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Abstract: Large installation of distributed generations (DGs) of renewable energy sources (RESs) on distribution net-
work has been one of the challenging tasks in the last decade. According to the installation strategy of Japan,
long-term visions for high penetration of RESs have been announced. However, specific installation plans have
not been discussed and determined. In this paper, for supporting the decision-making of the investors, a new
scenario-based two-stage stochastic programming problem for long-term allocation of DGs is proposed. This
problem minimizes the total system cost under the power system constraints in consideration of incentives to
promote DG installation. At the first stage, before realizations (scenarios) of the random variables are known,
DGs’ investment variables are determined. At the second stage, after scenarios become known, operation and
maintenance variables that depend on scenarios are solved. Furthermore, a new scenario generation procedure
with clustering algorithm is developed. This method generates many scenarios by using historical data. The
uncertainties of demand, wind power, and photovoltaic (PV) are represented as scenarios, which are used in
the stochastic problem. The proposed model is tested on a 34 bus radial distribution network. The results
provide the optimal long-term investment of DGs and substantiate the effectiveness of DGs.

1 INTRODUCTION

1.1 Background

Large penetration of RESs-based DGs in distribution
network implies that distribution companies (DIS-
COs) need to deal with the intermittent nature of
RES such as wind speed and solar radiation in order
to maintain the demand-and-supply balance contin-
uously, and accommodate expected demand growth
over the planning horizon (Eftekharnejad et al.,
2013). DGs refer to small-scale energy generations
and are most generally used to guarantee that suf-
ficient energy is available to meet peak demand.
Distributed generation planning (DGP), which de-
termines the optimal siting, sizing, and timing, is
modeled to tackle above problem. The objective of
DGP is to ensure that the reliable power supply to
the consumers is achieved at a lowest possible cost.
DGP plays an important role as a strategic-level plan-
ning in modern power system planning. Commonly
used approaches to solve the DGP are: sensitivity
analysis-based approaches, mixed-integer linear pro-

gramming, and nonlinear programming. However,
the above methods can not fully handle the uncer-
tainties. Consequently, stochastic programming and
metaheuristic-based approaches have been used these
days, to consider the uncertainties at the energy plan-
ning (Payasi et al., 2011; Jordehi, 2016).

1.2 Related Work

Much attention has been paid to solving several
stochastic problems for one-type capacity planning.
For multi-resource type, the scenario-based tech-
niques also have been proposed to consider various
uncertainties (Huang and Ahmed, 2009; Baringo and
Conejo, 2013b; Munoz et al., 2016).

In power system planning on transmission and
distribution network, many approaches have been
developed considering some RESs, energy conver-
sion and transmission, and the uncertainties that are
caused by demand, pricing, and intermittent renew-
ables (Verderame et al., 2010). An energy planning in
individual large energy consumers was formulated as
a mixed integer linear programming model by using
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fuzzy parameters in (Mavrotas et al., 2003). (Atwa
et al., 2010) proposed a probabilistic mixed integer
nonlinear problem for distribution system planning.

Several studies related to stochastic optimization
of DGP have been proposed. In (Fu et al., 2015),
a chance-constrained stochastic programming model
was formulated for managing the uncertainty of PV,
which was solved by an algorithm combining the
multi-objective particle swarm optimization with sup-
port vector machines. (Abdelaziz et al., 2015) pro-
vided an energy loss minimization problem which de-
termines the optimal location of RES-based DGs and
the location and daily schedule of dispatch-able DG.
In the problem, the uncertainties between wind power,
PV and demand were considered using the diago-
nal band Copula and sequential Monte Carlo method.
In (Saif et al., 2013), the uncertainties of wind en-
ergy, PV, and energy storage system were produced as
chronological ones for a two-layer simulation-based
allocation problem. In (Pereira et al., 2016), the al-
location problem of VAR compensator and DG was
formulated as a mixed-integer nonlinear problem and
solved by using meta-heuristic algorithms.

A two-stage architecture is commonly used in
stochastic programming approaches. At the first
stage, DGs’ investment variables are determined be-
fore realizations of random variables are known, i.e.,
scenarios. At the second stage, after scenarios be-
come known, operation and maintenance variables
which depend on scenarios are solved.

(Carvalho et al., 1997) modeled a two-stage
scheme problem of distribution network expansion
planning under uncertainty in order to minimize an
expected cost along the horizon and solved by the pro-
posed hedging algorithm in an evolutionary approach
to deal with scenario representation efficiently. In
(Krukanont and Tezuka, 2007), a two-stage stochas-
tic programming for capacity expansion planning was
provided in a power system of Japan. This model
includes the uncertainties of the demand, carbon tax
rate, operational availability. In (Wang et al., 2014), a
two-stage robust optimization-based model consider-
ing uncertainties of DG outputs and demand was pro-
vided for the optimal allocation of DGs and micro-
turbine. (Montoya-Bueno et al., 2015) proposed a
stochastic two-stage multi period mixed-integer lin-
ear programming model of renewable DG allocation
problem considering the uncertainties affected by de-
mand and renewable energy production.

As an allocation problem of energy storage sys-
tem (ESS), (Nick et al., 2014) formulated the op-
timal allocation problem as a two-stage stochas-
tic mixed-integer second-order cone programming
(SOCP) model. In (Nick et al., 2015), SOCP prob-

lem of ESS allocation was solved by using alterna-
tive direction method of multipliers. In (Asensio
et al., 2016a; Asensio et al., 2016b), the allocation
problem of DGs and energy storage was formulated
as a stochastic programming model for maximizing
the net social benefit taking account of demand re-
sponse. Since the cost of ESS is very expensive and
ESS seems not to be efficient at this stage, ESS is ex-
cluded from consideration in this paper.

