
A Technique for Extraction and Analysis of Application Heap
Objects within Android Runtime (ART)

Alberto Magno Muniz Soares and Rafael Timóteo de Sousa Jr.
Eletrical Engineering Department, University of Brasília (UnB), Brasília, Brazil

alberto.magno@gmail.com, desousa@unb.br

Keywords: Mobile Device Forensics, Memory Forensics, Memory Analysis, Android.

Abstract: This paper describes a technique for analysing objects in memory within the execution environment
Android Runtime (ART) using a volatile memory data extraction. A study of the AOSP (Android Open
Source Project) source code was necessary to understand the runtime environment used in the modern
Android operating system, and software tools were developed allowing the location, extraction and
interpretation of useful data for the forensic context. Built by the authors as extensions for the Volatility
Framework, these tools help to locate, in a memory extraction from a device compliant with the ARM
architecture, arbitrary instances of classes and their data properties.

1 INTRODUCTION

Personal mobile devices can be used for many
purposes and so its RAM may contain digital
evidence for a potential investigation.

Traditionally, forensics on mobile devices focus
on the acquisition and analysis of data present in
non-volatile storage media. Usually, depending on
the purpose of the investigation or given the
difficulty with the ephemeral nature of the data,
volatile memory exams are not performed. On the
other hand, with the increasing use of encryption and
the presence of ever more sophisticated malicious
software, the need to conduct investigations on the
volatile memory contents of mobile devices has
become even more important.

Also, as discussed in (Brezinski and Killalea,
2002), the forensic community seems to recognize
that capturing data in memory is required in order to
comply with the volatility of digital evidence, since
some information about the system environment are
never kept statically in secondary storage media.
Thus, it has become imperative to use techniques to
analyse data from a volatile memory extraction,
going further than traditional techniques.

Android is an operating system based on the
Linux kernel and is designed especially for mobile
devices. Currently this system leads the mobile
operating systems market, with versions for 32-bit
and 64-bit processors, complying with x86, MIPS

and, especially, the ARMS architecture. Despite
being a Linux distribution, it has features that
require a detailed understanding of the runtime
environment and the use of specific techniques for
extraction and memory analysis.

As published in the Android Open Source
Project (AOSP), Android OS in version 5.0 contains
a new runtime environment (Android Runtime -
ART) operating in most available devices, replacing
the interpretation mechanism of the former Dalvik
Virtual Machine (DVM). In place of an
interpretation engine ART requires compilation of
every application during installation, a process that
is called Ahead-Of-Time (AOT). Also, this new
runtime environment comes with new memory
management mechanisms.

The general digital forensics process includes the
acquisition of data from a source, the analysis of the
data and extraction of evidence, with the
preservation and presentation of the evidence
(Carrier, 2003). In spite of several RAM memory
data acquisition techniques exist for Android, a
forensic technique specific for memory analysis and
extraction of Java objects in the ART runtime
environment is yet to be established. Thus, the
central contribution of this paper is to address a
technique for memory analysis based on the source
code available from AOSP. This proposed and tested
technique allows the location and extraction of
object data of a running application, using the
content of volatile memory acquired in Android 5.0

Soares, A. and Jr., R.
A Technique for Extraction and Analysis of Application Heap Objects within Android Runtime (ART).
DOI: 10.5220/0006204101470156
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 147-156
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

147

devices. Another contribution is the development of
software tools that support the proposed forensic
technique.

The remaining of this paper is organized as
follows. Section 2 describes related work. Section 3
is an overview of the Android architecture, while
Section 4 is devoted to ART. In Section 5, the
proposed forensic technique is described with its
supporting tools. Section 6 discusses results from the
experimental evaluation of the proposed technique
and developed support tools, for RAM acquisitions
from an emulated device and in real one, and
Section 7 presents conclusions and possible future
works.

2 RELATED WORK

As discussed in (Wächter and Gruhn, 2015), the
feasibility of acquisition techniques for forensic
purposes has limitations related to intrinsic features
implemented by manufacturers, such as hard
security mechanisms that prevent access to data.

