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Abstract: The study of the interactions among elements of a system is decisive to understanding their behavior patterns.
The knowledge of the details of human motion allows physiotherapists to propose prevention and rehabilitation
programs, as well as to identify movements that could lead to an injury. This work examines Partial Directed
Coherence measures to determine the direction of the influences, throughout the stance phase only, among
kinematic joints data acquired during the running activity. Five channels of the ankle, knee, hip, pelvis and
trunk kinematic data were processed in each of the three anatomical planes, sagittal, frontal and transverse.
These analysis suggested that the ankle joint receives a intense proximal to distal influence, whereas the knee,
hip, pelvis and trunk joints presents a predominance of distal to proximal interaction.

1 INTRODUCTION

In many biomedical systems, the knowledge of the in-
teractions among the structural elements plays a key
role to understand their connectivity architecture. In
this way, the direction of the information flow is an as-
pect of great interest, since it could improve the inter-
pretation of the dynamics present (Blinowska, 2011).

Physical therapists deal with human motion and
are especially concerned with movement disorders
that could lead to injuries. This study focused on
running, a commom physical activity which involves
more than 38 million Americans (NSGA, 2011). This
sport presents potential risk to injury that comes with
the exponential growth. It is estimated an incidence
higher than 70% of musculoskeletal injury each year
among runners (Ferber et al., 2009). The knee is the
most affected site (Ferber et al., 2009).

The interactions of the joint kinematic during run-
ning are complex and not yet fully understood (Pandy
and Andriacchi, 2010). There is a hypothesis that
proximal segments (i.e, trunk, pelvis and hip) could
influence the distal’s ones (i.e knee) and vice-versa

(Powers, 2003); (Hewett and Myer, 2011). A better
comprehension of the interjoint movement coordina-
tion could improve knee injury treatment and preven-
tion programs.

In this study, multi-joints recordings of 3D joint
kinematics generated a huge amount of biomedical
data of thirty subjects. Although (Nakashima et al.,
2014) analyzed kinematic data with Partial Directed
Coherence (PDC) covering all the running trial, in-
cluding stance and swing phases, most running in-
juries occurs during the ground contact when the lo-
comotor system must dissipate the ground reaction
force (Cavanagh and Lafortune, 1980). The impact
peak during each step is equivalent to 2-3 times of the
body weight (Lieberman et al., 2010). So our aim was
to examine directional influences of the 3D joint kine-
matics data of the trunk, pelvis, hip, knee and ankle
acquired during a usual running, with the PDC ap-
proach considering only the stance phase events, that
is, the target of the analysis are the parts of the signal
when ground contact occurred.

PDC is a frequency domain approach of the
Granger-Geweke Causality (GGC) method (Jo-
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vanović et al., 2013). PDC determines the direct con-
nection strength between two distinct signals (Fasoula
et al., 2013). According to (Baccala et al., 2016),
PDC proposes a direct path of influence, indicating
the structures that are adjacents. Many of the PDC
studies is in neural structures, where the aim is to de-
termine the brain connectivity patterns (Gürkan et al.,
2014); (Jovanović et al., 2013); (Varotto et al., 2012).

This work follows this description. The Theory
Section introduces the framework of pairwise PDC
approach. The Material and Methods Section de-
scribes the participants of the study, 3D joint kine-
matic data acquisition process details and their pro-
cessing procedures. In Result Section, three distinct
graphs present the PDC values computed, one for
each of the three anatomical planes: sagittal, frontal
and transverse. The Discussion and Conclusion Sec-
tion compares the results with interpretations of the
literature.

2 THEORY

Granger Causality (GC) method applies the linear re-
gression model in a pairwise analysis of two station-
ary stochastic processes. The main idea of GC is that
if the prediction of a time seriesx1 could be improved
by including the past terms of a time seriesx2, then
x2 is said to causex1 (Blinowska, 2011). Specifically,
x1 is estimated using only previous values of the se-
ries x1, and thenx1 is estimated including previous
values of the seriesx2. In both estimations, two ma-
trices are computed: the autoregressive (AR) coeffi-
cients matrix and the covariance matrix of the noise
terms. Thus, comparing the variances of the AR pre-
diction error ofx1 before and after including the series
x2, the improvement of the prediction is determined
by the decrease of the variance with past values ofx2
(Blinowska, 2011).