In solving the two-stage stochastic programming,
an effective methodology to create proper scenarios
must be needed to represent various uncertainties be-
cause it is very difficult to realistically obtain all of the
information about the uncertainty and computation-
ally incorporate it into the model. In case some proba-
bility distributions are analytically estimated and used
instead, the problem commonly becomes very com-
plexed, even if the problem is small. Hence, when
the partial information of the uncertainty is available,
the stochastic programing model normally needs to be
solved using scenarios. There exist many techniques
of scenario generation (Dupačová et al., 2000). The
uncertainty modeling such as demand and wind speed
were developed to create scenarios in (Baringo and
Conejo, 2011). The proposed method uses dura-
tion curves which is approximated by some demand
blocks. (Baringo and Conejo, 2013a) performed the
scenario reduction by using K-means clustering algo-
rithm to arrange the historical scenarios of demand
and wind into clusters according to the similarities.
(Sadeghi and Kalantar, 2014) used Monte Carlo sim-
ulation and probability generation load matrix for ob-
taining the uncertainty of fuel and electricity price,
DG outputs, and load. In (Mazidi et al., 2014), the
Latin hypercube sampling was used to prepare sce-
narios of RESs. In (Seljom and Tomasgard, 2015), an
iterative-random-sampling-based scenario generation
algorithm was developed. They evaluated whether
the number of scenarios is enough to obtain reliable
results. In (Nojavan and allah Aalami, 2015), the
normal distribution and the Weibull distribution were
used for generating the scenarios of electric price, de-
mand, and meteorological data. The created scenarios
were reduced by the fast forward selection based on
Kantorovich distance approach. In (Montoya-Bueno
et al., 2016), a probability density function-based sce-
nario generation method was proposed for the alloca-
tion problem of wind power and PV.

1.3 Contribution

Most of scenario generation have not considered
the correlation between the uncertainties (e.g., de-
mand and solar radiation) and usually the uncertainty
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Figure 1: Outline of scenario generation. This figure shows the procedure focused on a block in Step 2.

separations to the levels have been made manually
(Baringo and Conejo, 2011; Montoya-Bueno et al.,
2016). It is necessary, however, to create scenarios
automatically in consideration of the correlations for
appropriate scenarios based on data. In optimization
problem mentioned above, many researches of opti-
mal DG allocation problem that takes into account the
uncertainties have been performed. Most of the stud-
ies have considered only one-year’s allocation and
daily/annual system operation. Realistically, in order
to accomplish the optimal system operation in multi-
period, obtaining the long-term optimal siting, sizing,
and timing is required. Hence, this study provides the
two main contributions as follows.

• A new scenario generation method with K-means
is proposed to create scenario-levels automati-
cally by using similarity measure. This procedure
uses historical data and can be implemented read-
ily. If K-means algorithm is simply applied to
the available data, it is not possible to take into
account the correlation between demand and me-
teorological data or seasonal characteristics (e.g.,
summer and winter). Hence, in the proposed ap-
proach K-means clustering is utilized in stages by
focusing on demand and seasons. Many scenarios
of demand, wind speed, and solar radiation are
generated and appropriate probabilities of each
scenario are calculated (not equal-probability) by
use of divided time blocks.

• A new long-term allocation problem of RES-
based DGs is proposed. This model is formu-
lated as a two-stage stochastic programming prob-
lem with the objective of minimizing the total
system cost. In the proposed model, some de-
vices and constraints are integrated for improv-
ing distribution system (i.e., limitation of reverse
power flow, generation of DG considering lag-
ging/leading power factor, capacitor bank (CB)).
Furthermore, the carbon emission costs and in-
centives are considered from the point of view
of international trends and economics because the
problems of carbon emissions are actively dis-

cussed at the Conference of the Parties to the UN-
FCCC to achieve a clean environment and the
government generally, in order to reach high re-
newable penetration levels, subsidizes the DIS-
COs that invest RES to their distribution system.

1.4 Paper Organization

The reminder of this paper is organized as follows. In
Section 2, the details of the proposed scenario gen-
eration procedure is described. Section 3 provides
the stochastic programming model. The results of the
numerical simulations are presented and discussed in
Section 4. Finally, the paper is concluded providing
some insights and summaries in Section 5.

2 SCENARIO GENERATION

This Section describes the proposed scenario gener-
ation method that applies K-means to historical data
(i.e. load, wind speed, solar radiation) in stages. The
goal is to obtain the scenario levels of demand, elec-
tricity price, wind speed, and solar radiation for creat-
ing specific scenarios. The role of K-means is to clas-
sify a original dataset into a certain number of clus-
tersK. The centroid of each cluster is the mean value
of the data allocated to each cluster. The algorithm
is based on the iterative fitting process as following
steps:

1. Select the number of clustersK according to
the specific problem. Randomly placeK points,
which represent the initial cluster centroids, into
the space represented by the clustered dataset.

2. Assign each data to the closest centroid base on
the distances.

3. When all data have been assigned, recalculate the
new cluster centroids using data allocated to each
cluster.

4. Repeat Steps 2 and 3 iteratively until there are no
changes in any mean, i.e. the centroids no longer
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move. As a result, the clustered dataset is sepa-
rated into groups minimizing an objective func-
tion, in this paper a quadratic distance is used.

Historical data need to be available for scenario cre-
ation, i.e. hourly demand, wind speed, solar radiation,
and electricity price data for the 8760 hours of the
year. Figure 1 shows the overview of the proposed
scenario generation. The steps are described below:

Step 1) Normalize data into the [0.0,1.0] interval by
dividing by the maximum value of each feature
and simultaneously separate into two seasons :
summer (April-September) and winter (October-
March). Each seasonal group consists of 4380
hours block.

Step 2) Apply K-means (the number of clustersK =
4) to only the demand in each seasonal groups cre-
ated in Step 1 and allocate each data into four
groups. Figure 2 shows the clusters of the de-
mand. Moreover, wind speed, solar radiation and
price indexed to each demand data are also allo-
cated to the same clusters of the demand. Each
divided group is defined as atime block b, which
is related to the representatives of demand clusters
(e.g., peak-load of summer, middle-load of sum-
mer, low-load of winter). Total of the number of
hours in time blockb is represented asNhours

b .