Nevertheless, there are different known
techniques for RAM acquisition in Android, a well-
known one called Linux Memory Extractor - LiME
(Sylve et al., 2012), which extracts raw data from
volatile memory of a device ensuring a high
integrity rate in its results.

In (Apostolopoulos et al., 2013), a study is
presented on recovery of credentials from Android
applications by means of available volatile memory
extraction techniques. This study shows that even
without the analysis of applications objects, the
referred credentials are accessible by direct
inspection of the extracted data. But the analysis of
data extracted from real devices and from emulated
systems showed no large discrepancies in the results.

As an alternative to bypass hard security barriers,
a work is presented in (Hilgers et al., 2014) based on
data extraction of real devices with Android version
below 4.4, using the technique called Forensic
Recovery of Scrambled Telephones – FROST. This
paper holds that, even in case of rebooting and
unrecoverable data erasure in non-volatile memory,
which occurs in some devices when they are reset to
factory state, a situation caused by the bootloader
unlocking process, it is still possible to analyse the
remaining data in RAM, including Java objects
maintained by the old Dalvik runtime, a process that
is made using plugins of the Volatility Framework
(http://www.volatilityfoundation.org).

In (Backes et al., 2016) the compilation process
and instrumentation solutions for applications within

ART are presented, highlighting innovations in the
ART compilation process, including significant
internal operation details that are useful in
understanding the difference between the ART and
the earlier Android runtime versions.

After careful publications search, we verified
that forensics studies on ART for Android version
5.0 or greater are still rare. Then, the analysis of the
AOSP code and its constant updates is an important
source of information.

3 ANDROID ARCHITECTURE
OVERVIEW

The Android platform consists of a software stack
with three main layers: an application layer, one
layer containing a framework of Java objects and the
Runtime environment - RT, and a native code Linux
kernel layer containing hardware abstraction
libraries (Yaghmour, 2013).

Regarding the memory management used by the
RT, as described in (Drake et al., 2014), the Android
system does not offer a memory swap area, but
instead it uses paging mechanisms and file mapping.

Regarding the paging mechanism, page sharing
is used between processes. Each process is
instantiated by fork of a pre-existing process called
Zygote. This process starts during the system
initialization phase (boot) and loads the code and
features that are part of the Android framework. This
allows many pages, allocated to the code and
resources of the framework, to be shared by all other
process applications.

With the mapping mechanism, most of the static
data (byte-code, resources and possible native code
libraries) of an application are mapped into the
memory address space of the application process.
This allows data sharing between processes and the
concerned memory pages can be disposed as needed.
Memory sharing between applications works
through an asynchronous sharing mechanism called
Anonymous Shared Memory (Ashmem). Ashmem is
an additional modification of the Android Linux
kernel to allow automatic adjustment of the size of
memory caches and recover areas when the total
available memory is low (Yaghmour, 2013). Also,
by means of a memory snapshot, the virtual memory
area of an application may present the unused
mapped pages.

In the boot process, in addition to the preparation
of the Zygote by the RT process, a service starts
keeping (for each boot) memory mapping pairs of

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

148

key-value related to system configuration,
comprising data properties files and other sources of
the operational system. Many components of the
operating system and the Android framework,
including the execution environment, use these
values, including those related to the configuration
of the execution environment (for instance, the size
of the memory space for the Java object heap and
parameters of the Garbage Collection - GC).

With respect to security in AOSP, after
installation, each application is activated in its own
virtual memory area, implementing the principle of
least privilege. Android version 5.0 includes security
mechanisms that require that all dynamic code liking
being of relative type (Position-Independent Code -
PIC), reinforcing the existent mechanism of Address
Space Layout Randomization (ASLR).

Despite operating on a Linux kernel, these
peculiar characteristics of the Android architecture

with respect to the security mechanisms, memory
management, and application runtime environment,
impose the use of specific techniques in the RAM
extraction and analysis procedures.

