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Abstract: In this paper, we consider a linear bilevel programming problem where both the leader and the follower

1

maximize their profits subject to budget constraints. Additionally, we impose a Hamiltonian cycle topology
constraint in the leader problem. In particular, models of this type can be motivated by telecommunication
companies when dealing with traffic network flows from one server to another one within a ring topology
framework. We transform the bilevel programming problem into an equivalent single level optimization prob-
lem that we further linearize in order to derive mixed integer linear programming (MILP) formulations. This

is achieved by replacing the follower problem with the equivalent Karush Kuhn Tucker conditions and with
a linearization approach to deal with the complementarity constraints. The topology constraint is handled by
the means of two compact formulations and an exponential one from the classic traveling salesman problem.
Thus, we compute optimal solutions and upper bounds with linear programs. One of the compact models
allows to solve instances with up to 250 nodes to optimality. Finally, we propose an iterative procedure that
allows to compute optimal solutions in remarkably less computational effort when compared to the compact
models.

INTRODUCTION get constraints. Additionally, we impose a Hamilto-
nian cycle topology constraint in the leader problem.

Bilevel programming is a two level hierarchical opti- In particular, models of this type can be motivated

mization framework where the upper level problemis by telecommunication companies when dealing with
referred to as the leader whilst the lower level problem traffic network flows from one server to another one
is referred to as the follower problem. In a bilevel pro- Within a ring topology framework. As an example,
gramming problem (BPP), we aim to find an optimal consider the problem of flow traffic management in
point such that the leader and the follower maximize @ backbone wireless token ring network where users
(or minimize) their respective objective functions sub- connect to any node and pass their messages trough
ject to linking constraints. Applications concerning the ring in order to reach another user which is also
BPPs arise in agriculture, economic systems, finance,connected to a node in the ring (Lee et al., 2001; Song
engineering, banking, transportation, network design, and Yang, 1997). In these types of networks, the traf-
management and planning to name a few. For a morefic flows can be significantly large which might re-
general description of BPP applications and algorith- quire more than one network operator to deal with the
mic approaches to solve these problems see for in-flow problem.
stance (Dempe, 2003; Floudas and Pardalos, 2001; We transform the LBPP into an equivalent sin-
Migdalas et al., 1997; Thirwani and Arora, 1998; Vi- gle level optimization problem that we further lin-
cente et al., 1994; Wang et al., 1994). earize in order to derive mixed integer linear pro-
In this paper, we consider a linear bilevel pro- gramming (MILP) formulations. This is achieved
gramming problem (LBPP) where both the leader and by replacing the follower problem with the equiva-
the follower maximize their profits subject to bud- lent Karush Kuhn Tucker (KKT) conditions and with
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the linearization approach proposed in (Audetetal., 2 LINEAR BILEVEL AND MILP

1997) to deal with the complementarity slackness MODELS

conditions. The topology constraint is handled by the

means of two compact polynomial formulations and |, this section, we present and explain the LBPP. In

an exponential one from the classic traveling sales- particular, we use an exponential number of sub-tour
man problem (TSP) (Gavish and Graves, 1978; Letch- gjimination constraints (SECs) to characterize the

ford et al., 2013; Miller et al., 1960). Thus, we pamilionian cycle condition in the leader problem.
compute optlmal solutions a_nd upper bound_s with the Subsequently, we use two additional compact mod-
MILP and linear programming (LP) relaxations, re- gjing approaches from the traveling salesman prob-
spectively. , , lem (Gavish and Graves, 1978; Letchford et al., 2013;
Our contribution in this paper is not theoretical, - jjjer et al., 1960) and obtain equivalent MILP mod-

but mainly focussed on computational numerical re- g5 LetG(V, E) denote a complete graph with set of
sults on a novel problem in the domain of bilevel pro- ,5qesv and set of directed ards. Our LBPP can be
graming. As far as we know, LBPPs including Hamil-  ¢5.mulated as follows

tonian cycle topology constraints have not been con-

sidered in the literature so far. We compare numeri- . s .