Step 3) Apply K-means (K = 3) again into the de-
mand, wind speed, and solar radiation of the data
group created in Step 2 respectively and 9 data
groups are created per one block. Step 3-5 in Fig.
1 focus on the flow of the one of the data blocks
in Step 2.

Step 4) The mean values of each data block in Step
3 are used as a block representative to create the
factors of demand, wind speed, and solar radia-
tion. Note that the price levels are determined
by the mean values of the price within each de-
mand block. Renewable production models in
(Eduardo, 1994) and (Atwa et al., 2010) are used
in this paper so that renewable observation data
are transformed into power output (i.e., wind gen-
eration factor and PV generation factor)

Step 5) Considering the combination of each factor
made in Step 4, 27 scenarios are obtained for
each time block. Therefore, 216 scenarios are
obtained as the total number of scenarios. The
probabilities of the factors within each time block,
Prload

b,s ,PrWD
b,s ,PrPV

b,s ,are defined by the ratio of the
number of hours of the blocks divided in Step3
to the corresponding block in Step2, i.e.,Nhours

b .
Hence, the scenario probabilities Prb,s are calcu-

Figure 2: The clusters of demand in Step 2 (time blocks).

lated as:

Prb,s = Prload
b,s ×PrWD

b,s ×PrPV
b,s.

Note that the time blockb represents the demand pe-
riods related to season (e.g., high-demand in summer,
low-demand in winter) and the indexs represents the
scenarios in the time blockb (e.g., (high demand,
large wind, large PV), (low-demand, middle wind,
small PV)).

3 OPTIMAL LONG-TERM
ALLOCATION PROBLEM OF
DISTRIBUTED GENERATION

Two-stage stochastic linear programming is used as
a formulation of the long-term allocation problem of
DGs. The model uses the scenarios and provides the
optimal siting, sizing, and timing of RES-based DGs
to be installed (wind power and PV). The nomencla-
ture related to the problem formulation described in
Appendix.

3.1 Objective Function

This model minimizes the total system cost consisting
of the investment costπinv

t and operation & mainte-
nance cost in consideration of the incentiveµinc

t . The
expected value of the O&M cost in yeart is shown as:

∑
b∈ΩBt

Nhours
t,b ∑

s∈ΩSt,b

Prt,b,sπom
t,b,s , t ∈ ΩT (1)

where,ΩBt is the set of time blocks in yeart, Nhours
t,b

is the total hours of time blockb in t, ΩSt,b is the set
of the scenarios int andb, Prt,b,s is the probability of
the scenarios in t andb, andπom

t,b,s is the O&M cost
per unit time int, b, ands. In this paper, it is assumed
that the time blocks and scenarios are the same every
year,

ΩBt = ΩB,N
hours
t,b = Nhours

b ,ΩSt,b = ΩSb,Prt,b,s = Prb,s,
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because, in the same region, the trend of the demand
profile and the average of the weather data are consid-
ered not to change significantly. It is important to note
that the operational environment of the power sys-
tem is different in each year since the time-dependent
parameters exist, such as demand growth factor, dis-
count rate, and price increasing factor, although the
scenarios do not change.

Therefore, the aim of the model is minimizing the
total system cost over the planning horizonT:

Minimize:

∑
t∈ΩT

αt

(
πinv

t + ∑
b∈ΩB

Nhours
b ∑

s∈ΩSb

Prb,sπom
t,b,s

)
− ∑

t∈ΩT

µinc
t

(2)

whereαt =
1

(1+d)t is the present value factor.

3.1.1 Investment Costs

The following equations show the investment costs of
the substation, wind turbine, PV, and CB. The costs
are, respectively, annualized by using the interest rate
and lifetime of the devices. Therefore, the previous
year’s investment cost is added to the next one except
for the first year.

πinv
t = ∑

n∈ΩSS

πSS
anuX

SS,n
t + ∑

n∈ΩL

(πPV
anuX

PV,n
t

+πWD
anuXWD,n

t +πCB
anuX

CB,n
t )+πinv

t−1; t > 1,

(3)

πinv
t = ∑

n∈ΩSS

πSS
anuX

SS,n
t + ∑

n∈ΩL

(πPV
anuX

PV,n
t

+πWD
anuXWD,n

t +πCB
anuX

CB,n
t ) ; t = 1,

(4)

πSS
anu=

πSS
invi(1+ i)LSS

(1+ i)LSS−1
, (5)

πWD
anu =

πWD
inv i(1+ i)LWD

(1+ i)LWD −1
, (6)

πPV
anu=

πPV
inv i(1+ i)LPV

(1+ i)LPV −1
, (7)

πCB
anu=

πCB
inv i(1+ i)LCB

(1+ i)LCB −1
. (8)

3.1.2 Operation and Maintenance Costs

O&M costs are shown in the following equations. To-
tal O&M cost includes the power loss cost, unserved
energy cost, purchased energy cost, O&M cost of
DGs and CB, and CO2 emission cost.

πom
t,b,s = πloss

t,b,s+πENS
t,b,s +πSS

t,b,s+πnew
t,b,s+πCB

t,b,s+πemi
t,b,s,

(9)

πloss
t,b,s = πloss ∑

n,m∈ΩN

Sbasern,mIsqr,n,m
t,b,s , (10)

πENS
t,b,s = πENS ∑

n∈ΩL

SbasePENS,n
t,b,s , (11)

πSS
t,b,s = πSS

b,sη
SS
t ∑

n∈ΩSS

SbasePSS,n
t,b,s , (12)

πnew
t,b,s = Sbase ∑

n∈ΩL

(πPV
omPPV,n

t,b,s +πWD
om PWD,n

t,b,s ), (13)

πCB
t,b,s = Sbase ∑

n∈ΩL

πCB
omQCB,n

t,b,s , (14)

πemi
t,b,s = πemi,SS

t,b,s +πemi,DG
t,b,s , (15)

πemi,SS
t,b,s = ηemi

t Sbase ∑
n∈ΩSS

πCO2νSS
emiP

SS,n
t,b,s , (16)

πemi,DG
t,b,s = ηemi

t Sbase ∑
n∈ΩL

πCO2
(

νWD
emiP

WD,n
t,b,s

+νPV
emiP

PV,n
t,b,s

)
.