Multivariate formulation and spectral form of GC
were stated by GGC (Jovanović et al., 2013), where
the multivariate autoregressive (MVAR) model is esti-
mated and the causal influence between two channels
is computed from the spectral density matrix (Fasoula
et al., 2013).

As an adaptation of GGC, Directed Transfer Func-
tion (DTF) is a causality measure in frequency do-
main (Jovanović et al., 2013) that describes direct and
cascade influences (Blinowska, 2011), that is, DTF
describes the influence direction including indirect
propagation, when the interaction flows through inter-
mediate elements (Baccala et al., 2016). Thus, if there
is a propagation from 1 to 2 and from 2 to 3, DTF
presents influence from 1 to 3 (Blinowska, 2011).

PDC was introduced by (Baccalá and Sameshima,
2001) as a normalized measure (Jovanović et al.,
2013) and sets a pairwise analysis of directional inter-
actions in ann-dimensional random processX(t) =
[x1(t),x2(t), ...,xn(t)]T (T denotes matrix transposi-
tion). Assume that the Eq. 1 is the MVAR represen-
tation of the processX(t), wherep is the model or-
der,A(r) are the MVAR estimative coefficient matri-
ces andE(t) = [e1(t),e2(t), ...,en(t)]T is a zero mean
white noise vector.

X(t) =
p

∑
r=1

A(r)X(t − r)+E(t) (1)

EachA(r) matrix is formed byai j (r) elements that
represent the lagged effect of thej − th on thei − th
series.

Applying Fourier transform in Eq. 1,

A′( f )X( f ) = E( f ) (2)

whereA′( f ) (Eq. 4) is calculated fromA( f ), the fre-
quency domain representation ofA(r), given by

A( f ) =
p

∑
r=1

A(r)e−ir2π f (3)

A′( f ) = I −A( f ) (4)

(Baccalá and Sameshima, 2001) denotes PDC, di-
rect influence fromx j to xi at frequencyf as in the
Eq. 5, wherea′k( f ) is thekth column ofA′( f ). In the
Eq. 4,I is the identity matrix and in Eq. 5,H denotes
Hermitian matrix.

πi j ( f ) =
A′

i j ( f )
√

a′H
j ( f )a′

j( f )
(5)

3 MATERIAL AND METHODS

3.1 Subjects

In this study, thirty recreational runners participated
(mean (SD); age 27.67 (5.43) years, mass 72.05
(13.61) kg, height 1.73 (0.09) m, average running dis-
tance 35.70 (18.25) km/week and running experience
4.13 (4.02) years). They were familiar with treadmill
running and ran a minimum of 20km/week at least 3
months prior to study enrollment. The presence of
bone, joint, and ligament injury for at least 3 months
prior the assessment, lower limb surgery, pain in the
ankle, knee, hip or trunk while running or wearing or-
thotics that could interfere with their running pattern
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were the exclusion criteria. The subjects were evalu-
ated by a licensed physical therapist to screen for the
inclusion and exclusion criteria. The testing protocol
was approved by the Federal University of São Car-
los Ethics Committee for Human Investigations, and
the subjects signed a written informed consent form
to participate in this study.

3.2 Data Acquisition Procedure

The session started with a 5-minute warm-up on a
treadmill (model LX 160 GIII, Movement, Manaus,
Brazil) at 1.38 m/s. Next, the subjects were instructed
to start running at a comfortable speed, determined by
the volunteer and adjusted by the assessor for 2 min-
utes. A neutral running shoe (Asics Gel-Equation 5,
ASICS, Kobe, Japan) was provided for all the runners.

The kinematic data of the dominant lower limb
and trunk were recorded at 240 Hz during running
with a six-camera Qualisys motion analysis system
(Qualisys Inc., Gothenburg, Sweden). Twenty re-
flective markers located on anatomical landmarks and
five cluster tracking markers were placed on each sub-
ject. Each running trial was performed for 1 minute
and 30-s and samplings of data were collected without
informing subjects about the exact moment of sam-
pling or the variables studied.