cally the exponential model with the two compact for- BPL: {T&é {ue G fi +i]e Dijgi } (1)
mulations for randomly generated instances. For this .
purpose, first we solve the exponential model by gen- st. > Aifij+ > Bijgj<cVvieV (2)
erating all cycle elimination constraints and then, by Ik JI<E

using an iterative algorithmic procedure which con- fij +0ij <Mx;j,vij € E 3)
sists of adding violated cycle elimination constraints Z Xij =1vieV (4)
within each iteration until no cycle is found in the cur- jidTeE

rent solution. Finally, we further propose a relaxed Xji=1VieV (5)
version of the iterative algorithm and compute tight jfeE

upper bounds as well. Our main numerical result is N

to show that solving the exponential model with the ije%(s)xu ey )
iterative procedure is by far more convenient than us- .

ing the compact formulations which are more theoret- xij €{0,1},fij > O.vij € E ()
ical based approaches. In fact, we solve to optimal-

ity instances with up to 250 nodes so far, in less than gearg max{ ZEHijgij + Y Rijfi } (8)
70 seconds in average compared to the higher CPU UL e

times required by the compact formulations. It has Z Qij fij + Z Rjgij <r,

been proved that BPPs are strongly NP-hard even for JiTEE JiTEE

the simplest case in which all the involved functions VieVv (9)
are affine. See for instance (Migdalas et al., 1997; gij >0,Vij €E (10)

Scholtes, 2004). The reader is referred to the books
(Dempe, 2002; Migdalas et al., 1997) foramore gen- I BP1,  the input symmetric ~matrices
eral understanding on bilevel programming. {C,D,AB,H,P,Q,R} € My v|(Ry) and the
The remaining of the paper is organized as fol- scalars{c,r} € R, respectively. Constraints (1)-(7)
lows. In section 2, first we present and explain the correspond to the leader problem whereas constraints
LBPP problem. Then, we discuss three equivalent (8)-(10) represent the follower problem. Without loss
MILP models while using the exponential and the Of generality, we assume that the étrepresents
two compact formulations. Subsequently, in sec- Servers to visit whereas the sétrepresents traffic
tion 3, we present the alternative iterative procedureslinks by which the network flow service should be
which allow to obtain optimal solutions and tight up- carried out from one server to another. Thus, the bi-
per bounds using the exponential model. Afterwards, nary decision variablgj = 1 if and only if the leader
in section 4 we compare all the proposed models andcompany decides to use the lirfk j) and x;; =0
the iterative procedures with the optimal solution of Otherwiseyij € E. Similarly, the decision variables
the problem. Finally, in section 5 we give the main fij.gij = O represent the amount of network flow to
conclusions of the paper and provide some insight for transport froni to j for the leader and follower prob-
future research. lems, respectively. The objective functions maximize
the profits for both the leader and the follower and
are given in (1) and (8), respectively. Whereas the
constraints (2) and (9) represent the costs structure
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associated to each one of them. Constraints (7) andor A; should be equal to zetd € V. This is handled
(10) are domain constraints for the decision variables. with the binary variable; Vi € V and with the large
The constraints (3)-(6) characterize the Hamiltonian positive valueL. Similarly, the constraints (16)-(17)
cycle condition imposed in the leader problem. In enforce the condition that either; or gij should be
particular, the constraint (3) implies that whenever equal to zero for alij € E. This is handled with the
the variableqj = 0, then the variableg; andg;; must variablesgjj € {0,1}Vij € E. Finally, (18)-(19) are
be equal to zerdij € E. For this purpose, we use a domain constraints for the decision variables.

large positive BigM value denoted . Constraints As it can be observed, the number of SECs in
(4)-(5) enforce the condition that each node should MIP; is exponential. To overcome this difficulty, we
be connected to two nodes in the circuit. Finally, further consider the following MILP model which
constraint (6) represents SEES C V. Notice that uses a well known characterization of the feasible
we do not include SECs fd8=V in order to allow space of the traveling salesman problem (Letchford
obtaining feasible solutions, i.e., Hamiltonian cycles. et al., 2013; Miller et al., 1960)

An equivalent MILP model can be straightfor-
wardly obtained by replacing the follower problem MIP, : max Cij fij + Dij Gij
with the equivalent KKT conditions and by using {f.axuApdvy (jfe ife
the linearization approach proposed in (Audet et al., s.t s Big: <cVieV
1997) to deal with the complementarity slackness LD Aifipt 3 Bigij=c¥ie

jiJeE jijeE
conditions (Audet et al., 1997; Dempe, 2003). This — i
leads to the following equivalent MILP model fij +aij < Mx;,vij €E
} Z Xj=1vieV