(17)

3.1.3 Incentive

Incentive will be paid for the new investment of DGs
by using the subsidy rare.

µinc
t = αt ∑

n∈ΩL

(
γWD
subπWD

inv XWD,n
t + γPV

subπ
PV
invXPV,n

t

)
.

(18)

3.2 Constraints

3.2.1 Power Balance Constraints

The following constraints describe the active and re-
active power balance of the load and substation buses.
It should be mentioned that the scenario of demand,
ηload

b,s , is used by multiplying the peak load of each
bus.

∑
n,m∈ΩN

(
Pn,m

t,b,s− rn,mIsqr,n,m
t,b,s

)
− ∑

m,n∈ΩN

(
Pm,n

t,b,s

)

+PENS,m
t,b,s +PWD,m

t,b,s +PPV,m
t,b,s = ηtηload

b,s Pload,m,

(19)

∑
n,m∈ΩN

(
Pn,m

t,b,s− rn,mIsqr,n,m
t,b,s

)
− ∑

m,n∈ΩN

(
Pm,n

t,b,s

)

+PSS,m
t,b,s = ηtηload

b,s Pload,m,

(20)

∑
n,m∈ΩN

(
Qn,m

t,b,s− xn,mIsqr,n,m
t,b,s

)
− ∑

m,n∈ΩN

(
Qm,n

t,b,s

)

+QWD,m
t,b,s +QPV,m

t,b,s +QCB,m
t,b,s = ηtηload

b,s Qload,m,

(21)

∑
n,m∈ΩN

(
Qn,m

t,b,s− xn,mIsqr,n,m
t,b,s

)
− ∑

m,n∈ΩN

(
Qm,n

t,b,s

)

+QSS,m
t,b,s = ηtηload

b,s Qload,m.

(22)
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3.2.2 Voltage and Current Equations

The nodal voltage equation and power flow equation
are shown as follows:

Vsqr,m
t,b,s −2(rm,nPm,n

t,b,s+ xm,nQm,n
t,b,s)

+|zm,n|2Isqr,m,n
t,b,s −Vsqr,n

t,b,s = 0,
(23)

Vsqr,m
t,b,s Isqr,m,n

t,b,s = Pm,n
t,b,s

2
+Qm,n

t,b,s
2
. (24)

To transform the non-linear equation (24) into the
linear equation, the piecewise linear approximation
described in (Zou et al., 2010) is used in this paper.
The equation is linearized as follows:

Vnom2Isqr,m,n
t,b,s = ∑

h∈ΩH

(
km,n,h

t,b,s ∆Pm,n,h
t,b,s

)

+ ∑
h∈ΩH

(
km,n,h

t,b,s ∆Qm,n,h
t,b,s

)
,

(25)

Pm,n
t,b,s = P+,m,n

t,b,s −P−,m,n
t,b,s , (26)

Qm,n
t,b,s = Q+,m,n

t,b,s −Q−,m,n
t,b,s , (27)

XP+,m,n
t,b,s +XP−,m,n

t,b,s ≤ 1, (28)

XQ+,m,n
t,b,s +XQ−,m,n

t,b,s ≤ 1. (29)

P+,m,n
t,b,s +P−,m,n

t,b,s = ∑
h∈ΩH

∆Pm,n,h
t,b,s , (30)

Q+,m,n
t,b,s +Q−,m,n

t,b,s = ∑
h∈ΩH

∆Qm,n,h
t,b,s , (31)

0≤ ∆Pm,n,h
t,b,s ≤ ∆Sm,n,h

t,b,s , (32)

0≤ ∆Qm,n,h
t,b,s ≤ ∆Sm,n,h

t,b,s , (33)

km,n,h
t,b,s = (2h−1)∆Sm,n,h

t,b,s , (34)

∆Sm,n,h
t,b,s =

VnomIm,n

H
. (35)

3.2.3 Current, Voltage, and Power Limits

The current on branches, voltage of buses, and power
flow on branches should be limited in the allowable
range:

0≤Vnom2Isqr,m,n
t,b,s ≤ Sm,n2

, (36)

V2 ≤Vsqr,m
t,b,s ≤V

2
, (37)

0≤ P+,m,n
t,b,s ≤VnomIm,nXP+,m,n

t,b,s (38)

0≤ P−,m,n
t,b,s ≤ Prev,m,nXP−,m,n

t,b,s , (39)

0≤ Q+,m,n
t,b,s ≤VnomIm,nXQ+,m,n

t,b,s , (40)

0≤ Q−,m,n
t,b,s ≤VnomIm,nXQ−,m,n

t,b,s . (41)

3.2.4 Maximum DG Size Limits

The following constraint defines the maximum DG
installation capacity of each bus:

∑
t∈ΩT

(PWDXWD,n
t +PPVXPV,n

t )≤ Pnode. (42)

3.2.5 DG & CB Generation Limits

0≤ PWD,n
t,b,s ≤ ηWD

b,s Pavl,WD,n
t , (43)

0≤ PPV,n
t,b,s ≤ ηPV

b,sPavl,PV,n
t , (44)

0≤ QCB,n
t,b,s ≤ Qavl,CB,n

t . (45)

