
Dynamic Programming for One-sided Partially Observable
Pursuit-evasion Games

Karel Horák and Branislav Bošanský
Department of Computer Science, Faculty of Electrical Engineering,

Czech Technical University in Prague, Prague, Czech Republic

Keywords: Pursuit-evasion Games, One-sided Partial Observability, Infinite Horizon, Value Iteration, Concurrent Moves.

Abstract: Pursuit-evasion scenarios appear widely in robotics, security domains, and many other real-world situations.
We focus on two-player pursuit-evasion games with concurrent moves, infinite horizon, and discounted re-
wards. We assume that the players have partial observability, however, the evader has an advantage of know-
ing the current position of pursuer’s units. This setting is particularly interesting for security domains where
a robust strategy, maximizing the utility in the worst-case scenario, is often desirable. We provide, to the best
of our knowledge, the first algorithm that provably converges to the value of a partially observable pursuit-
evasion game with infinite horizon. Our algorithm extends well-known value iteration algorithm by exploiting
that (1) value functions of our game depend only on the position of the pursuer and the belief he has about the
position of the evader, and (2) that these functions are piecewise linear and convex in the belief space.

1 INTRODUCTION

Pursuit-evasion games (PEGs) appear in many sce-
narios in robotics and security domains (Vidal et al.,
2002; Chung et al., 2011). A team of centrally con-
trolled pursuing units (the pursuer) aims to locate
and capture the evader, while the evader aims for the
opposite. We study these games and assume their
discrete-time variant played on a finite graph. We as-
sume that units of both players move simultaneously,
the horizon of the game is infinite, rewards are dis-
counted over time with discount factor γ ∈ [0,1), and
the players have only a partial information about the
current state. Formally, such a game belongs to zero-
sum partially observable stochastic games (POSGs).

We aim for finding robust strategies of the pur-
suer against the worst-case evader. Specifically, we
assume that the evader knows the positions of pur-
suer’s units and her only uncertainty is the strategy of
the pursuer and the move he will perform next. Al-
though in reality such perfectly informed adversary is
rarely met, the pursuer usually does not know what
information is being revealed to the evader. Hence,
in order to derive robust strategies (i.e. maximizing
pursuer’s reward against any type of the evader), it is
natural to use such a perfectly informed adversary.

We design the first algorithm that provably con-
verges to the value of such one-sided partially observ-

able pursuit-evasion games. Moreover, as the value
converges, strategies of the players converge to the
optimal strategies as well. This contrasts with exist-
ing approaches in robotics and security, where heuris-
tic solutions without any optimality guarantees are
used (Vidal et al., 2002; Chung et al., 2011).

Our algorithm extends the well-known value it-
eration algorithms for concurrent-moves stochas-
tic games (Shapley, 1953) and partially observable
Markov decision processes (POMDPs) (Smallwood
and Sondik, 1973; Monahan, 1982; Pineau et al.,
2003; Smith and Simmons, 2012). We show that, sim-
ilarly to POMDPs, one-sided pursuit-evasion games
allow us to define compactly represented value func-
tions and propose a dynamic programming approach
to approximate them in an iterative manner. Specifi-
cally we show that the value functions (1) depend only
on the position of the pursuer’s units and his belief
about the possible position of the evader, but not on
the history of moves, (2) these functions are piecewise
linear and convex and thus we can represent them as
a set of α-vectors (Section 2.1), and (3) we can de-
sign a dynamic-programming operator with provable
convergence to optimal value functions (Section 3).

Our results for one-sided partially observable
pursuit-evasion games have similar implications as
those derived for POMDPs. Our paper is thus the first
step in a whole line of research. The importance of

HorÃąk K. and BoÅąanskÃ¡ B.
Dynamic Programming for One-sided Partially Observable Pursuit-evasion Games.
DOI: 10.5220/0006190605030510
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 503-510
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

503

the results is highlighted in the derivation of the full-
backup value iteration algorithm. Moreover, due to
the close similarity with POMDP models in the struc-
ture of the solution, efficient point-based versions of
the algorithm should be applicable as well.

Due to the space constraints, proofs of some re-
sults can be found in the full version of the paper.

1.1 Related Work

A similar model with one-sided partial observability
where one of the players has a perfect information
was presented in (McEneaney, 2004). This player is
assumed to know the action the opponent will play
at the current stage. Such a game is essentially turn-
based and only pure strategies are thus thought of.

Disregarding randomization has severe limita-
tions. In many cases, if the evader knows the action of
the pursuer before she has to decide herself, she can
use this additional information to avoid getting caught
(simply by avoiding the vertices the pursuer is about
to move to next forever). Randomized strategies thus
better correspond to real-world problems occurring in
real-time. Using them, however, presents additional
challenges that we solve in this paper.

Finite horizon POSGs can be also solved by con-
verting a game to the matrix form by enumerating all
pure strategies of the players. In (Hansen et al., 2004),
the pure strategies are constructed in an incremen-
tal way using dynamic programming while prunning
those that are dominated. Although this improves on
the naı̈ve enumeration approach, the number of strate-
gies is still exponential in the horizon in the worst case
and so is their size, which makes the algorithm im-
practical when focusing on long-term interactions.