MIP; : max { G fij + Dij gij JIeE
ije

{f.axAu0v} ife Y xji=1viev
S ) i j:TeE

s.t.j:”ZEEAJ f.,+j:”Z€EB.Jg., <cVieV b1 (20)
fij +0ij < Mx;j,Vij €E 2<ui < |V,VieV,(i #1) (21)

Xj=1VvieV U —uj+1< (V)= 1)(1—xj),
jeE Vij €E, (i #1),(j #1) (22)
Y Xji=1Viev Uj € Zy,¥j €V (23)
LIRS xj € {0,1}, fij > 0,Vij € E
ije;s,)m <|8-1vScV (11) Hij — \iRj + Hij = 0,¥ij € E
xj € {0,1},fi; > 0,¥ij € E J_:”ZEEQij fij +j:”Z€ERijgij <rVieV
Hij —AiRij +1j =0,Vij € E (12) .
> Qifi+ > Rjgj<rvieVv (13) ' j:uzeEQ” f j:uzeER”gIJ fukbsbyey
INE= jiajekE )\i SViL,ViGV
" J':IJZEEQij L J':IJZEER”gij ukst Hj+6L<LVijcE
Viev (14) 0ij <6jL,vij €E
A <ViLVieV (15) Oij s Mij >0OvVije ELA > QVieV
W+ 8L <Lvij €E (16) vi € {0,1}Vi e V,6; € {0,1}Vij € E
gij < 8jL,Vij €E (17) where the constraints (22) ensure that, if the sales-
gij. Wj > O¥ij € E,A > OV €V (18) man travels from to j, then the nodesandj are ar-

) B ranged sequentially. These constraints together with
vi €{0,1}Vi € V,8; € {0,1}Vij € E (19)  (20)-(21) and (23) ensure that each node is in a unique
where the constraints (12) are due to the derivatives position. A third formulation can be obtained by us-
obtained with the Lagrangian function of the follower ing the classic single commodity flow formulation for
problem and with respect to the variabtgs vij € E. the TSP (Gavish and Graves, 1978; Letchford et al.,
The non-negative variabl@s, Vi € V andy;j, Vij € E 2013). For this purpose, we assume that the salesman
are dual variables for the constraints (9) and (10), re- carries|V| — 1 units of a commodity when he leaves
spectively. The constraints (13)-(15) enforce the con- node 1, and delivers 1 unit of this commodity to each
dition that either(r = Yjijee Qij fij — Yjijee Rijgij) node. We can define additional continuous variables
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wi.j > 0,Vij € E representing the amount of the com-
modity (if any) routed directly from nodieto nodej.
The new MILP formulation is

(2

s.t Z A fij + z Bijgij <cVieV
JiIJEE jiTEE
fij +0ij < Mxj,vij €E
Z Xj=1VvieV

MIP3 : max

i fii Di g
{£,9XWA,1L8,v} Gij fij + i Gij

ije

JiJeE

Z Xjj=1VieV

jiJTEE

Wii = wij =1,

jiJTEE i>1ijeE
Vie{2,... |V} (24)
0<wj <(V|-1)x;j,vij €E (25)
Xij,fij >0vij e E

Hij —AiRj +1j =0,Vij €E

> Qifi+ > Rjgj<rviev

IHIES jiJeE

r— % Qijfij— > Rjgj+viL<LVieV

jijeE jiTEE

Ai <viL,VieV

Wj +6ijL<L,Vij €E

gij <6ijL,Vij €E

Oij,lij > Ovij € E,Ai > 0VieV

vi € {0,1}Vi e V,6;j € {0,1}Vij € E

The constraints (24) ensure that one unit of the com-
modity is delivered to each node while the bounds in
(25) ensure that the commodity can flow only along
arcs in the solution. Hereafter, we denotelly, LP,
andLP; the LP relaxations oflIP1, MIP, andMIPs3,
respectively.

In the next section, we present an alternative iter-
ative algorithmic procedure that allows to obtain op-
timal solutions and tight upper bounds fdtP;.