Constraints (43) – (45) express the minimum and
maximum generation of DGs and CB. Note that the
scenarios of the wind power and PV, i.e., produc-
tion factorsηWD

b,s and ηPV
b,s, are used by multiplying

the maximum available output of each installed DG.
The following constraints show the maximum avail-
able output in each year:

Pavl,WD,n
t = PWDXWD,n

t CWD,n; t = 1, (46)

Pavl,WD,n
t = PWDXWD,n

t CWD,n+Pavl,WD,n
t−1 ; t > 1 (47)

Pavl,PV,n
t = PPVXPV,n

t CPV,n; t = 1, (48)

Pavl,PV,n
t = PPVXPV,n

t CPV,n+Pavl,PV,n
t−1 ; t > 1, (49)

Qavl,CB,n
t = QCBXCB,n

t CCB,n; t = 1, (50)

Qavl,CB,n
t = QCBXCB,n

t CCB,n+Qavl,CB,n
t−1 ; t > 1. (51)

The number of installations of DG and CB in each
bus is limited as,

∑
t∈ΩT

XWD,n
t ≤ XWD

n , (52)

∑
t∈ΩT

XPV,n
t ≤ XPV

n , (53)

∑
t∈ΩT

XCB,n
t ≤ XCB

n . (54)

The constraints of the reactive power produced by
DGs are expressed by using leading/lagging power
factor:

− tan(cos−1(λWD
lead))P

WD,n
t,b,s ≤ QWD,n

t,b,s

≤ tan(cos−1(λWD
lag ))PWD,n

t,b,s ,
(55)

− tan(cos−1(λPV
lead))P

PV,n
t,b,s ≤ QPV,n

t,b,s

≤ tan(cos−1(λPV
lag))P

PV,n
t,b,s .

(56)
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Figure 3: Distribution system configuration.

3.2.6 Investment Limits

The following constraints refer to the annualized and
actual investment cost limits considering the lifetime.

πinv
t ≤ πbgt

inv, (57)

∑
t∈ΩT

αt [ ∑
n∈ΩSS

πSS
invX

SS,n
t + ∑

n∈ΩL

(πPV
invXPV,n

t

+πWD
inv XWD,n

t +πCB
invXCB,n

t )]≤ πbgt
LT .

(58)

3.2.7 Energy Not Supplied Limits

The unserved power must be less than the demand:

0≤ PENS,n
t,b,s ≤ ηtηload

b,s Pload,n, (59)

0≤ QENS,n
t,b,s ≤ ηtηload

b,s Qload,n. (60)

3.2.8 Substation Limits

The following constraints show the generation limit
of the substation.

PSS,n
t,b,s ≤ Savl,SS,n

t√
1+ tan(cos−1(λSS))2

, (61)

0≤ QSS,n
t,b,s ≤ tan(cos−1(λSS))PSS,n

t,b,s , (62)

Savl,SS,n
t = SSS,n+Snew,n

t , (63)

Snew,n
t = XSS,n

t SSS; t = 1, (64)

Snew,n
t = XSS,n

t SSS+Snew,n
t−1 ; t > 1. (65)

The substation expansion is allowed up to the
maximum power:

Snew,n
t ≤ Snew,n. (66)

4 NUMERICAL SIMULATION

4.1 Distribution System

The 34-bus three-phase radial feeder, shown in Figure
3, is used to test the proposed scenario generation and
allocation problem. The system has 1 substation and
33 buses with/without load. Details of the network
are given in (Chis et al., 1997).

Table 1: Simulation parameters.

Total peak load
power

5.45 (MVA)
Initial available

substation power
5.50 (MVA)

Capacity of wind
turbine and PV

100, 2.5 (kW) Capacity of CB 100 (kVar)

Base power 10 (MVA) Base voltage 11 (kV)
Maximum power

that can be
installed at each

bus

250 (kW)
Maximum numbers
of wind turbine, PV
modules, and CB

2, 85, 5

Thermal capacity 6.5 (MVA) Substation voltage 1.04 (p.u.)
Annual demand

growth
2 (%)

Price increasing
factor

1 (%)

Minimum/
maximum limits

of voltage
magnitude

±5% (0.95 and
1.05 p.u.)

Number of
segments used in

the piecewise
linearization

2

Increasing factor
of emission cost

2 (%) Lifetime of devices 20 (years)

Investment cost of
transformer, wind

turbine, PV
module, and CB

20000,125155,
3455,38500(e)

O&M costs of wind
turbine, PV, and CB

0.0079,0.0064
(e/kWh)

,0.003(e/kVarh)

Subsidy rate of
wind turbine and

PV
10, 5 (%)

Power factor at the
substation

0.9013

Discount rate 12.5 (%)
Lagging/leading
power factor of

DGs
0.9013, 0.0

Interest rate 8 (%)
Cost of CO2

emission
30 (e/tCO2)

Investment budget
per year

350000 (e)
Emission rate of
purchased energy

0.55
(tCO2/MWh)

Investment budget
throughout the life
cycle of devices

5500000 (e)
Emission rate of
wind turbine and

PV

0.25 and 0.26
(tCO2/MWh)

Cost of not
supplied energy

15000
(e/MWh)

Maximum
expansion of the

substation
5 (MVA)

Candidate buses of
wind turbines

13-16, 21-27
Candidate buses of

PV
11, 12, 24-27,

31-34

Table 2: Model information.

Number of continuous variables 2,810,473
Number of general integer variables 444,960

Number of binary variables 570,240
Number of linear constraints 4,578,985

Number of non zero coefficients 14,070,169

4.2 Data and Parameters

The simulation parameters are shown in Table 1. Ac-
tual load data of Tokyo Electric Power Company
(TEPCO) are used as demand. The wind speed
and solar radiation are the meteorological observation
data of Miyakojima Island in Japan from Jan. 1, 2015
to Dec. 31, 2015. A twenty-year period is used as a
planning horizon. Demand, wind, PV, and price lev-
els are described in Table 3. The problem is solved
using Gurobi 6.5.0 (Gurobi 6.5.0, 2016) on a Linux-
based computer with 4-core IntelR©Core i7-4770 at
3.4 GHz and 24 GB of RAM. The information about
the overall model is described in Table 2.