2 FINITE-HORIZON GAME

We use the notion of finite-horizon POSGs, or
extensive-form games (EFGs), to reason about an
infinite-horizon pursuit-evasion game. An EFG is a
tuple G = (N ,H ,Z,T ,u,I). N is the set of players,
in our case N = {p,e} where p stands for the pur-
suer and e for the evader. Set H denotes a finite set of
histories of actions taken by all players from the be-
ginning of the game. Every history corresponds to a
node in the game tree; hence we use the terms history
and node interchangeably. Each of the histories may
be either (1) terminal (h ∈ Z ⊆ H) where the game
ends and player i gets utility ui(h), (2) controlled by
the nature that selects the successor node according to
a fixed probability distribution known to all players,
or (3) one of the players from N may be to act. We

consider a zero-sum scenario where up(h) =−ue(h).
To simplify the notation we use u(h) to denote pur-
suer’s reward. An ordered list of transitions of player
i from root to node h is referred to as a player i’s se-
quence. Allowed transitions in the game are modeled
using a transition function T that provides a set of
successor nodes for each non-terminal history. The
imperfect observation of players is modelled via in-
formation sets Ii that form a partition over histories h
where player i ∈ N takes action. We assume perfect
recall setting where the players never forget their past
actions, i.e. for every Ii ∈ Ii, all histories h ∈ Ii have
the same player i’s sequence. Each information set
Ii ∈ Ii corresponds to one decision point of player i. A
randomized behavioral strategy σi of player i assigns
a distribution over actions to each of the information
sets in Ii. σi can be represented in the form of a real-
ization plan r which assigns probability r(σi) of play-
ing sequence σi to each player i’s sequence σi. The
behavioral strategy at information set Ii ∈ Ii reached
using a sequence σi is then b(Ii,a) = r(σia)/r(σi). A
Nash equilibrium (NE) in an EFG is a pair of behav-
ioral strategies, in which each player best-responds
the strategy of his opponent. The expected utility of
playing NE strategies is termed value of the game.

We will now use this terminology to construct an
EFG for a finite-horizon version of a pursuit-evasion
game with N pursuing units played on a graph G =
〈V ,E〉 for t rounds (we term t as the horizon). Part
of the game tree is shown in Figure 1. At every round
τ ≤ t, pursuer’s units occupy vertices sτ

p, where sτ
p =

{sτ
p,1, . . . ,s

τ
p,N} is an N-element multiset of vertices

of G , and the evader is located in vertex sτ
e ∈ V . The

goal of the pursuer is to achieve a situation where the
evader is caught, i.e. sτ

e ∈ sτ
p. In every round, players

move their units to vertices adjacent to their current
positions (adj(v) denotes the set of vertices adjacent to
v). Position of the evader in round τ+1 is thus sτ+1

e ∈
adj(sτ

e). We overload the operator adj to apply it also
on multisets representing positions of pursuer’s units,
i.e. sτ+1

p ∈ adj(sτ
p), where adj(sτ

p) =×i=1...N adj(sτ
p,i).

A horizon-t game Gt
〈
s0

p,b
0
〉

is parametrized by
the initial position of the pursuer s0

p ∈ V N and a dis-
tribution over evader’s initial positions b0 ∈ ∆(V)
known to both players (we term b0 the initial belief).
The game starts with a chance move selecting the ini-
tial position of the evader s0

e (based on b0).
A history h ∈ H in a game with horizon t cor-

responds to a list of positions s0
es1

ps1
e · · ·sτ

psτ
e, where

τ ≤ t. The utility values are assigned to terminal his-
tories as follows: if the pursuer failed to capture the
evader in time, i.e. if τ = t and sτ

e 6∈ sτ
p, he gets utility

u(h) = 0; if he successfully captured the evader in the
time limit t, i.e. if τ≤ t and sτ

e ∈ sτ
p, he gets the reward

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

504

P P

E E...

s1
p

s
1
p

E E...

s1
p

E E...

s1
p

s
1
p

P P P P

s1
e

s
1
e

s1
e

s
1
e

1

N

��

s1
p
_s1

e
s1
p
_s1

es1
p
_s

1
e

s1
p
_s

1
e

T1 T2 T ¨
2

T ¨
1

s0
e

s
0
e

Ip[ç]

Ie[s
0
e
] Ie[s

0
e
]

Ip[s
1
p
]

Figure 1: EFG representation of a finite-horizon PEG.

u(h) = γ τ for capturing the evader in τ rounds (where
γ ∈ [0,1) is the discount factor). The transition func-
tion T complies with the graph (i.e., the adjacency
function adj), hence sτ

p ∈ adj(sτ−1
p) and sτ

e ∈ adj(sτ−1
e)

for every τ ≥ 1. For notational simplicity we denote
the sequence of pursuer’s actions s1

p · · ·sτ
p in h as h|p

and the sequence of evader’s actions s1
e · · ·sτ

e as h|e.
The position of the evader is unknown to the pur-

suer. Hence, in a perfect recall game, there is one pur-
suer’s information set Ip[σp] for each of his sequences
σp where Ip[σp] = {h′ | h′∈H \Z : h′|p=σp}.

