
Permit. However, standard combining algorithms are
coarse grained, mainly because they take into account
the result of the rules evaluation (e.g., Deny-Overrides
and Permit-Overrides) and their order in the policy
(e.g., First-Applicable). We could envisage other as-
pects for rule prioritization, such as i) the issuer of the
rules, ii) the data category, and iii) the purpose of the
data sharing, which is classified according to national
and international regulations. Hence, we are able to
provide a finer combining algorithm that takes into
account not only the result evaluation of the rule itself
but also according to the evaluation of properties of
the rules. As a simple example, let the reader consider
a medical datum, which has to be shared between a
hospital and a patient, with the purpose of giving di-
agnoses. We can imagine that the DSA referred to
those data features a potential conflict, between an au-
thorization rule - set by the patient whose data refer to
- and a prohibition rule, set by a policy expert working
at the hospital. For instance, the conflict could arise
when the patient tries to access the data from outside
the hospital in which the data have been produced.
Being the purpose of data sharing related to giving di-
agnoses, and being those medical data related to the
patient, one possible rule prioritization strategy could
be to apply the rule defined by the patient, thus grant-
ing the access to data.

5 RELATED WORK

In the last decades, Academia has successfully pro-
posed a huge number of work on data and resource
sharing management through privacy policies, also
expanding the investigation to aspects like usage con-
trol (the monitoring and enforcement of security and
privacy policies, not only at time of accessing a re-
source, but also once the resource has been accessed,
see seminal work in (Pretschner et al., 2006; Park and
Sandhu, 2004). These studies have been extended
across several dimensions and applications, as in (La-

zouski et al., 2014) for the enforcement of usage con-
trol policies on Android mobile devices. Thus, the re-
search efforts cited in this section are not intended to
constitute an exhaustive list. We would like to high-
light that the DSA-Analyser proposed in this paper
has the advantage to be fully integrated in a wide and
general framework, which manages DSA from its cre-
ation, passing through DSA editing, analysis, and en-
forcement (as the result of a FP7 European project).
The kind of data sharing rules in a DSA include also
usage control rules, and, even in this case, our general
framework allows for analysis and enforcement of
such rules. Furthermore, the analyser requires few hu-
man intervention, by automatically and exhaustively
evaluating the rules in a DSA against all possible con-
textual conditions that are tied to the DSA vocabulary.

Regarding DSA, work in (Matteucci et al., 2011b)
presents a preliminary analysis tool for conflict de-
tection among DSA clauses. The analysis worked by
considering one single context at a time, which was
manually edited by the user. Successively, the authors
of (Casassa Mont et al., 2015) described the integra-
tion of a set of tools, for policy authoring and anal-
ysis, into a working enforcement framework, specifi-
cally tailored for cloud systems. Work in (Matteucci
et al., 2011a) is focused on medical data protection
policies. Work in (Martinelli et al., 2012) distin-
guished between unilateral and multilateral DSA (the
latter being agreements constituting of data sharing
policies coming from multiple actors) and proposed
a conflict detection technique with a higher level of
automation with respect to (Matteucci et al., 2011b).
In (Bicarregui et al., 2008), it was shown an appli-
cation of the Event-B language5 to model obliged
events. The Rodin platform provides animation and
model checking toolset to analyse specifications in
Event-B, leading to analysis of obligations (Arenas
et al., 2010). Work in (De Nicola et al., 2000) pro-
posed a formal definition of conflicts, together with
efficient conflict-checking algorithms. The authors
of (Hansen et al., 2008) consider usage control poli-
cies to restrict the continuous usage and replication

5www.event-b.org

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

176

of information, e.g., imposing that certain informa-
tion may only be used - or copied - a certain num-
ber of times. Related to the sharing of data, but
not strictly related to analysis, (Lupu and Sloman,
1999; Scalavino et al., 2009; Scalavino et al., 2010)
present an evaluation scheme for sharing data in a se-
cure way in a crisis management scenario, through
opportunistic networks. Work in (Liang et al., 2013)
presents a conflict-detection tool based on first order
logic, whose performances are compared to the ones
in (Huang and Kirchner, 2011), where the authors use
coloured Petri nets process for policy analysis. Our
performances outcome are competitive with respect
to those two results. A popular and general approach
for solving conflicts among privacy rules is the one
adopted by the eXtensible Access Control Markup
Language (XACML) and its associated policy man-
agement framework (OASIS, 2010). XACML poli-
cies (or policy sets) include a combining algorithm
that defines the procedure to combine the individual
results obtained by the evaluation of the rules of the
policy (of the policies in the policy set). Work in (Lu-
nardelli et al., 2013; Matteucci et al., 2012a) is an
example on how standard XACML combining algo-
rithms can be extended, e.g., evaluating - through well
known techniques for multi-criteria decision mak-
ing (Saaty, 1990) - how much the attributes in a policy
are specific in identifying the subject, the object, and
the environment of the policy.