3 ITERATIVE PROCEDURE FOR

GENERATING SECS

search procedure (Cormen et al., 2009). In this pa-
per, we adapt the procedure 4.1 from (Adasme et al.,
2015) to find cycles in directed graphs with at least 2
and up tdV|—1 nodes. In particular, if the cardinality
of a subset of nodes found with Algorithm 4.1 induc-
ing a cycle equal$V/|, we do not generate the SEC,
otherwise Hamiltonian cycles would be infeasible for
the problem.

Algorithm 3.1: Iterative procedure to compute upper
bounds foMIP;.

Data: A problem instance d1P;.

Result: An upper bound with solution
(f,9,%r,A, 14, 6,v) for MIP; with objective
function valuez,.

Step O: Setk=1;

Let MIPy, be the problem obtained fromIP; by

removing the constraints (11) at iteratilon

Solve the MILP relaxation of problemlP,, and let

(5, g%, X%, AK 1K, 8%, vK) be its optimal solution of
valuez, at iterationk;

Letzg = inf;

Step 1: while |z_1— %/ >¢€do

Construct the grap = (V, E) with the rounded
solution( ¥, g, %, AK, i, 8%, ) obtained
frOm (fk7 gk7 XI|(Q7 )\ka Uk7 ek7vk);

C = searchCycleg5,V);

foreach cyclee C do

Add the corresponding constraint (11) to

L MIPy, ;

Setk=k+1;

Solve the MILP relaxation of problem | Py,

and let( X, g, x&, AK L, 8K vK) be its optimal
solution of valuez at iterationk;

return the solution( ¥, g¥, xi, A¥, 1, 8%, VK, z,);

Algorithm 4.1 is used iteratively by Algorithm
4.2 in (Adasme et al., 2015) that we adapt to solve
MIP;. The procedures in Algorithms 4.1 and 4.2 can
be straightforwardly explained in more detail as fol-
lows. First, we remove constraints (11) frdvi Py
and solve the resulting integer optimization problem.
Consider the underlying optimal solution gragh=
(V,E) whereV is the set of nodes anfl is the set
of arcs such thak C E. If G contains a cycle with
two or up to|V| — 1 nodes, then Algorithm 4.1 de-
tects it. A subset of nodes inducing a cycle defines a
new constraint (11) which cuts off this cycle from the

The procedure to generate SECs can be easily adaptedolution space. ProbleMIP; is re-optimized taking

using Algorithms 4.1 and 4.2 from (Adasme et al., into account the new added constraints. This itera-
2015) toMIP;. The main idea can be described as tive process goes on until the underlying current op-
follows. If we remove constraints (11) fromiP; and timal solution ofMIP; has no more cycles. Since the
solve the resulting integer linear programming prob- number of cycles is finite, so is the number of con-
lem, then the underlying optimal solution induces a straints (11) that can be addedNtiP;. Notice that
graphG that may contain a cycle with at least two the number of SECs of type (11) that can be added to
nodes. In this case, it can be detected by a depth-first

332



On a Traveling Salesman based Bilevel Programming Problem

MIPy is at mostO(2V!). Consequently, Algorithm 4.2 gaps we compute aF‘Pc;gt’p‘ % 100 for MIP; and
adapted to solvIPy, converges to the optimal solu- MIP,, respectively. The legend in Table 2 fishi P
tion of the problem in at mos#(2V) outer iterations. ;

. . is analogous to Table 1. We mention that each row in
The proof can be directly deduced from Theorem 2 in Tables 1, 2 and 3 corresponds to the same instance.
(Adasme et al., 2015).

The af toned d o b d From Tables 1, 2 and 3, we observe that the op-
€ aforementioned procedure can also De USeOy;y,| objective function values fav1P1, MIP, and
to compute upper bounds favilP;. This proce-

. . . . . ; MIP; are exactly the same. In particular, in Tables
durfe IIIS deplclzz'geolt in Algorithm 3.1 ?nq Its dfic,crflbed 1 and 2, we see that the CPU times are in average
as foflows. First, we remove constraints ( )_ rom significantly lower forMIP3; than forMIP,. In par-
MIP; and solve the resulting mixed integer linear

. laxation ofl1P+ obtained whil ticular, when the instance dimensions increase. Re-
programming refaxation 1 obtained whiie re- garding the number of branch and bound nodes, we
laxing the variables & xj; < 1 Vij € E at step 0.