Evader, on the other hand, knows the situation al-
most perfectly. She knows where the pursuer’s units
were located before the pursuer acted in the current
round (recall that the pursuer acts first). The only in-
formation missing to the evader is the action being
taken by the pursuer in the current round. Hence,
for every history h = s0

es1
ps1

e · · ·sτ
psτ

e where the pursuer
is to play, there is evader’s information set Ie[h] ={

hsτ+1
p |sτ+1

p ∈ adj(sτ
p)
}

containing all possible con-
tinuations of the pursuer.

2.1 Shape of the Value Function

The sizes of the extensive-form representation and as-
sociated behavioral strategies grow exponentially as
the horizon increases. This makes it quickly impos-
sible to use standard algorithms for game trees, espe-
cially since we aim to solve infinite horizon games.

We alleviate the problem of increasing complexity
of the strategy representation by representing strate-
gies only using their values. We show that the value
of a strategy is linear in the belief, and we can thus
represent it using just |V | real numbers. Moreover,
when the horizon is finite, we need to consider only
finitely many strategies regardless of the initial belief,
which makes value functions, formed by values of
best strategies for each belief, be piecewise linear and
convex and allows us to represent them compactly.

Definition 1. A value function vt
〈
s0

p
〉

: ∆(V)→ [0,1]

is a function assigning the value vt
〈
s0

p
〉
(b0) of the

game Gt
〈
s0

p,b
0
〉

to every initial belief b0. By vt we
mean a set of value functions vt

〈
s0

p
〉
, one for each ini-

tial position s0
p ∈ V N of the pursuer.

In the following text, we show that a value func-
tion vt

〈
s0

p
〉

is piecewise linear and convex (PWLC)
in the belief for every finite horizon t. For notational
simplicity, the term linear is used to refer to affine
functions as well. The proof is structured as follows:
(1) firstly we show that the expected utility of every
pursuer’s strategy is linear in the belief, next (2) it is
sufficient to consider a finite set of pursuer’s strate-
gies Σt

〈
s0

p
〉

when looking for the Nash equilibrium
one; and finally (3) we show that the PWLC nature of
the value function follows from (1) and (2).
Lemma 1. Let σp be a randomized behavioral strat-
egy of the pursuer in games Gt

〈
s0

p,b
0
〉
, where the pur-

suer starts in vertices s0
p, parametrized by the initial

belief b0. The expected utility of playing σp against a
best responding opponent is linear in b0.
Theorem 1. Let Gt

〈
s0

p,b
0
〉

be a horizon-t game
parametrized by the initial belief b0 where the pur-
suer starts in a set of vertices s0

p. There exists a finite
set of pursuer’s behavioral strategies Σt

〈
s0

p
〉

such that
for every initial belief b0, there is at least one strategy
σp ∈ Σt

〈
s0

p
〉

that is in Nash equilibrium of Gt
〈
s0

p,b
0
〉
.

Proof. We use the sequence-form linear program for
solving EFGs (Koller et al., 1996) to reason about the
set of strategies Σt

〈
s0

p
〉
. In this LP, values in every

information set of the evader, as well as the value
v(root) in the root node, are computed in a bottom-
up fashion. Every such value v(Ie) of an information
set Ie can be seen as a concave piecewise linear func-
tion in the space of pursuer’s realization plans (a com-
pact representation of his behavioral strategies). The
pursuer then seeks for a realization plan that maxi-
mizes v(root); the maximizer of which can be found
among extreme points of line segments of v(root), i.e.
vertices of a polytope bounded by this function (Van-
derbei, 2014). We show that the set of such extreme
points does not depend on the initial belief b0.

There is one information set Ie[s0
e] of the evader for

each of her initial positions s0
e . The utility of every

terminal node in the subgame beneath Ie[s0
e] is mul-

tiplied by chance probability b(s0
e), which allows us

to factor out this probability and obtain the following
constraint for the root node:

v(root)≤ ∑
s0
e∈s0

p

b0(s0
e)+ ∑

s0
e∈V \s0

p

b0(s0
e) · v̂(Ie[s0

e]) (1)

Value v(root) is a convex combination of concave
piecewise linear functions v̂(Ie[s0

e]). As the belief was

Dynamic Programming for One-sided Partially Observable Pursuit-evasion Games

505

factored out, these functions, as well as the finite set
of their extreme points P[s0

e], no longer depend on the
belief. This convex combination with arbitrary coef-
ficients b0 cannot have an extreme where none of the
functions v̂(Ie[s0

e]) has one. The set of extreme points
is therefore a subset of

⋃
s0
e

P[s0
e] — a finite set that

does not depend on the belief. Each of the extreme
points in

⋃
s0
e

P[s0
e] corresponds to one pursuer’s re-

alization plan, and thus one his behavioral strategy,
which allows us to construct the finite set Σt

〈
s0

p
〉
.

Theorem 2. Value function vt
〈
s0

p
〉

is piecewise linear
and convex in the belief space.

Proof. This result directly follows from Lemma 1 and
Theorem 1. There is a finite set of randomized strate-
gies Σt

〈
s0

p
〉

that has to be considered by the pursuer
and value of each such strategy is linear in the belief
space. Thus the value function vt

〈
s0

p
〉

is a pointwise
maximum taken over a finite set of linear functions,
which is a PWLC function in the belief space.