4.3 Simulation Cases

The following three cases are consided:

Case A: The investment is only allowed for the ex-
pansion of the substation, i.e., the right-hand side
of Eq. (42) is zero.
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Table 3: Scenario factors of each time block. The values in
parentheses represent the factor’s probabilities.

Time
Blocks

Hours
Price

(e/MWh)
Demand
factors

Wind factors PV factors

97.63 0.61 (0.328) 0.41 (0.370) 0.65 (0.163)
1 1370 98.04 0.58 (0.328) 0.16 (0.207) 0.29 (0.602)

98.28 0.54 (0.344) 0.00 (0.423) 0.02 (0.235)
103.08 0.93 (0.433) 0.41 (0.329) 0.68 (0.321)

2 420 103.01 0.84 (0.236) 0.20 (0.443) 0.41 (0.371)
102.44 0.78 (0.331) 0.00 (0.229) 0.06 (0.307)
97.84 0.51 (0.212) 1.00 (0.423) 0.62 (0.910)

3 1316 97.68 0.48 (0.444) 0.23 (0.572) 0.28 (0.066)
97.19 0.44 (0.344) 0.00 (0.005) 0.01 (0.024)
100.60 0.73 (0.381) 0.92 (0.428) 0.68 (0.451)

4 1286 99.20 0.68 (0.171) 0.28 (0.022) 0.37 (0.271)
98.26 0.64 (0.448) 0.00 (0.550) 0.05 (0.278)
94.15 0.52 (0.245) 0.69 (0.109) 0.59 (0.070)

5 960 94.15 0.48 (0.453) 0.33 (0.529) 0.29 (0.060)
94.15 0.45 (0.302) 0.01 (0.361) 0.01 (0.870)
94.15 0.73 (0.324) 0.46 (0.236) 0.58 (0.155)

6 1205 94.15 0.69 (0.381) 0.24 (0.441) 0.28 (0.207)
94.15 0.66 (0.295) 0.00 (0.323) 0.03 (0.638)
94.15 0.62 (0.370) 0.50 (0.248) 0.57 (0.675)

7 1590 94.15 0.59 (0.304) 0.25 (0.354) 0.27 (0.143)
94.15 0.56 (0.326) 0.00 (0.397) 0.01 (0.182)
94.15 0.88 (0.502) 0.49 (0.323) 0.56 (0.726)

8 613 94.15 0.81 (0.168) 0.22 (0.393) 0.26 (0.096)
94.15 0.77 (0.330) 0.00 (0.284) 0.02 (0.178)

Table 4: O&M costs (e).

Cases A B C
Losses cost 1,163,844 1,012,212 786,011

Not supplied energy cost 45,320 67,221 4,937
Purchased energy cost 24,975,772 22,841,032 16,196,578

DG O&M cost 0 141,731 572,780
Capacitor bank cost 218,980 193,093 134,986

Emission cost 4,567,235 4,196,637 3,043,670
O&M system cost 30,971,152 28,451,927 20,738,962

Table 5: Total system costs (e).

Cases A B C
O&M system cost 30,971,152 28,451,927 20,738,962
Investment costs 413,085 2,228,716 8,369,486

Incentive 0 185,179 697,443
Total costs 31,384,236 30,495,464 28,411,005

Computational time 25262 s 277680 s 34693 s

Case B: All the constraints are considered.

Case C: Case B without investment constraints (57)
and (58).

4.4 Results and Discussions

Tables 4 and 5 show the O&M costs and total system
costs. Optimal location, sizing, and timing are shown
in Tables 6 and 7. The installation of DGs plays an
important role to reduce the total system cost despite
the fact that the investment costs are increasing. A
significant contribution is that it drastically reduces
the O&M costs (see Table 4). This is one of the gen-
eral benefits of DG installment. From Table 4, the
greatest cost savings occur in the emission cost be-
cause the emission rate of the purchased energy at
the substation is two times higher than that of the
DGs. Moreover, the losses cost and purchased energy
cost are reduced since most DGs are allocated around
the terminal buses of radial distribution system. As

Table 6: Optimal location and timing (bus).
Cases A B C
Years SUB CB SUB WD PV CB SUB WD PV CB

1

12 21
22 23
25 26
27 33

24 25
26

24 26
27 33

34

11 12
21 22
23 25
26 32

13 14
15 21
22 23
24 25
26 27

11 12
24 25
26 27
31 32
33 34

11 21
22 23
25 26

2 11 14
3 24 24
4 16
5 1 16
6 1 1
7 1 23
8 21
9 21 24
10
11
12 27
13 21 31 1 21 31 21 31

14
14 21
23 25

11 23
24

1
12 21

27

15
11 14
22 26

22 31
33

11 21
25 33

16
11 15

31
21 22
24 31

11 21
22 24

17 13 22
22 25

31
14 15
22 31

18
12 13
24 32

12
11 13

26

19
13 14
21 31

13 24

20 16
15 22
31 32

Table 7: Optimal sizing (kW).
Cases A B C
Years SUB CB SUB WD PV CB SUB WD PV CB

1 800 600 262.5 800 1500 1875 600
2 100 100
3 100 100
4 100
5 1000 100
6 1000 1000
7 1000 100
8 100
9 100 100
10
11
12 100
13 200 1000 200 200
14 500 300 1000 300
15 400 400 400
16 400 500 400
17 400 400 500
18 500 100 400
19 500 500
20 100 400

Total 2000 4100 2000 600 262.5 3000 2000 1800 1875 3900

shown in Table 6, the DGs allow the substation ex-
pansion to defer. However, the results imply that the
expansion is not inevitable due to the intermittent na-
ture of renewable DGs and the demand growth (see
Table 7).