! observe that CPLEX requires significantly less nodes
Next, we search cycles in the current rounded solu- ¢ solvingMIPs than forMIP,. ForMIPy, the num-
tion0<x; <1Vij €E. It G Cor!ta'”s a cycle with ber of nodes equals zero for the instances 1-7. Notice
two or more nodes, then Algorithm 4.1 referred to

! = that CPLEX cannot find a feasible solution within 2
as Se.archCycIe(Q,V) in (Ao[asmg etal,, 2015) d.e' hours for the instance #18 usiij P,. This is some-
tects it. A subset of nodes inducing a cycle defines

: . b how reflected by the number of branch and bound
a new constraint (11). The mixed integer program-

. laxati MIP: i timized taking int nodes which is significantly higher féd1P, than for
ming ret?r)l(a lon Odd é IS re-top ITIZ$h' a}t mgt.ln 0 MIP3. Concerning the LP bounds, the LP relaxations
accounttne new added constraints. This lterative pro- .o slightly tighter foMIP; than forMIP, andMIPs.

cess goes on until the difference between the Cu”e”tWhereas the bounds faP, and LP; remain nearly
optimal objective function valug, and the previous the same. On the oppos?te the E:PU timesLfBs

onezy is less than a small positive valee are in average larger than faP,, in particular for
the large size instances. We also see that CPLEX
can solve all the instances to optimality usikigP3
4 PRELIMINARY NUMERICAL that shows a significantly better performance than the
RESULTS rest of the MILP formulations. Finally, we mention
that we cannot solve, with the exponential model, in-
In this section, we present preliminary numerical re- Stances with more than 15 nodes due to the large num-

sults. A Matlab (R2012a) program is developed using ber of sub-tour elimination ponstraints involved.
CPLEX 12.6 to solveMIP;, MIP,, MIPs and their In Table 3, t_he legend is as follows. In column
corresponding LP relaxations. The numerical exper- 1, We show the instance number. In columns 2-5, we
iments have been carried out on an Intel(R) 64 bits ShoW the optimal solution obtained with the adapted
core (TM) with 2.6 GHz and 8 Gigabytes of RAM.  Version of Algonthm 4.2 (Adasme et al., 2015), its
CPLEX solver is used with default options. Each en- CPU time in seconds, the number of cycles found
try in matrices{C, D, H} and in matrice§A, B,R, Q} with th|s algorithm and the number of iterations, re-
is randomly and uniformly distributed in the inter- SPECtively. In columns 6-10, we present the upper

vals[0;10 and|0;5], respectively. The scalar values pounds obtained with Algorithm 3.1, its C.PU.time
c=r =100. The BigM valuesM andL are setto N seconds, the number of cycles found with it, the

M = 100 andL = 10, respectively. We set the pa- number of iterations, and the optimal solution found
rametere = 108 in Algorithm 3.1."In Table 1, first W|th_ MIP; while using aII_the cycle ellmlna_tlon con-
we solveMIP; with up to 15 nodes while generat- straints found with Algorithm 3.1, res_pectwely. For
ing all cycle elimination constraints. Subsequently, in the latter, we do not report the CPU time required by
Table 3, we solvéVIP; with the iterative procedures CPLEX. However, we mention that for the largest size
presented in section 3. We limit CPLEX to 2 hours Instances (e.g. 21-22), these CPU times took less than
of CPU time in order to solve the linear models. The 20 seconds. The rest of the instances were solved in
legend in Table 1 is as follows. Column 1 shows the €SS than 2 seconds. Finally, in coIRumns 11-12, we
instance number. Column 2 presents the number of provide gaps that we compute y(?ptb%ﬁpt”} x 100
nodes. Columns 3-7 and 8-12 present the optimal so- oo -0 ,
; nd | 224 OPk |, 100, respectively.
lution of MIP; andMIP,, the number of branch and { Opit } , Tesp y
bound nodes used by CPLEX, the CPU time in sec-  From Table 3, we observe that Algorithm 4.2 can
onds to solve the MILPs and their corresponding LP find the optimal solutions for all the instances. In par-
relaxations together with their CPU time in seconds, ticular, we observe that the large size instances #15-22
respectively. Finally, in columns 13-14, we present are solved in significantly less CPU time compared to
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Table 1: Numerical results obtained withiP; andMIPs.