4 ANDROID RUNTIME (ART)

The runtime module is responsible for managing
Android applications designed to operate on the
Android framework layer. One of its responsibilities
is to provide memory management for application
execution and access to other system services such
as Virtual Machine (VM) byte-code compilation and
loading (in DEX files). This VM is similar to a Java
Virtual Machine (JVM) and runs as an application
that in ART keeps the name and uses the same byte-
code of Dalvik, despite of the replacement of the
corresponding legacy runtime module.

Figure 1: Example of a heap structure and mapping maintained by RosAlloc.

A Technique for Extraction and Analysis of Application Heap Objects within Android Runtime (ART)

149

Previously to running applications, the ART
initializes a set of classes during the first boot (or
after system modifications), generating a file that
contains an executable image with extension "art "
with all the loaded classes and objects that are part
of the Android framework. This file, called boot.art,
is mapped into memory during the Zygote boot
process, and basically contains natively compiled
objects who hold address references (pointers) with
absolute addresses within the image itself and
references to methods in the code contained in
framework files (inside the framework file there are
absolute pointers to the image as well). The overall
data structure related to the compilation and
execution in the ART environment is then described
in the image header, including a field that stores the
respective offset from the beginning of the file. This
value changes at every boot so that the image is not
loaded at the same address (in AOSP version 5.0, the
base address for the displacement of ASLR was set
to 0x70000000).

After the initial preparation, the byte-code of
each installed application is compiled to native code
before its first run. The product of this compilation,
comprising each application byte-code and libraries
that make up the Android framework, are files in
Executable and Linking Format - ELF, called OAT
(specifically boot.oat for the framework). These
files, compiled to boot the Android framework and
to install applications, contain three dynamic symbol
tables called oatdata, oatexec and oatlastword that
respectively contain the OAT header and DEX files,
the compiled native code for each method, and the
last 4 bytes of generated native code functioning as a
final section marker.

For memory management, the ART divides the
virtual memory as follows: a main space for
application’s Java objects (heap), a space for the
image objects and classes of the Android
framework, a space for Zygote’s shared objects, and
a space for large object (Large Objects Space –
LOS). The first three are arranged in a continuous
address space while there is a collection of
discontinuous addresses for the LOS. In addition to
these spaces, there are data structures related to
garbage collection whose types are related to the GC
and the Java object heap allocation and that can be
active depending on the GC plan that is working.
The GC plan is usually set by the manufacturer
according to the device's intrinsic characteristics and
according to the plan established by the memory
allocator. For devices such as common use
smartphones, without strong memory constraints,
there is generally a defined plan whose operating

mode works with the allocator called Runs-Of-Slots-
Allocator (RosAlloc) for mutable objects and with
Dlmalloc for immutable objects.

The RosAlloc came up with the ART runtime
environment, and is the main allocator responsible
of heap memory space for Java objects. It organizes
this memory space in rows of slots of the same size.
These runs are clustered as pages within brackets.
The first page of a bracket contains a header that
determines the number of pages this bracket contains
and the slot’s allocation bitmap. The number of slots
per page is set according to the size of the bracket,
the header length and the byte alignment (which
depends on the target device architecture). Figure 1
illustrates an example of a heap structure and
mapping schema. Each slot stores data for one object
and the first bytes store its parent class address. The
slot is classified according to the size of the object as
a means to reduce fragmentation and allow parallel
GC. Objects with big data (≥ 12 KiB) are spread
through LOS allocation areas, allowing the kernel to
conveniently manage address spaces to store this
data.

The allocator maintains an allocation map for the
brackets pages (each page with 4 KiB size) setting in
this map the type of each page in the allocation
space. This map is stored in a mapped file in RAM
(rosalloc page map). For the allocation of the heap
space, it sets the address to start near the lowest
virtual address of the process, from 0x12c00000
bytes (300 MiB).

Considering this memory layout information,
drawn from our analysis of the AOSP source code, it
is possible to establish a strategy for locating objects
by scanning the bracket's slots inside the heap
mapped file and decoding the data set for each
allocated object. This is also possible for a
recoverable object from a deallocated slot. While
these are subjects of the present paper, as
approached in the next section, the analysis of data
stored in structures related to large objects or
allocated by native libraries, which have specific
allocation mechanisms, are considered for future
work.

