in dermoscopy images using adaptive critic design, 
Skin Res Technol, 18(4), pp.389-396. 
Cheng, B. et al., 2013, Automatic dirt trail analysis in 
dermoscopy images, Skin Res Technol,  19(1), pp.e20-
26. 
Dua, R. et al., 2004, Detection of basal cell carcinoma 
using electrical impedance and neural networks, IEEE 
Trans Biomed Eng, 51(1), pp.66-71. 
Duan, L. et al., 2014, Automated identification of basal 
cell carcinoma by polarization-sensitive optical 
coherence tomography, Biomed Opt Express, 5(10), 
pp.3717-3729. 
Eberhardt, C. et al., 2004, Early detection of skin cancer 
(EDISCIM) through the use of non-invasive confocal 
imaging,  Stud Health Technol Inform, 103, pp.279-
286. 
Gambichler, T., Moussa, G., Altmeyer, P., 2008, A pilot 
study of fluorescence diagnosis of basal cell using a 
digital flash light-based imaging system, Photo 
dermatol Photoimmunol Photomed, 24(2), pp.67-71. 
Gutman, D., Codella, N.C.F., Celebi, E., Helba, B., 
Marchetti, M., Mishra, N., Halpern, A., 2016, Skin 
Lesion Analysis toward Melanoma Detection: A 
Challenge at the International Symposium on 
Biomedical Imaging (ISBI) 2016, hosted by the 
International Skin Imaging Collaboration (ISIC), 
arXiv preprint arXiv:1605.01397. 
Guvenc, P. et al., 2013, Sector expansion and elliptical 
modeling of blue-gray ovoids for basal cell carcinoma 
discrimination in dermoscopy images, Skin Res 
Technol, 19(1), pp.e532-536.  
Hance, G.A., Umbaugh, S.E., Moss, R.H., Stoecker, W.V., 
1996, Unsupervised color image segmentation: with 
application to skin tumor borders, IEEE Eng Med Biol, 
15(1), pp. 104–111. 
Heckbert, P., 1982, Color image quantization for frame 
buffer display, SIGGRAPH Proceedings of the 9th 
annual conference on Computer Graphics and 
Interactive Techniques, 82, pp.297-307. 
Huang, L.K., Huang, M.J., 1995, Image thresholding by 
minimizing the measures of fuzziness, Pattern 
Recognition, 28(1), pp.41-51. 
Jella, P., 2004, Pigment network extraction and salient 
point analysis. M.S. Thesis in Electrical Engineering, 
University of Missouri, Rolla, MO, USA. 
Kasmi, R., 2016, Biologically inspired Skin lesion 
segmentation process, Ph.D. Dept. Elect. Eng., Univ. 
Bejaia, Bejaia, Algeria.  
Kaur, R., LeAnder, R., Mishra, N.K., Hagerty, J.R., 
Kasmi, R., Stanley, R.J., Celebi, M.E., Stoecker, 
W.V., 2016, Thresholding methods for lesion 
segmentation of basal cell carcinoma in dermoscopy 
images,  Skin Research and Technology, 2016, doi: 
10.1111/srt.12352 (in press). 
Kaushik, V.S.N. et al., 2013, The Median Split Algorithm 
for Detection of Critical Melanoma Color Features, 
VISAPP, 1, pp.492-495. 
Kefel, S. et al., 2012, Discrimination of basal cell 
carcinoma from benign lesions based on extraction of 
ulcer features in polarized-light dermoscopy images, 
Skin Res Technol, 18(4), pp.471-475. 
Kefel, S., Kefel, S.P., LeAnder, R.W., Kaur, R., Kasmi, 
R., Mishra, N.K., Rader, R.K., Cole, J.G., Woolsey, 
Z.T., Stoecker, W.V., 2016, Adaptable texture-based 
segmentation by variance and intensity for automatic 
detection of semitranslucent and pink blush areas in 
basal cell carcinoma, Skin Research and Technology, 
22(4), pp. 412-422. 
Kopriva, I. et al., 2007, Visualization of basal cell 
carcinoma by fluorescence diagnosis and independent 
component analysis, Photodiagnosis Photodyn Ther, 
4(3), pp.190-196. 
Landini, G., 2013, http://fiji.sc/Auto_Threshold#Li v1.15. 
Larraona-Puy, M. et al., 2009, Development of Raman 
microspectroscopy for automated detection and 
imaging of basal cell carcinoma, J Biomed Opt, 14(5), 
054031. 
Li, C.H., Tam, P.K., 1998, An iterative algorithm for 
minimum cross entropy thresholding, Pattern Recog 
Lett, 19(8), pp.771-776. 
Ly, E. et al., 2009, Differential diagnosis of cutaneous 
carcinomas by infrared spectral micro-imaging 
combined with pattern recognition, Analyst, 134(6), 
pp.1208-1214. 
Marghoob, A.A., Malvehy, J., Braun, F.P., 2012, An Atlas 
of Dermoscopy, 2nd Edition, Boca Raton FL
:CRC 
Press. 
Mishra, N., 2014, Automated classification of malignant 
melanoma based on detection of atypical pigment 
network in dermoscopy images of skin lesions. Ph.D. 
Thesis, Department of Electrical and Computer 
Engineering, Missouri University of Science and 
Technology, Rolla, MO.  
Mishra, N.K., Celebi, M.E., 2016, An overview of 
melanoma detection in dermoscopy images using 
image processing and machine learning, arXiv 
preprint arXiv:1601.07843. 
Moss, R.H. et al., 1989, Skin cancer recognition by 
computer vision, Comput Med Imaging Graph, 13(1), 
pp.31-36. 
Nijssen, A. et al., 2002, Discriminating basal cell 
carcinoma from its surrounding tissue by Raman 
spectroscopy, J Invest Dermatol, 119(1), pp.64-69. 
Otsu, N., 1979, A threshold selection method from grey 
level histograms, IEEE Trans Systems, Man, Cybern, 
9(1), pp.62-66. 
Riddler, T.W., Calvard, S., 1978, Picture thresholding 
using an iterative selection method, IEEE Trans 
Systems, Man, Cybern, 8, pp. 630-632. 
Rogers, H.W. et al., 2010, Incidence estimate of 
nonmelanoma skin cancer in the United States, 2006. 
Arch Dermatol, 146(3), pp.283–287.  
Rogers, H.W., Coldiron, B.M., 2013, Analysis of skin 
cancer treatment and costs in the United States 
Medicare population, 1996-2008, Dermatol Surg, 39(1 
Pt 1), pp.35-42. 
Sforza, G., Castellano, G., Arika, S.K., Leander, R.W., 
Stanley, R.J., Stoecker, W.V., Hagerty, J.R., 2012, 
Using adaptive thresholding and skewness correction 
to detect gray areas in melanoma in situ images, IEEE