A PWLC function can be represented as a finite
set of α-vectors. Every α-vector α = (α1, . . . ,α|V |)
represents one of the affine functions by assigning an
expected reward αi to each pure belief. We will of-
ten work with the α-vector representation of a value
function, hence we overload the notation and consider
value functions to be sets of such α-vectors as well.

Lemma 1 and Theorem 1 imply that each linear
segment of the value function matches one pursuer’s
strategy, we thus use terms α-vector and pursuer’s
strategy interchangeably. This is similar to POMDPs
where each α-vector matches one conditional plan.

3 VALUE ITERATION

In the previous section, we related the concept of
the value functions to the EFG representation of the
game and discussed that these functions have desir-
able properties. We leverage their representation to
design a dynamic programming approach inspired by
value iteration algorithms for either POMDPs (Small-
wood and Sondik, 1973; Monahan, 1982) or perfect
information stochastic games (Shapley, 1953). A se-
quence of value functions {vt}∞

t=0 is being constructed
by the algorithm, starting with values of a horizon-0
game, where the pursuer wins only when he starts in
the same vertex as the evader.

We avoid using the exponentially-sized represen-
tation of the underlying EFG by computing value
function of a horizon-t game using the solution of the
game with horizon t−1. First, we state a well-defined
value update formula that expresses vt in terms of vt−1

(Theorem 3). We let the players choose their strate-
gies for the first round of the horizon-t game using the
maximin principle (we term these one-step strategies)
and we show that the pursuer can use these strate-
gies to update his belief. Pursuer’s one-step strategy
πp is a distribution over possible actions of his units,
πp ∈ ∆(adj(s0

p)), from which he samples his action.
The evader acts similarly, however she conditions her
decision on her true position s0

e (not just on the overall
belief available to the pursuer); her one-step strategy
is thus a mapping πe : V → ∆(V), such that πe(s0

e)
assigns zero probability to vertices not adjacent to s0

e .
The piecewise linearity and convexity of value

functions have implications on the computation of the
value functions. Firstly it allows finding optimal one-
step strategies by means of linear programming (Sec-
tion 3.1), furthermore, we need not evaluate the value
update formula in every point in the belief space to
construct new value functions. Instead, we can use an
incremental algorithm which inspects extreme points
of line segments of a temporary function to check
if it can terminate and value function has been con-
structed, or further linear segments have to be added.

Theorem 3. The value of Gt
〈
s0

p,b
〉

is computed from
value functions vt−1 of horizon-(t−1) games. It holds

vt〈s0
p
〉
(b) = ∑

se∈s0
p

b(se) + (2)

+ γ
[

∑
se∈V \s0

p

b(se)
]
·max

πp
min

πe
∑

s1
p∈V N

πp(s1
p) · vt−1〈s1

p
〉
(bπe)

where the transformed belief bπe depends solely
on the evader’s one-step strategy πe and the
parametrization of the game Gt

〈
s0

p,b
〉
:

bπe(s
′
e) =

1
∑se∈V \s0

p
b(se)

∑
se∈V \s0

p

b(se) ·πe(se,s′e) (3)

The computation of vt using Eq. (2) forms a dynamic
programming operator H, such that vt = Hvt−1.

Proof. The correctness of the value update formula
will be proved by computing the value of Gt

〈
s0

p,b
〉

in a bottom-up fashion. We start by considering that
one-step strategies of the players for the first round of
the game are fixed, while they play optimally after-
ward. This determines pursuer’s expected reward at
every node in the game tree, which we use to express
his expected utility in the root node (Lemma 2). As
the behavior in the first round of the game is fixed,
parts of the game tree are independent on each other
— we refer to these subgames as G[s1

p]. This allows us
to evaluate the expectation from Lemma 2 by solving
these games separately. It turns out that games G[s1

p]
are strategically equivalent to shorter-horizon games

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

506

Gt−1
〈
s1

p,bπe

〉
, the solution of which is represented by

value functions vt−1. The expectation can be thus ex-
pressed solely in terms of vt−1. Finally, we relax the
assumption of fixed strategies in the first round, which
yields the desired maximin formula (Equation (2)).

Let πp∈∆(adj(s0
p)) be a fixed pursuer’s one-step

strategy, and πe : V → ∆(V) be a fixed one-step strat-
egy of the evader. Assume that both players play ac-
cording to πp and πe in the first round of the game, i.e.
the pursuer follows πp in his information set Ip[/0] (i.e.
pursuer’s information set where he has not acted yet,
see Figure 1) and the evader plays according to πe(s0

e)
in her information set Ie[s0

e] (where she has received
the information that she is located in vertex s0

e). Once
the first round of the game is over, players continue
with their best strategies available. We denote such
optimal strategies where the players are restricted to
play πp and πe in the first round as σp and σe.

Definition 2. Let πp, πe be fixed one-step strategies
for the first round of Gt

〈
s0

p,b
〉

and σp, σe be optimal
strategies with restriction to play πp and πe in the first
round. The pursuer’s expected reward when (σp,σe)
are followed and node h in the game tree is reached is
denoted u(h) and termed expected reward in h.

We follow by expressing the pursuer’s expected
utility when strategies (σp,σe) are followed by propa-
gating expected rewards from subsequent nodes in the
game tree. We use histories of the form s0

es1
ps1

e where
the evader started in vertex s0

e (based on the move of
nature) and then in the first round the pursuer moved
his units to vertices s1

p and the evader moved to s1
e .