5 OBJECT ANALYSIS
TECHNIQUE

As exposed above, in an application’s runtime
environment there are mapped files in RAM
containing: information about system properties,
Android framework, Java object heap, mapping of

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

150

objects used by the memory allocator, as well as
class definitions and executables compiled from the
application's DEX files contained by OAT files.

From a whole RAM extraction, the technique
proposed in this paper, as illustrated in Figure 2, is
aimed at recovering Java objects for data analysis
from the heap space. This is performed by inspecting
the mapping maintained by the memory allocator,
based on the premise that from a volatile memory
extraction it is possible to recover data pages from
those files. For Java objects data, according to the
type of the page (guided by the mapping maintained
by the allocator file) and the respective page header
data, it is possible to recover the slots and, with the
appropriate description of the target object class,
decode the data.

Object data decoding can be performed directly
or from the traversal of the references throughout the
class hierarchy (similar to a recursive programming
process) using memory layout information obtained
by decompilation of the application byte-code or by
understanding the upper classes information. In
Figure 3, a generic sequential process for recovering
an arbitrary string field of the Object X is illustrated.
From Object X slot (bottom-left in figure), it is
possible to walk through the parent classes
references, this way decoding object data using the
layout of known Android framework classes.

The Volatility Framework (in version 2.4),

described in (Ligh et al., 2014), provides tools and
data structures mappings with support for the Linux
platform on the ARM 32-bit architecture, allowing
the retrieval of information, such as process table
and memory mapping, among others. In this paper,
the process of data analysis is supported by a set of
tools that were conjointly developed within the
Volatility Framework, based on Android AOSP
source code for ART version 5.0.1_r1
(https://android.googlesource.com/platform/art/+/an
droid-5.0.1_r1), and on ART related information
described in (Sabanal, 2014/2015).

These extensions built for the Volatility
framework allow retrieval of information on the
execution environment and the recovery of allocated
Java objects. For the recovery of the runtime data
structures, we have created mappings for
interpretation of data from ART files, OAT, DEX,
Java framework classes, heap pages structures and
system properties. Then, for the extraction and
analysis process, we have built tools for recovery of
the runtime properties, location of OAT files, data
decoding from DEX files, extraction of Java objects
from the heap, and for decoding object data from the
heap and from the Android framework image. The
architecture of the Volatility framework and the
design of these tools allow updating and adding new
mappings, which facilitate adaptation to other
architectures or changes in future versions of
Android.

Figure 2: Analysis technique for heap objects maintained by RosAlloc.

A Technique for Extraction and Analysis of Application Heap Objects within Android Runtime (ART)

151

Figure 3: Recovery example of an object field.

The list of references to heap objects used in data
extraction is constructed by inspecting and decoding
the slots of the heap pages described in the mapping
file maintained by the RosAlloc allocator. This list
contains data objects with the location of the object
(address, page, bracket, and slot), the parent class,
class identifiers in DEX, and raw or textual data (of
type String or char array).
This technique enables in-depth analysis of the
extracted data, overcoming the traditional techniques
of carving, text or other articles search, which lack
the understanding of the storage structures in
memory.

6 EXPERIMENTAL
EVALUATION

The experimental evaluation of the proposed
technique was done for an emulated device and for a
real one, both representative of a common ART
environment. A complete RAM memory dump from
each device was acquired using the technique
described in (Sylve et al., 2012), while these devices
were running with active applications, including a
chat application (WhatsApp v.2.12.510)

For acquiring memory dumps from both devices,
it was necessary to use a privileged user access

(root) and to perform the replacement of the kernel
code with a newly built compilation configured to
accept loading kernel modules without validation.

The privileged user is available by default in the
emulator, while for the real device it was obtained
using the rooting tool Kingo
(http://www.kingoapp.com).

The source code of the kernels was compiled
according to the guidelines in the AOSP site. The
workstation used for the process of cross-
compilation and analysis consists of the Santoku
Linux version 0.4, with the installation of the
Android NDK (Release 8e) and the Volatility
Framework (version 2.4), as described in their
project sites. The configuration was based on the
construction of the experimental setting procedure
used in (Høgset, 2015). For each memory
acquisition, the RAM memory data was transferred
by TCP directly to the analysis workstation.