#| v MIPy MIP, Gaps
Opt B&Bn | Time (s) LP Time (s) Opt B&Bn | Time (s) LP Time (s) | GapL % | Gap %
1| 4 945.90 0 0.35 | 1547.52| 0.35 945.90 0 0.36 1547.52 0.41 63.60 63.60
2| 6 | 122395/ O 0.41 1969.08| 0.39 1223.95 0 0.41 1969.08 0.42 60.88 60.88
3| 8 | 157480 O 0.37 | 2990.03| 0.42 1574.80 0 0.37 2996.69 0.38 89.87 90.29
4| 10 | 1992.63| O 0.53 | 5252.53| 0.53 1992.63 29 0.34 5368.06 0.40 163.60 | 169.40
5| 12 | 2781.27 0 1.83 5472.70 1.28 2781.27 6 0.40 5745.17 0.39 96.77 106.57
6| 14 | 3795.17| O 7.13 | 6476.50| 5.45 3795.17 | 120 0.42 6505.47 0.39 70.65 7141
7| 15 | 4233.11| O 14.74 | 6596.09| 11.05 | 4233.11 0 0.39 6723.12 0.34 55.82 58.82
8| 20 - - - - - 5920.61 | 1886 1.39 10090.09| 0.39 - 70.42
9| 25 - - - - - 7979.07 30 0.53 13672.93| 0.38 - 71.36
10| 30 - - - - - 11272.16 8 0.50 16961.67| 0.41 - 50.47
11| 40 - - - - - 14325.01 0 0.62 2554521 | 0.52 - 78.33
12| 50 - - - - - 17772.48 0 0.80 30645.26 | 0.55 - 72.43
13| 60 - - - - - 23021.58| 528 2.63 39462.28 0.86 - 71.41
14| 70 - - - - - 28178.71 54 2.17 47919.83 1.19 - 70.06
15| 80 - - - - - 32776.32| 335 3.87 55799.72 | 1.55 - 70.24
16 | 90 - - - - - 35705.34| 918 26.15 | 62552.35| 1.90 - 75.19
17 | 100 - - - - - 42688.50| 44278 | 452.83 | 73934.28| 2.39 - 73.19
18| 120 - - - - - * 379412 7200 86563.41| 5.50 - *
19 | 150 - - - - - - - - 113013.27| 21.22 - -
20| 180 - - - - - - - - 139047.61| 59.52
21| 200 - - - - - - - - 156705.84| 73.85
22 | 250 - - - - - - 201738.80| 268.30

-: Instance not solved.
*: No solution found with CPLEX in 2 hours.

Table 2: Numerical results obtained with P3.
MIP; Gaps

# Opt B&Bn | Time (s) LP Time (s) | Gaps %
1 945.90 0 0.40 1547.52 0.37 63.60
2| 1223.95 0 0.40 1969.08 0.37 60.88
3| 1574.80 0 0.37 2996.69 0.39 90.29
4| 1992.63 0 0.42 5361.12 0.37 169.05
5| 2781.27 9 0.49 5745.17 0.39 106.57
6| 3795.17 8 0.49 6485.70 0.42 70.89
7| 4233.11 0 0.40 6723.12 0.36 58.82
8| 5920.61 10 0.94 10047.35| 0.43 69.70
9| 7979.07 0 0.54 13618.52| 0.41 70.68
10| 11272.16 0 0.75 16961.67 | 0.45 50.47
11| 14325.01 0 0.79 25538.77 | 0.68 78.28
12| 17772.48 0 1.17 30645.26 | 0.64 72.43
13| 23021.58| 675 10.46 | 39453.01| 1.05 71.37
14 | 28178.72 8 511 47881.09 1.83 69.92