The O&M cost of CB decreases even if the num-
ber of CB increases (see Tables 4 and 7), imply-
ing that CB co-exists well with the large amount of
the installed DGs. Without the budget constraints,
nearly the same amount of wind turbine and PV are
installed. However, in the consideration of the bud-
gets, the wind power to be installed is larger than PV
because it is affected by the high subsidy rate of wind.

In the same way, the simulations without the in-
centive were tested, i.e., the incentives of wind en-
ergy and PV are 0. The O&M and total system costs
are shown in Tables 8 and 9. Tables 5 and 9 indi-
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Table 8: O&M costs (e).

Cases A B C
Losses cost 1,163,844 1,000,584 795,689

Not supplied energy cost 45,320 71,244 359
Purchased energy cost 24,975,772 22,808,383 16,558,486

DG O&M cost 0 133,506 537,774
Capacitor bank cost 218,980 196,581 133,903

Emission cost 4,567,235 4,191,123 3,105,423
O&M system cost 30,971,152 28,401,420 21,131,633

Table 9: Total system costs (e).

Cases A B C
O&M system cost 30,971,152 28,401,420 21,131,633
Investment costs 413,085 2,262,126 7,914,809

Incentive 0 0 0
Total costs 31,384,236 30,663,546 29,046,443

Table 10: Optimal sizing under no incentive (kW).
Cases A B C
Years SUB CB SUB WD PV CB SUB WD PV CB

1 0 800 0 300 522.5 800 0 1000 2055 600
2 0 100 0 0 0 0 0 0 7.5 0
3 0 100 0 0 0 100 0 100 0 0
4 0 0 0 0 0 0 0 100 0 0
5 1000 0 1000 0 0 0 0 0 0 0
6 1000 0 0 0 0 0 0 100 0 0
7 0 0 0 0 0 0 1000 0 0 100
8 0 0 0 0 0 100 0 100 0 0
9 0 100 0 0 0 0 0 100 0 0
10 0 0 0 0 0 100 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 200 0 0 0 200 0 0 0 300
14 0 500 0 0 0 300 0 0 0 300
15 0 400 1000 0 0 400 1000 0 0 400
16 0 400 0 0 0 500 0 0 0 400
17 0 400 0 0 0 400 0 0 0 400
18 0 500 0 0 0 0 0 0 0 500
19 0 500 0 0 0 0 0 0 0 400
20 0 100 0 0 0 0 0 0 0 500

Total 2000 4100 2000 300 522.5 2900 2000 1500 2062.5 3900

cate that the incentive is helpful to decrease the to-
tal system costs, though the O&M costs of case B is
increased slightly. The optimal sizing under no in-
centive is shown in Table 10. From this result, it is
suggested that PV is installed more than wind power
in the case that there are no incentives.

It is worth pointing out that the DGs have an im-
portant role in terms of system stability as well as cost
minimization. The average of the voltage deviations
of all scenarios in the first- and final- planning years
are illustrated per case in Figure 4. The figure shows
that the overall voltage drops as the demand increases
for twenty years. Besides, the large installation of
DGs makes the amplitude of the voltage more stable
than no DGs.

5 CONCLUSIONS

The paper has presented a procedure for creating the
demand and DG generation scenarios with K-means.
Simultaneously, a long-term allocation problem of
RES-based DGs has been formulated as a two-stage
stochastic programming problem and tested on the
34-bus distribution system. The obtained results and

Figure 4: Average of the voltages of all scenarios per case
in the first and final year.

insights are summarized as below:

• The long-term optimal solutions for the decision-
making are obtained by solving the stochastic op-
timization problem with the created scenarios.

• The uncertainties of scenarios are well-
represented because the substation expansions are
inevitable due to the renewable energy intermit-
tency, while the DG installation reduces the total
distribution system cost.

• The proposed method with K-means can be easily
implemented, improved to create many scenarios,
and expanded to a multi-stage architecture.

• The proposed problem determines the optimal
long-term siting, sizing, and timing of DGs, con-
sidering the variables and constraints with respect
to the practical equipment and economics.

• The results show that an optimal DG allocation is
quite important in order to reduce the system cost.

Future research include the following:

• Investigation of the planning results for a large
distribution system.

• Comparison with the existing methodologies to
analyze whether the results will be much differ-
ent.

• Improvement of the scenario generation by means
of the probability density function and time series
model.

• Extension to a multi-stage stochastic program-
ming problem and comparative evaluation of the
validity of the solution.
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APPENDIX

Nomenclature

Sets:
ΩB Set of time blocks
ΩH Set of blocks used for the piecewise lin-

earization of quadratic power
ΩL Set of load buses
ΩN Set of branches
ΩSS Set of substation buses
ΩT Set of years
ΩSb Set of scenarios in time blockb

Indices:
b Time block index
h Index of the segment used for the lin-

earization
n,m Index of bus numbers
t Time index
s Scenario index

Parameters:
πSS

anu,πWD
anu,πPV

anu,πCB
anu Annualized investment costs of trans-

former, wind turbine, PV module, and
capacitor bank

πSS
inv,π

WD
inv ,πPV

inv ,π
CB
inv Investment costs of transformer, wind

turbine, PV module, and capacitor bank

πbgt
inv Annual investment budget

πbgt
LT Investment budget throughout the life-

time of the devices to be installed
πWD

om ,πPV
om,πCB

om Operation and maintenance costs of
wind turbine, PV module, capacitor
bank

πloss Cost of power loss
πCO2 Cost of CO2 emission
πENS Cost of energy not supplied
πSS

b,s Cost of energy purchased from upper
grid at substation in time blockb and
scenarios