6.1 Evaluation with an Emulated
Device

The emulated device is an Android Virtual Device
(AVD) configured with the parameters CPU / ABI:
ARM (armeabi-v7a), 768 MB RAM, Target:
Android 5.0.1 (API level 21), build number
“sdk_phone_armv7-eng 5.0.2 LSY64 1772600 test-

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

152

keys”, hw.device.name Nexus 5 and vm.heapSize
64 MB.

6.1.1 Environment Set-up

The target device used for memory acquisition is the
Android emulator, available in the development
tools package Android SDK Tools Revision 23.0.2.

The source code of the kernel version (3.4.67)
available for the emulator (goldfish) was obtained
from the AOSP site.

6.1.2 Evaluation

In analyzes of the memory extraction according to
the proposed technique, it is possible to successfully
recover common interesting forensic data from ART
objects, as for instance the user contacts maintained
by the com.android.contacts application.

For a deeper evaluation example, we describe
hereafter in detail how to discover and characterize
the objects from a running chat application
(com.whatsapp v. 2.12.510) involving messages
exchanged with another user in a real device.

Initially, the extension to the Linux Volatility
framework that allows retrieving the table of running
processes is used. Thus, it is possible to locate the
target process for the analysis which in this case is
identified by PID 1206. With the developed tool for
recovery of system properties, environmental data is
extracted, including the size of the heap for Java
objects, a value that subsequently is used as a
parameter in the recovery of target objects:

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f
memdumpWhatsAppChat.lime
art_extract_properties_data –p 1206

...
[dalvik.vm.heapsize]= [64m]
...

Then, it is possible to retrieve data about the
application execution environment, such as the
addresses related with the Android framework
mapping, using the tool built for this activity and the
target process handle as a parameter:

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f
memdumpWhatsAppChat.lime art_extract_image_data
–p 1206

com.whatsapp
ART image Header

image_begin:0x700c7000
oat_checksum:0xbd5a21c9L
oat_file_begin:0x70be8000
oat_data_begin:0x70be9000
…
image_roots:0x70bb8840
…
 kClassRoots:0x70bb8948
 0x1 LJava/lang/Class; 0x700c7220L
 0x2 LJava/lang/Object; 0x700f7240L
…
 0x5 LJava/lang/String; 0x700df8f0L
 0x6 LJava/lang/DexCache; 0x700c74f0L
…
 0x8 LJava/lang/reflect/ArtField;
0x700f7640L
…
… 0xc [LJava/lang/reflect/ArtField;
0x700f74a0L
 0x1d [C 0x700f6fd8L
…

The recovered information present in the image
header, including the memory offset for the location
of the mapping framework (0x700c7000), serves as
the basis for recovering addresses from various
classes, such as java.lang.String class. With these
data and the map maintained by the RosAlloc
allocator, the list of heap objects containing
references to object data and references to other
objects is constructed, also using a developed tool.
The address allocation map (0xb1d70000) is
recovered by searching the name of the respective
file in the mapping process.

With this gathered information, and by means of
another developed localization tool, it is possible to
recover OAT files used by the target process,
including the addresses of each location in the
addressing process:

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f
memdumpWhatsAppChat.lime art_find_oat –p 1206

Oat offset_
------------------------------------- ----------
webview@webview.apk@classes.dex 0xa06dc000L
com.whatsapp-1@base.apk@classes.dex 0xa5a74000L

With the OAT address, it is possible to recover
data that enables a static analysis of some
components, including class identifier indexes and
application's byte-code. After analyzing the OAT
decompiled code of the file located in 0xa5a74000L,
comes the selection of the identifier
(DEX_CLASSDEF_IDX = 0x1394) for the class of
objects (com.whatsapp.protocol.l) that indicates the
storage for the target application messages text data.