15| 32776.31| 248 17.79 | 55799.72 2.93 70.24
16 | 35705.36| 17 15.86 | 62552.35 2.53 75.19
17| 42688.51| 621 46.65 | 73934.28| 3.75 73.19
18 | 50786.93| 526 133.94 | 86493.02| 17.00 70.31
19| 66770.38| 163 123.39 | 113003.02| 58.75 69.24
20 | 86307.85| 4168 | 2459.89| 139046.61| 211.01 | 61.11
21| 93444.25| 5678 | 6878.94| 156675.69| 230.30 | 67.67
22| 122719.37| 549 | 2017.85| 201734.01] 901.54 | 64.39

MIPs. Moreover, the number of cycles and iterations see that Algorithm 3.1 can find tighter bounds when
are less or equal than 140 and 11, respectively for all compared to the models$?, andLP;. Regarding the
the instances. Notice that the total number of cycles number of cycles required by Algorithm 3.1, we ob-
for most of the instances is huge. However, the num- serve that this number is significantly higher com-
ber of cycles required by Algorithm 4.2 to find the pared to Algorithm 4.2. On the opposite, we see that
optimal solution is significantly small. In general, we Algorithm 3.1 requires in average less iterations. Fi-
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Table 3: Numerical results obtained with the iterative alfpic procedures.

4 Algorithms 4.1 and 4.2 adapted from (Adasme et al., 2015) Algorithm 3.1 Gaps
Opt Time (s) [ #Cycles Hiter Optf Time (s) [ #Cycles| #lter Opt; Gapr % | Gap: %
1| 945.90 0.51 0 1 1443.61 1.09 10 2 945.90 52.62 0
2| 1223.95 0.80 3 2 1899.73 0.80 8 1 1239.34 | 55.21 1.26
3| 1574.80 0.76 4 2 2896.01 0.76 12 1 1574.80 | 83.90 0
4| 1992.63 0.80 5 2 4269.07 1.08 32 2 2036.42 | 114.24 2.20
5| 2781.27 1.26 8 3 4447.16 1.20 41 2 2787.50 | 59.90 0.22
6| 3795.17 1.66 9 4 5800.14 1.26 41 2 3995.48 | 52.83 5.28
7| 4233.11 1.25 8 3 5963.58 1.22 45 2 4328.84 | 40.88 2.26
8| 5920.61 2.40 18 6 8952.44 1.23 58 2 6233.36 | 51.21 5.28
9 7979.07 0.89 12 2 13244.42 1.36 75 2 8441.78 65.99 5.80
10 | 11272.16 1.34 14 3 15160.96 1.51 97 2 1134297 | 34.50 0.63
11| 14325.01| 1.63 18 3 23008.49 | 3.05 207 3 14661.88 | 60.62 2.35
12| 17772.48 2.89 27 4 27771.65 2.95 168 2 18442.49| 56.26 3.77
13| 23021.58| 12.30 45 11 36082.31| 6.66 312 3 23959.25| 56.73 4.07
14| 28178.71| 7.87 42 6 44084.55| 6.28 235 2 29376.14 | 56.45 4.25
15| 32776.31| 16.27 55 9 51378.66 | 20.60 536 4 33437.84| 56.76 2.02
16 | 35705.34| 5.95 50 3 56294.82 | 10.57 323 2 36700.49 | 57.66 2.79
17 | 42688.50| 27.17 71 10 65957.50 | 24.66 537 3 44117.89 | 54.51 3.35
18 | 50786.93| 38.96 83 9 77440.29 | 25.01 413 2 52118.73| 52.48 2.62
19 | 66770.38| 71.56 92 9 101128.60, 199.45 | 1090 4 68005.67 | 51.46 1.85
20 | 86307.85| 153.10 125 11 127706.66| 410.10 | 1007 3 87895.55| 47.97 1.84
21| 93444.25| 122.41 127 7 141811.63| 325.40 706 2 96921.84 | 51.76 3.72
22| 122719.37| 122.20 140 4 186448.77| 948.96 919 2 | 126746.65 51.93 3.28

nally, we observe that solvinigllP; with all the cy-
cle elimination constraints found with Algorithm 3.1
allows to compute tight bounds when compared to
the optimal solution of the problem. More precisely,

trends observed in Table 3. We observe that in av-
erage obtaining optimal solutions with the iterative
Algorithm 4.2 is more effective than computing up-
per bounds with Algorithm 3.1 in terms of CPU time.