Lemma 2. The expected reward in the root node is:

u(/0) = ∑
s0
e∈s0

p

b(s0
e)+

[
∑

s0
e 6∈s0

p

b(s0
e)
]
·∑

s1
p

πp(s1
p)
(

γ ∑
s1
e∈s1

p

bπe(s
1
e)+

[
∑

s1
e 6∈s1

p

bπe(s
1
e)
]
· (4)

· ∑
s1
e 6∈s1

p

∑
s0
e 6∈s0

p

[
b(s0

e) ·πe(s0
e ,s

1
e)

∑
s̃1
e 6∈s1

p

∑
s̃0
e 6∈s0

p

b(s̃0
e) ·πe(s̃0

e , s̃1
e)
·u(s0

es1
ps1

e)

])

Lemma 2 expressed the value in the root node
based on the expected rewards in histories s0

es1
ps1

e
where the pursuer is to move. The pursuer knows only
s1

p, hence these histories are partitioned into his infor-
mation sets Ip[s1

p], one for each pursuer’s move s1
p in

the first round (see Figure 1). Importantly, for every
subgame below Ip[s1

p], there is no information set that
would involve nodes not present in this subgame —
neither pursuer nor evader forgets that s1

p was played.
The optimal behavior in these subgames hence de-
pends only on the belief in Ip[s1

p], which is fixed due

to the fixed behavior in the first round. We can thus
compute value of the subgame below Ip[s1

p] separately
by making chance simulate the belief in Ip[s1

p].
Let us construct a game G[s1

p] which consists of
the information set Ip[s1

p] and the subgame beneath it.
In this game, information set Ip[s1

p] is reached with
probability β = ∑s1

e 6∈s1
p

bπe(s
1
e), while with probability

1− β the pursuer gets utility γ without play — this
accounts for the reward the pursuer gets if he catches
the evader in the first round. The nature player sim-
ulates the belief b[s1

p] in the information set Ip[s1
p], so

that the probability of every history in this informa-
tion set, given this set was reached, is identical with
the original game. The value of the game G[s1

p] corre-
sponds to the following part of the Equation (4):

γ

Evader caught
in the first round︷ ︸︸ ︷
∑

s1
e∈s1

p

bπe(s
1
e) +

Evader not caught
in the first round︷ ︸︸ ︷[
∑

s1
e 6∈s1

p

bπe(s
1
e)
]
· (5)

· ∑
s1
e 6∈s1

p

∑
s0
e 6∈s0

p

[
b(s0

e) ·πe(s0
e ,s

1
e)

∑
s̃1
e 6∈s1

p

∑
s̃0
e 6∈s0

p

b(s̃0
e) ·πe(s̃0

e , s̃1
e)

︸ ︷︷ ︸
Belief b[s1

p] of history s0
e s1

ps1
e in Ip[s1

p]

·u(s0
es1

ps1
e)

]

In the case of G[s1
p], there are multiple histories for

every current position of the evader s1
e in the informa-

tion set Ip[s1
p] (resulting from different initial locations

of the evader s0
e). We show that we need not account

for different initial positions of the evader, and thus
all histories in Ip[s1

p] with the same current position
of the evader s1

e can be merged. The resulting game
contains a single history for each s1

e in Ip[s1
p], and

thus this game is equivalent to a shorter horizon game
Gt−1

〈
s1

p,bπe

〉
up to multiplication of the utilities by γ

to account for a round that has already passed. This
allows using the solution of Gt−1

〈
s1

p,bπe

〉
represented

by value functions vt−1 to express the value of G[s1
p].

Definition 3. Two deterministic game trees over
nodes H1,H2 are isomorphic if there exists a bijection
ξ : H1→H2 such that v ∈H1 is a successor of u ∈H1
if and only if ξ(v) is a successor of ξ(u), n ∈ H1 is a
pursuer’s node if and only if ξ(n) is a pursuer’s node,
it is a terminal node if and only if ξ(n) is a termi-
nal node and the utilities u(n) = u(ξ(n)). Moreover
the trees have the same informational structure: two
nodes u,v ∈H1 are in the same information set if and
only if ξ(u),ξ(v) are in the same information set.

We can observe that subtrees of nodes s0
es1

ps1
e and

s0
es1

ps1
e (where s0

e and s0
e stands for two different ini-

tial positions of the evader) are isomorphic as we can

Dynamic Programming for One-sided Partially Observable Pursuit-evasion Games

507

establish a bijection ξ(s0
es1

ps1
ehrest) = s0

es1
ps1

ehrest . The
utility of terminal histories does not depend on the ini-
tial position of the evader (only on the time the evader
was captured). Whenever pursuer’s node u is in in-
formation set Ip, node ξ(u) is in Ip as well (because
pursuer has no way to detect the evader’s initial posi-
tion). Moreover whenever evader cannot distinguish
between two histories s0

es1
ps1

e · · ·sq
p and s0

es1
ps1

e · · ·sq
p,

she cannot distinguish between histories s0
es1

ps1
e · · ·sq

p

and s0
es1

ps1
e · · ·sq

p either (because her uncertainty is re-
lated to the pursuer’s move at round q, which does not
depend on the initial position of the evader). Thus the
subtrees have also the same informational structure.