6 CONCLUSIONS

In this paper, we have considered electronic con-
tracts consisting of several data sharing rules, possibly
edited by more than one actor. Aiming at signaling
to the editors potential conflicts among the rules, we
have designed and developed an analysis tool, which
evaluates set of rules with different effect (access
granted/access denied) under all the contextual condi-
tions which may arise from the vocabulary and prop-
erties associated to the DSA. The performance results
indicate the feasibility of the application of our pro-
posal, for scenarios featuring up to hundreds of rules
and up to dozens of terms in the vocabulary (which,
to the best of our expertise in the field of healthcare,
public administration, and business scenarios, repre-
sent realistic numbers for DSA-based practical appli-
cations). A possible improvement, which we leave for
the future, is to optimise the analysis by paralleling it
into three different processes, for authorizations, pro-
hibitions, and obligations.

ACKNOWLEDGEMENTS

Partially supported by the FP7 EU project Coco Cloud
[grant no. 610853] and the H2020 EU project C3ISP
[grant no. 700294].

REFERENCES

Arenas, A. et al. (2010). An Event-B Approach to Data
Sharing Agreements. In Integrated Formal Methods,
pages 28–42. Springer.

Bicarregui, J. et al. (2008). Towards Modelling Obligations
in Event-B. In ABZ, pages 181–194.

Casassa Mont, M., Matteucci, I., Petrocchi, M., and Sbodio,
M. L. (2015). Towards safer information sharing in the
cloud. Int. J. Inf. Sec., 14(4):319–334.

Clavel, M. et al., editors (2007). All About Maude - A
High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic,
volume 4350 of LNCS. Springer.

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001).
The Ponder policy specification language. In Policies
for Distributed Systems and Networks, POLICY ’01,
pages 18–38. Springer-Verlag.

De Nicola, R., Ferrari, G. L., and Pugliese, R. (2000). Pro-
gramming access control: The KLAIM experience. In
CONCUR 2000 - Concurrency Theory, pages 48–65.

Ferraiolo, D. and Kuhn, R. (1992). Role-based access con-
trol. In NIST-NCSC National Computer Security Con-
ference, pages 554–563.

Hansen, R. R., Nielson, F., Nielson, H. R., and Probst, C. W.
(2008). Static Validation of Licence Conformance
Policies. In ARES, pages 1104–1111.

Huang, H. and Kirchner, H. (2011). Formal specification
and verification of modular security policy based on
colored Petri nets. IEEE Trans. Dependable Secur.
Comput., 8(6):852–865.

Jin, J., Ahn, G.-J., Hu, H., Covington, M. J., and Zhang, X.
(2011). Patient-centric authorization framework for
electronic healthcare services. Computers & Security,
30(2-3):116–127.

Lazouski, A., Martinelli, F., Mori, P., and Saracino, A.
(2014). Stateful usage control for Android mobile de-
vices. In Security and Trust Management, pages 97–
112. Springer International Publishing.

Liang, X. et al. (2013). A conflict-related rules detection
tool for access control policy. In Frontiers in Internet
Technologies, pages 158–169. Springer.

Lunardelli, A., Matteucci, I., Mori, P., and Petrocchi, M.
(2013). A prototype for solving conflicts in XACML-
based e-Health policies. In 26th IEEE Symposium on
Computer-Based Medical Systems, pages 449–452.

Lupu, E. C. and Sloman, M. (1999). Conflicts in policy-
based distributed systems management. IEEE Trans.
Softw. Eng., 25(6):852–869.

Martinelli, F., Matteucci, I., Petrocchi, M., and Wiegand, L.
(2012). A formal support for collaborative data shar-
ing. In Availability, Reliability, and Security, pages
547–561.

Analysis of Data Sharing Agreements

177

Matteucci, I., Mori, P., and Petrocchi, M. (2012a). Priori-
tized execution of privacy policies. In Data Privacy
Management, pages 133–145.

Matteucci, I., Mori, P., Petrocchi, M., and Wiegand, L.
(2011a). Controlled data sharing in e-health. In Socio-
Technical Aspects in Security and Trust, pages 17–23.

Matteucci, I., Petrocchi, M., and Sbodio, M. L. (2010).
CNL4DSA: a controlled natural language for data
sharing agreements. In Symposium on Applied Com-
puting, pages 616–620.

Matteucci, I., Petrocchi, M., Sbodio, M. L., and Wiegand,
L. (2011b). A design phase for data sharing agree-
ments. In Data Privacy Management, pages 25–41.

Matteucci, I., Petrocchi, M., Sbodio, M. L., and Wiegand,
L. (2012b). A design phase for data sharing agree-
ments. In 6th International Workshop on Data Pri-
vacy Management, pages 25–41. Springer Berlin Hei-
delberg.

OASIS (2010). eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0.

Park, J. and Sandhu, R. (2004). The UCON-ABC usage
control model. ACM Trans. Inf. Syst. Secur., 7(1):128–
174.

Pretschner, A., Hilty, M., and Basin, D. (2006). Distributed
usage control. Commun. ACM, 49(9):39–44.

Saaty, T. L. (1990). How to make a decision: The Analytic
Hierarchy Process. European Journal of Operational
Research, 48(1):9–26.

Scalavino, E., Gowadia, V., and Lupu, E. C. (2009). PAES:
policy-based authority evaluation scheme. In Data
and Applications Security XXIII, pages 268–282.

Scalavino, E., Russello, G., Ball, R., Gowadia, V., and
Lupu, E. C. (2010). An opportunistic authority eval-
uation scheme for data security in crisis management
scenarios. In Information, Computer and Communi-
cations Security, pages 157–168. ACM.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

178