these bounds are computed with gaps which are lowerThis is an interesting result as it confirms that Algo-

than 6% for most of the instances.
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Figure 1: Average optimal solutions, upper bounds and

CPU times obtained with the iterative Algorithms 4.2 and
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In order to give more insight with respect to the
performance of Algorithms 4.2 and 3.1 when solving

rithm 4.2 allows to obtain optimal solutions for the
large scale instances more easily. More precisely, in
less CPU time than the instances presented in Table
3. Finally, we observe that the upper bounds obtained
with Algorithm 3.1 are very tight when solving Py

with all SECs, although they are obtained at a higher
CPU time. In Figure 1, we do not plot averages for the
number of cycles and iterations as they remain nearly
the same as in Table 3 for all the instances. Similarly,
we do not plot the average CPU times @pt| since
they are slightly larger than those obtained(’rmq?.

5 CONCLUSIONS

In this paper, we consider a linear bilevel program-
ming problem where both the leader and the follower
maximize their profits subject to budget constraints.
Additionally, we impose a Hamiltonian cycle topol-

ogy constraint in the leader problem. In particular,
models of this type can be motivated by telecom-
munication companies when dealing with traffic net-
work flows from one server to another one within a

MIP;. In Figure 1, we present some average numer- fing topology framework. We transform the bilevel
ical results for 20 instances randomly generated with Programming problem into an equivalent single level

dimensions ofV| = {20,50,90,180,250} nodes, re-
spectively. From Figure 1, we mainly confirm the

optimization problem and derive mixed integer lin-
ear programming (MILP) formulations. The topology
constraint is handled by the means of two compact
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formulations and an exponential one from the clas- Lee, D., Attias, R., Puri, A., Sengupta, R., Tripakis, Sd an
sic traveling salesman problem. Our preliminary nu- Varaiya, P. (2001). A wireless token ring protocol
merical results show that one of the compact models ~ for intelligent transportation systems. IBREE Pro-
allows to solve instances with up to 250 nodes to op- ﬁgg'”ffso;: Intelligent Transportation Systemeges
timality with CPLEX in less than two hours. Finally, - '

. - Letchford, A. N., Nasiri, S. D., and Theis, D. O. (2013).
we propose iterative procedures that allow to compute Compact formulations of the steiner traveliné sale)s-

optimal solutions in significantly less computational man problem and related problen&iropean Journal
effort when compared to the compact models. Our of Operational Researcl228:83-92.

main contribution in this paper is not theoretical, but \igdalas, A., Pardalos, P., and Varbrand, P. (199lti-
mainly focussed on computational numerical results level optimization: Algorithms and Applicationghe
on a novel problem in the domain of bilevel program- Netherlands: Kluwer Academic Publishers.

ing. Our numerical results clearly show that solving Miller, C. E., Tucker, A. W,, and Zemlin, R. A. (1960). In-
the exponential model with the iterative procedure is teger programming formulation of traveling salesman
by far more convenient than using the compact formu- problems.J. Assoc. Comput. Maclhz:326-329.

lations which are more theoretical based approachesScholtes, S. (2004). Nonconvex structures in nonlinear pro
In fact, we solve to optimality instances with up to gramming.Operations Researc2:368-383. _
253 odes 5o, o8 a0 sacons naveragd<d, 1 Y, ©, 1587, Sackone s s
ggmggz’?otr%gl‘:ﬂgfsher CPU times required by the  picinited Systems:1288-1298.

Thirwani, D. and Arora, S. (1998). An algorithm for
As part of future research, we plan to develop fur- quadratic bilevel programming problem.Interna-

ther tests in order to confirm the behaviour of the tional Journal of Management and Systeiv:89—98.
proposed models and algorithms. Finally, we will vjcente, L., Savard, G., and Judice, J. (1994). Descent
propose new stochastic models and algorithmic ap- approaches for quadratic bilevel programmidgur-
proaches for this type of bilevel programming prob- nal of Optimization Theory and Applicatiorl:379—
lems. 399.

Wang, S., Wang, Q., and Rodriguez, R. (1994). Optimal-
ity conditions and an algorithm for linear-quadratic

bilevel programsOptimization 31:127-139.
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