Lemma 3. Let I be the topmost information set of
G[s1

p] and let belief b[I] over nodes from I be known
and fixed. Let n1,n2 ∈ I be two nodes whose sub-
trees are isomorphic. Then a game G′ with the same
structure as G with any belief b′[I] in I, satisfying
b[n1]+ b[n2] = b′[n1]+ b′[n2] and b[n] = b′[n] for all
nodes other than n1 and n2, has the same value as G.

Thanks to the Lemma 3 and the isomorphism
of the subtrees beneath s0

es1
ps1

e and s0
es1

ps1
e , histories

s0
es1

ps1
e and s0

es1
ps1

e can be merged and associated be-
liefs added up. By repeating this process, we end up
with a single history for each current position of the
evader s1

e (let s0
es1

ps1
e be such history), whose belief is

b′[s1
p](s

0
es1

ps1
e) :=

∑
s0
e 6∈s0

p

b(s0
e) ·πe(s0

e ,s
1
e)

∑
s̃1
e 6∈s1

p

∑
s̃0
e 6∈s0

p

b(s̃0
e) ·πe(s̃0

e , s̃1
e)

(6)

=
bπe(s

1
e)

∑
s̃1
e 6∈s1

p

bπe(s1
e)

; b′[s1
p](s

1
e) for short

The updated belief b′[s1
p] in Equation (6) complies

with belief bπe (Equation (3)) updated with the infor-
mation that the evader is located in none of the ver-
tices in s1

p. The belief in Ip[s1
p] matches the belief in

topmost information set of Gt−1
〈
s1

p,bπe

〉
; and the re-

sulting game is the same as Gt−1
〈
s1

p,bπe

〉
up to multi-

plication by γ. The value of G[s1
p] (Equation (5)), from

which this game was derived, is thus γvt−1
〈
s1

p
〉
(bπe).

We substitute this value to Equation (4) to obtain

u(/0) = ∑
s0
e∈s0

p

b(s0
e)+

[
∑

s0
e 6∈s0

p

b(s0
e)
]
· (7)

·∑
s1

p

πp(s1
p) ·
(

γvt 〈s1
p
〉
(bπe)

)

By allowing the players to choose their optimal one-
step strategies πp and πe in Equation (7), we obtain
the desired maximin formula from Equation (2).

3.1 Computing One-Step Strategies

The evaluation of the Equation (2) involves computa-
tion of optimal strategies of the players. In this section
we show that if the value functions vt−1 are piecewise
linear and convex and represented by sets of α-vectors
(which holds due to Theorem 2), the strategies can be
found out by means of linear programming.

Due to limited space, we provide the linear pro-
gram for computing optimal one-step strategy in
Gt
〈
s0

p,b
〉

for the pursuer only. At the beginning of
each round, the pursuer realizes what vertices the
evader is not located in, and hence updates his be-
lief about the position of the evader. We thus restrict
ourselves to the case where b(se) = 0 for all se ∈ s0

p.
In the following linear program, the pursuer seeks

for a strategy maximizing his expected utility against
the best-responding opponent. He assumes strategies
of the form “move to s1

p first and then follow strategy
whose value is represented by α ∈ vt−1

〈
s1

p
〉
”. The

choice of α uniquely defines such strategy. The prob-
ability of playing each strategy α ∈ vt−1

〈
s1

p
〉

is rep-
resented by variable π̂p(s1

p,α). Constraint (9) corre-
sponds to the value of playing such randomized strat-
egy against the best-responding evader who starts in
vertex se (α(s′e) denotes the value of α evaluated at
pure belief corresponding to action s′e of the evader).
The evader starts in se with probability b(se), hence
the objective (8) calculates the expectation over indi-
vidual v(se). For the resulting one-step strategy of the
pursuer, it holds that π(s1

p) = ∑α∈vt−1〈s1
p〉 π̂(s

1
p,α).

max
v,π̂p

γ ∑
se∈V

b(se) · v(se) (8)

s.t. ∑
s1

p∈adj(s0
p) ; α∈vt−1〈s1

p〉
α(s′e) · π̂p(s1

p,α)≥ v(se) ∀{se,s′e} ∈ E (9)

∑
s1

p∈adj(s0
p) ; α∈vt−1〈s1

p〉
π̂p(s1

p,α) = 1 (10)

π̂p(s1
p,α)≥ 0 ∀s1

p ∈ adj(s0
p) ∀α ∈ vt−1 〈s1

p
〉

(11)

3.2 Computing Value Functions

In each iteration of our value iteration algorithm,
value functions vt are constructed from the solution
from the previous iteration — value functions vt−1.
By repeating this construction, a sequence of finite-
horizon value functions {vt}∞

t=0 approaching the val-
ues of the infinite-horizon game is being constructed.
The value functions vt to be constructed, as well as
vt−1, are PWLC (Theorem 2). We show that this al-
lows us to avoid evaluating the dynamic programming

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

508

operator H (Equation (2)) in every point in the belief
space and enables us to construct vt using only a finite
subset of beliefs; the extreme points of line segments
of vt . We proceed in two steps: (1) first, we compute a
function Qt

πp

〈
s0

p
〉

corresponding to the expected util-
ity the pursuer gets if he plays πp at the first round of
the longer horizon game Gt

〈
s0

p,b
〉
; (2) then we show

how to compute vt
〈
s0

p
〉

as a combination of multiple
Qt

πp

〈
s0

p
〉

for properly chosen one-step strategies πp.
We start with a formal definition of function Qt

πp

〈
s0

p
〉
.