CWD,n,CPV,n,CCB,n Binary parameters whether busn is the
candidates to install wind turbines, PV
modules, and capacitor banks

d Discount rate
ηemi

t Increasing factor of emission cost
ηt Increasing factor of load
ηSS

t Increasing factor of energy cost
ηload

b,s Demand factor in time blockb and sce-
narios

ηWD
b,s ,ηPV

b,s Production factors of wind turbine and
PV module in time blockb and scenario
s

In,m Maximum current flow of branchn,m

kn,m,h
t,b,s Slope of theh-th block of the piecewise

linearization for branchn,m in year t,
time blockb, and scenarios

i Interest rate
LSS,LWD,LPV,LCB Lifetimes of transformer, wind turbine,

PV module, and capacitor bank
Nhours

b Number of hours in time blockb

Pload,n Active power of load in busn

PWD,PPV Maximum active power generations of
wind turbine and PV module

Pnode Maximum active power of RES that can
be installed in each bus

Prev,m,n Maximum reverse active power flow in
branchm,n

λSS Power factor at substation
λWD

lead,λ
WD
lag Leading/lagging power factors of wind

turbine
λPV

lead,λ
PV
lag Leading/lagging power factors of PV

module
QCB Maximum reactive power generation

per capacitor bank
Qload,n Reactive power of load in busn
rn,m Resistance of branchn,m
νSS

emi,ν
WD
emi ,ν

PV
emi Emission rates of purchased energy and

distributed generation
γWD
sub ,γ

PV
sub Subsidy rates for investment of wind

turbines and PV modules
H Number of segments used in the piece-

wise linearization
SSS Maximum power generation of new

transformers
Sn,m Maximum transmission capacity of

branchn,m
Snew,n Maximum new power allowed for in-

vestment in the substationn
SSS,n Existing power in the substationn
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Sbase Base power
V,V Minimum/maximum voltage magni-

tudes of the distribution network
Vnom Nominal voltage of the distribution net-

work
xn,m Reactance of branchn,m

XWD,n,XPV,n,XCB,n Maximum number of wind turbines, PV
modules, and capacitor banks to be in-
stalled in busn

zn,m Impedance of branchn,m
Prb,s Probability of scenarios in time blockb

Prload
b,s ,PrWD

b,s ,PrPV
b,s Probabilites of demand, wind power

production, and PV production in time
blockb and scenarios

∆Sn,m,h
t,b,s Upper bound ofh-th block of the power

flow of branchn,m in yeart, time block
b, and scenarios

αt Present value factor

Variables:
πCB

t,b,s Operation and maintenance cost of ca-
pacitor banks in yeart, time blockb, and
scenarios

πemi
t,b,s Costs of CO2 emission in yeart, time

blockb, and scenarios
πemi,SS

t,b,s ,πemi,DG
t,b,s Costs of CO2 emission from purchased

energy and DG in yeart, time blockb,
and scenarios

πinv
t Cost of investment in yeart

πloss
t,b,s Cost of power losses in yeart, time

blockb, and scenarios
πENS

t,b,s Penalty cost for energy not supplied in
yeart, time blockb, and scenarios

πnew
t,b,s Operation and maintenance costs of dis-

tributed generation in yeart, time block
b, and scenarios

πom
t,b,s Operation and maintenance costs of in

yeart, time blockb, and scenarios
πSS

t,b,s Cost of energy purchased from upper
grid at substation in yeart, time block
b, and scenarios

µinc
t Incentive for new installation of the dis-

tributed generations in yeart
Isqr,n,m
t,b,s Square of the current flow magnitude of

branchn,m in yeart, time blockb, and
scenarios

Pavl,WD,n
t ,Pavl,PV,n

t Total active power available of wind tur-
bines and PV modules to be installed in
busn and yeart

PENS,n
t,b,s Not served active power in busn, yeart,

time blockb, and scenarios
PWD,n

t,b,s ,QWD,n
t,b,s Active/reactive power generation of

wind turbines in busn, year t, time
blockb, and scenarios

PPV,n
t,b,s ,Q

PV,n
t,b,s Active/reactive power generation of PV

modules in busn, yeart, time blockb,
and scenarios

Pn,m
t,b,s,Q

n,m
t,b,s Active/reactive power flow of branch

n,m in yeart, time blockb, and scenario
s

P+,n,m
t,b,s ,Q+,n,m

t,b,s Active/reactive power flow (forward) of
branchn,m in yeart, time blockb, and
scenarios

P−,n,m
t,b,s ,Q−,n,m

t,b,s Active/reactive power flow (backward)
of branchn,m in year t, time blockb,
and scenarios

PSS,n
t,b,s ,Q

SS,n
t,b,s Active/reactive power purchased from

the grid at the substation in busn, year
t, time blockb, and scenarios

∆Pn,m,h
t,b,s ,∆Qn,m,h

t,b,s Value of theh-th block of the piece-
wise linearized active/reactive power of
branchn,m in yeart, time blockb, and
scenarios

Qavl,CB,n
t Total reactive power available of capac-

itor banks to be installed in busn and
yeart

QCB,n
t,b,s Reactive power compensated by capac-

itor banks in busn, yeart, time blockb,
and scenarios

Savl,SS,n
t Total power available in the substationn

and yeart
Snew,n

t New transformers installed in the sub-
stationn and yeart

Vsqr,n
t,b,s Square of voltage magnitude of busn in

yeart, time blockb, and scenarios

XSS,n
t ,XWD,n

t , Number of transformers, wind turbines,
PV modules, and capacitor banks to be
installed in busn and yeart

XPV,n
t ,XCB,n

t

XP+,n,m
t,b,s ,XP−,n,m

t,b,s Binary variable defined for for-
ward/backward active power flow of
branchn,m in yeart, time blockb, and
scenarios

XQ+,n,m
t,b,s ,XQ−,n,m

t,b,s Binary variable defined for for-
ward/backward reactive power flow of
branchn,m in yeart, time blockb, and
scenarios
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