Searching the list of heap objects references,

A Technique for Extraction and Analysis of Application Heap Objects within Android Runtime (ART)

153

looking for references to the definition of the
requested class, it is possible to identify the parent
class java.lang.Class object (described in the
Android framework image at 0x700c7220L):

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f
memdumpWhatsAppChat.lime -p 1206 -b 0x700c7000
art_dump_rosalloc_heap_objects –e 0x12c00000 –m
0xb1d70000 –s 0x4000000

address page bracket slot obj class
------------- ---- ------- ---- ----------------
0x1384d2c0L 3149 13 2 *(FOUND)* 0x12c19020
0x1384e0c0L 3149 13 18 *(FOUND)* 0x12c19020
0x1384f240L 3149 13 38 *(FOUND)* 0x12c19020
0x13850820L 3149 13 63 *(FOUND)* 0x12c19020

Then, using a developed tool for object data
recovery, it is possible to examine the data for each
specific object of this class, i.e., data recovery is
made for the object located in 0x1384d2c0:

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f
memdumpWhatsAppChat.lime -p 1206 -b 0x700c7000
art_extract_object_data -o 0x1384d2c0

Object Address: 0x1384d2c0
Class Address: 0x12C19020
…
Loaded: 0x700c7220L
LJava/lang/Class;
classLoader 0x12c02b20L
componentType 0x0L
dexCache 0x12c01610L LJava/lang/DexCache;

directMethods 0x133ff980L
[LJava/lang/reflect/ArtMethod;

iFields 0x12c04900L
[LJava/lang/reflect/ArtField;
..
sFields 0x13407500L
[LJava/lang/reflect/ArtField;

dexClassDefIndex 0x1394L
dexTypeIndex 0x1810L
…

Among the recovered data, the address with
reference to the array of properties
java.lang.reflect.ArtField[] (at 0x12c04900L) is
found. With a new search to this address and for this
type of class, data from the conversation, including
the message text, is recovered. By tracking through
references and properties of the recovered objects of
this class other attributes are identified: text, date,
peer ID, and other data.

Figure 4 illustrates the links between some of the
addresses visited for retrieval of data objects related
to the target object. It is noteworthy that the
developed tools also support the reverse process
which, given a specific object property (e.g. message
text), reveals references of objects related to the
concerned chat.

6.2 Evaluation with a Real Device

The real device specification was a Samsung Galaxy
S4 (GT-I9500 non-LTE) with CPU Exynos 5410,
2 GB RAM, original Android 5.0.1 (API level 21),
build number LRX22C.I9500UBUHOL1, and
vm.heapSize 64 MB.

6.2.1 Environment Set-up

The cross-compiled kernel source code (version
3.4.5) was obtained from the manufacturer open
source release site (http://opensource.samsung.com).

6.2.2 Evaluation

Initially, the procedure to locate the target process
(com.whatsapp) is executed and retrieves data about
the application execution environment, such as the
addresses related to the Android framework
mapping.

Then, it is interesting to find that the Android
framework image header in this device is different
from that in the emulated device, although this real
system presents the same ART header version
identification (009).

In the real device, the header field for the image
address does not point to a valid absolute address in
the image segment. This difference suggests that this
manufacturer Android OS does not correspond to the
AOSP source code.

Consequently, the technique proposed in this
paper cannot be fully used in this case since the
unknown header demands reverse engineering the
ART image present in this real device. This
evaluation result shows a common limitation
characterizing procedures designed for extraction of
objects from ever evolving operating systems in
mobile devices. Moreover, the consequent
requirement regarding the adaptation of the
proposed technique to this new situation comes up
against an important obstacle, since there is no
available public ART runtime source code provided
by the concerned manufacturer.

7 CONCLUSIONS AND FUTURE
WORK

This paper presents a technique for object data
analysis in RAM acquisitions from devices
compliant to the ARM 32-bit architecture. The work
includes the study of concepts and structures of the
ART runtime environment, present in the Android

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

154

Figura 4: Example of references to objects related with a message text recovery.

operating system version 5.0 from AOSP.
Experimental evaluation of the proposed technique
is performed using software extensions developed
for the Volatility framework.