Definition 4. Let πp be pursuer’s one-step strategy
for the first round of the game Gt

〈
s0

p,b
〉
. The value

of πp is a function Qt
πp

〈
s0

p
〉

assigning the expected
reward the pursuer gets in the game Gt

〈
s0

p,b
〉

against
the best-responding opponent, when he plays πp in
the first round and continues by playing according to
his optimal strategy in the rest of the game, i.e.

Qt
πp

〈
s0

p
〉
(b) := ∑

se∈s0
p

b(se)+ γ
[

∑
se∈V \s0

p

b(se)
]
· (12)

·min
πe

∑
s1

p∈V N

πp(s1
p) · vt−1〈s1

p
〉
(bπe)

According to the previous definition, once the first
round of the game is over, the pursuer continues with
his optimal strategy. The following lemma shows that
this optimal strategy for the rest of the game can be
characterized by α-vectors of vt−1.
Lemma 4. Let πp be pursuer’s fixed one-step strat-
egy for the first round of the game. For every belief b
there are strategies σp[s1

p], one for each s1
p ∈ adj(s0

p),
represented by α-vectors α[s1

p] ∈ vt−1
〈
s1

p
〉
, such that

it is optimal to follow σp[s1
p] when s1

p was played in
the first round of the game. The value of strategy σp
prescribing the pursuer to play according to πp in the
first round and continue by using respective σp[s1

p] is
linear and the corresponding α-vector satisfies

ασp(se) =

{
1 se ∈ sp

γ min
s′e∈adj(se)

∑
s1

p

πp(s1
p) ·α[s1

p](s
′
e) otherwise

(13)

Lemma 4 gives us a direct algorithm for comput-
ing Qt

πp . PWLC functions vt−1 correspond to a finite
number of horizon-t strategies, represented by a finite
number of α-vectors. There is only a finite number
of ways to choose strategies σp[s1

p] from Lemma 4,
which can be found by means of enumeration. The
maximization over linear functions representing value
of such strategies corresponds to the function Qt

πp
〈sp〉

which is thus piecewise linear and convex.
The definition of Qt

πp
〈sp〉 implies that we can

compute the value function vt+1〈sp〉 by allowing the

v̂t
〈
s0

p
〉
←
{

0|V |
}

, Π̂p← /0
while ∃b ∈ ∆(V) : vt

〈
s0

p
〉
(b)> v̂t

〈
s0

p
〉
(b) do

πp← optimal strategy of the pursuer at
belief b for the first round (see (8))

Π̂p← Π̂p∪{πp}
v̂t
〈
s0

p
〉
← v̂t

〈
s0

p
〉
⊕Qt

πp
〈sp〉

return v̂t〈sp〉
Algorithm 1: Incremental construction of vt〈sp

〉
.

pursuer to play arbitrary strategy πp, when

vt〈s0
p
〉
(b) = max

πp
Qt

πp

〈
s0

p
〉
(b) (14)

As a consequence of Theorem 1, it is sufficient
to consider a finite set Πp of strategies in the maxi-
mizer of Equation (14) and obtain vt

〈
s0

p
〉

as the point-
wise maximum from respective Qt

πp

〈
s0

p
〉

functions,
vt〈sp〉 =

⊕
πp∈Πp Qt

πp
〈sp〉. The set of such strategies

is however initially unknown. We propose the Algo-
rithm 1 that constructs both the set of strategies Π̂p

and the value function v̂t
〈
s0

p
〉

incrementally by iter-
atively verifying whether the current set Π̂p is suffi-
cient for obtaining the actual value function vt

〈
s0

p
〉
.

The algorithm constructs a set of strategies Π̂p and
a corresponding estimate of value function v̂t

〈
s0

p
〉
,

starting with empty Π̂p. In each iteration, it verifies
if strategies Π̂p used to form current v̂t+1

〈
s0

p
〉

are op-
timal in every belief b ∈ ∆(V). If a belief b where the
strategy can be improved is found, i.e. Qt

πp

〈
s0

p
〉
(b)>

v̂t
〈
s0

p
〉
(b) for some πp, it updates Π̂p and recomputes

v̂t〈sp〉. If no such belief b exists, all required strate-
gies were considered and v̂t

〈
s0

p
〉
= vt

〈
s0

p
〉
.

Whenever the value function v̂t
〈
s0

p
〉

is not yet op-
timal for all beliefs, i.e. there exists a belief b where
vt
〈
s0

p
〉
(b)> v̂t

〈
s0

p
〉
(b), there exists a belief b′ with the

same property that forms an extreme point of a line
segment on v̂t

〈
s0

p
〉
. This is characterized by Lemma 5.

Lemma 5. If there is a belief b where vt
〈
s0

p
〉
(b) >

v̂t
〈
s0

p
〉
(b), there must be a belief b′ that forms an ex-

treme point of a line segment on the surface of v̂t
〈
s0

p
〉

where vt
〈
s0

p
〉
(b′)> v̂t

〈
s0

p
〉
(b′).

Thanks to Lemma 5, we can consider only a fi-
nite set of beliefs that form extreme points of line seg-
ments on the value function v̂t

〈
s0

p
〉
. In every iteration,

a one-step strategy that is optimal at some belief point
(and thus must be present in Πp) is added to Π̂p. Due
to Theorem 1, the set Πp required to obtain the opti-
mal value function vt

〈
s0

p
〉

is finite. Hence after a finite
number of iterations, the Algorithm 1 terminates.

Dynamic Programming for One-sided Partially Observable Pursuit-evasion Games

509

3.3 Convergence of the Algorithm

We demonstrate the convergence of our value itera-
tion algorithm by showing that the dynamic program-
ming operator H (Equation 2) has a unique fixpoint
which is reached by its iterative application. We ob-
tain this by showing that H is a contraction mapping
under the following max-norm and applying the Ba-
nach’s fixed point theorem (Ciesielski et al., 2007).

‖v− v‖= max
s0

p∈V N
max

b∈∆(V)
|v
〈
s0

p
〉
(b)− v

〈
s0

p
〉
(b)| (15)

Lemma 6. The operator H is a contraction with con-
tractivity factor γ < 1 under max-norm.

Theorem 4. There is a unique set of value functions
v∗ satisfying v∗ = Hv∗ and the recursive application
of H converges to v∗. Series {vt}∞

i=0 thus converges to
value functions of an infinite horizon game.

Proof. The operator H is a contraction mapping de-
fined on a metric space of sets of bounded functions
defined on the belief space. By applying Banach’s
fixed point theorem (Ciesielski et al., 2007) we get
that H has a unique fixed point v∗ and the recursive
application of H converges to v∗.

Proposition 1. After t iterations of the value iteration
algorithm it holds that ‖vt − v∗‖ ≤ γ t .

4 CONCLUSIONS

We present the first algorithm for solving the class
of two-player discounted pursuit-evasion games with
infinite horizon and partial observability, where the
evader is assumed to be perfectly informed about the
current state of the game (i.e. position of pursuer’s
units). This class of games has a significant relevance
in security domains where a robust strategy that pro-
vides guarantees in the worst case is often desirable.

Our algorithm is a modification of the well-known
value iteration algorithm for solving Partially Ob-
servable Markov Decision Processes (POMDPs), or
stochastic games with concurrent moves. We show
that the strategies can be compactly represented us-
ing value functions that depend on the location of the
pursuing units and the belief about the position of the
evader, but not explicitly on the history of moves.
These value functions are piecewise linear and con-
vex and allow us to design a dynamic programming
operator for the value iteration algorithm.

Our work is the first step towards many practical
algorithms for solving discounted stochastic games
with one-sided partial observability. These can be
applied in many scenarios requiring robust strategies

and thus our work opens the whole new area of re-
search in algorithmic and computational game theory.
One natural continuation is an adaptation of point-
based approximation algorithms for POMDPs to im-
prove the scalability of the value iteration algorithm.

ACKNOWLEDGEMENTS

This research was supported by the Czech Science
Foundation (grant no. 15-23235S) and by the Grant
Agency of the Czech Technical University in Prague,
grant No. SGS16/235/OHK3/3T/13.

REFERENCES

Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search
and pursuit-evasion in mobile robotics. Autonomous
robots, 31(4):299–316.

Ciesielski, K. et al. (2007). On Stefan Banach and some of
his results. Banach Journal of Mathematical Analysis,
1(1):1–10.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S.
(2004). Dynamic programming for partially observ-
able stochastic games. In AAAI, volume 4, pages 709–
715.

Koller, D., Megiddo, N., and Von Stengel, B. (1996). Ef-
ficient computation of equilibria for extensive two-
person games. Games and Economic Behavior,
14(2):247–259.

McEneaney, W. M. (2004). Some classes of imperfect infor-
mation finite state-space stochastic games with finite-
dimensional solutions. Applied Mathematics and Op-
timization, 50(2):87–118.

Monahan, G. E. (1982). State of the arta survey of partially
observable Markov decision processes: theory, mod-
els, and algorithms. Management Science, 28(1):1–
16.

Pineau, J., Gordon, G., Thrun, S., et al. (2003). Point-based
value iteration: An anytime algorithm for POMDPs.
In IJCAI, volume 3, pages 1025–1032.

Shapley, L. S. (1953). Stochastic games. Proceedings of the
National Academy of Sciences, 39(10):1095–1100.

Smallwood, R. D. and Sondik, E. J. (1973). The optimal
control of partially observable Markov processes over
a finite horizon. Operations Research, 21(5):1071–
1088.

Smith, T. and Simmons, R. (2012). Point-based POMDP
algorithms: Improved analysis and implementation.
arXiv preprint arXiv:1207.1412.

Vanderbei, R. J. (2014). Linear programming. Springer.
Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., and Sas-

try, S. (2002). Probabilistic pursuit-evasion games:
theory, implementation, and experimental evaluation.
Robotics and Automation, IEEE Transactions on,
18(5):662–669.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

510