The proposed technique contribution comes from
its ability to extract and analyse Java objects in ART
revealing involved memory structures, thus
overcoming earlier Dalvik analysis (Hilgers et al.,
2014) and other traditional techniques based on
detecting patterns intrinsic to the artefact
components. An additional contribution concerns the
supporting tools developed as Volatility plugins that
can also be useful as reverse-engineering tools being
soon available for the forensic community.

It is noteworthy that the proposed technique and
the constructed support tools have the flexibility to
be adapted to other computer architectures
(including 64-bit), for devices with different
hardware limitations and to comply with ART
modifications already identified in the AOSP source
code of the latest versions of Android (6.0). It is
relevant that, though it is successful in analysing
heap objects from ART in an emulated device, the
technique identifies an implementation of ART in a

real device that differs from the AOSP version tested
in an emulated device.

As future work, the authors intend to carry out
the experimental validation of the technique with
data retrieved from other real devices, and to
associate the technique with similar ones for
detection and analysis of malwares.

ACKNOWLEDGEMENTS

Authors wish to thanks the following Brazilian
Research, Development and Innovation Agencies
CAPES (project FORTE 23038.007604/2014-69)
and FINEP (project RENASIC/PROTO
01.12.0555.00), as well DITEC/DPF/MJ (Contract
36/10 DPF-FUB) and IC/PCDF.

REFERENCES

Apostolopoulos, D., Marinakis, G., Ntantogian, C.,
Xenakis, C. (2013). Discovering authentication

A Technique for Extraction and Analysis of Application Heap Objects within Android Runtime (ART)

155

credentials in volatile memory of android mobile
devices. Collaborative, Trusted and Privacy-Aware
e/m-Services. Springer Berlin Heidelberg, p. 178-185.

Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky,
P, Weisgerber.S.(2016) ARTist: The Android Runtime
Instrumentation and Security Toolkit. Cornell
University Library. arXiv:1607.06619.

Brezinski, D., Killalea, T. (2002). Guidelines for evidence
collection and archiving. RFC 3227. IETF.

Carrier, B. D. (2003). Defining Digital Forensic
Examination and Analysis Tools Using Abstraction
Layers. IJDE, 1(4).

Drake,J.J., Lanier, Z., Mulliner, C., Fora, P. O., Ridley, S.
A., Wicherski, G.(2014). Android hacker's handbook.
John Wiley & Sons.

Google. Android Open Source Project - AOSP. Available:
http://source.android.com.

Hilgers, C., Macht,H., Müller, T., Spreitzenbarth,
N.(2014). Post-mortem memory analysis of cold-
booted android devices. In: IT Security Incident
Management & IT Forensics (IMF), Eighth
International Conference on. IEEE. p. 62-75.

Høgset, E. S. (2015). Investigating the security issues
surrounding usage of Ephemeral data within Android
environments. Master thesis. UiT The Arctic
University of Norway.

Ligh, M. H., Case, A., Levy, J., Walters, A.(2014). The art
of memory forensics: detecting malware and threats in
windows, linux, and mac memory. John Wiley & Sons.

Sabanal,P. (2014).State Of The ART. Exploring The New
Android KitKat Runtime. https://conference.hitb.org/
hitbsecconf2014ams/materials/D1T2-State-of-the-Art-
Exploring-the-New-Android-KitKat-Runtime.pdf.
Accessed October 20, 2016.

Sabanal,P. (2015). Hiding Behind ART.
https://www.blackhat.com/docs/asia-15/materials/asia-
15-Sabanal-Hiding-Behind-ART-wp.pdf. Accessed
October 20, 2016.

Sylve J., Case, A., Marziale, L., Richard, G. G. (2012).
Acquisition and analysis of volatile memory from
Android devices. Digital Investigation, v. 8, n. 3, p.
175-184.

Wächter, P., Gruhn, M. (2015). Practicability study of
android volatile memory forensic research. In:
Information Forensics and Security (WIFS), 2015
IEEE International Workshop on. IEEE. p. 1-6.

Yaghmour, K. Embedded Android: Porting, Extending,
and Customizing. O'Reilly Media, Inc.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

156