The Cardan angles were calculated using the joint
coordinate system definitions recommended by the
International Society of Biomechanics (Wu et al.,
2002) relative to the static standing trial using the Vi-
sual 3D software (C-Motion Inc, Rockville, MD). The
kinematic data were filtered with the Visual 3D soft-
ware using a fourth order, zero lag, low-pass Butter-
worth filter at 12 Hz. For each plane (X - sagittal, Y -
frontal and Z - transverse), five joints were collected:
ankle, knee, hip, pelvis and trunk.

3.3 Data Processing

As the first step, data from all the 30 volunteers were
processed in order to separate their stance phases,
and, from these periods, PDC values were computed.

3.3.1 Stance Phases

Stance phases of the kinematic data were defined
based on heel strike and toe-off. Heel strike was iden-
tified as the velocity inversion (positive to negative)
of heel marker in frontal plane (Y) (Zeni et al., 2008).
Toe-off was determined by the second peak knee ex-
tension (sagittal plane) (Fellin et al., 2010). Thus, for
each stance phase, there were two points identified,
one for the beginning (heel strike) and another for the
ending (toe-off) of the period.

3.3.2 PDC

The kinematic data were processed by an app de-
veloped in Python 2.7.4 (Python Software Founda-
tion, USA), running on Intel Core i5 (Intel Corpora-
tion, USA) CPU at 1.70GHz, 4 GB RAM and Ubuntu
13.04 operating system (Canonical Ltd., UK). As a
preprocessing step, each data channel was normalized
by its root mean square (RMS).

The estimation of the AR coefficients matrix used
the periods of stance already established as different
observations of the system. Thus, from the heel strike
point until the toe-off point of one stance event, a time
window was set. The values of the 15 channels in
that time window was included to determine the best
Bayesian Information Criterion (BIC) value and then
the AR model estimative. A visual selection by reg-
ularity in data was done to analyze the stationarity of
the signals.

The function developed to identifying the best
BIC value took into account values from 1 to the min-
imum number of points of the stance phases of the
individual running trial. Therefore the number of or-
der tests was diversified among the subjects, because
each one had different points number.

PDC values were computed taking the channels in
pairs. The highest one was used to represent the inter-
action between two channels of a subject. The influ-
ence of the thirty subjects was evaluated by the mean
value of the group. Distal to proximal and proximal to
distal influences were analyzed by anatomical plane
between each pair of joints. To determine whether the
influence was distal to proximal or proximal to distal,
the T-Test was applied with 5% of significance under
the null hypothesis that the means of that two types of
influences were equal.

At each relevant step, intermediate files were
saved, such as the stance phases, the orders analyzed
to determinate the best BIC value, the PDC values
themselves, including the resumed ones and the di-
rected graphs.

4 RESULTS

The process of dividing the entire running trial in
stance phases generated 35 periods and 73 points per
period, on average, both for the entire group. There-
fore, an average of more than 30 observations were
used to compute the PDC values.

The best BIC order accepted was between 1 and
5, depending on the number of points of the stance
phases of the subject, since the procedure tested val-
ues from 1 to the minimum of that number of points.
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In average, the routine for determining the best BIC
order computed the AR estimative up to order 77, the
mean of the minimum number of points.

The resumed PDC values were presented in three
directed graphs, for each anatomical plane. Thus, in
one graph, there are five nodes, representing the kine-
matic joints in that plane. The interactions are be-
ing illustrated by edges where thicker stubs are the
arrows. Moreover, the thickness of the edges denotes
the strength of the influence. Therefore, in Fig. 1,
the edge between nodes ”Ankle” and ”Trunk” shows
an influence from ”Trunk” to ”Ankle”, and its PDC
value is higher than between ”Hip” to ”Pelvis”. There
is only one direction between two nodes, the higher
value chosen from the distal to proximal or proximal
to distal influences mean values, when there was a sta-
tistical difference indicated by the T-Test.

In the sagittal plane, ankle received the strongest
influences. Also, Fig. 1 shows that pelvis and trunk
are highly influenced too. Instead, knee and hip are
sources of influences.

Figure 1: Directional influences of the 3D kinematic data
during running, in sagittal plane. Nodes are the kinematic
joints (ankle, knee, hip, pelvis and trunk). Each edge rep-
resents the mean value from the thirty subjects computed
from the individual maximum PDC, and its thickness is the
strength of the influence. Thicker stubs represent arrows.

In frontal plane, ankle remains as the most influ-
enced channel. As Fig. 2 presents, pelvis still receives
a substantial influence from hip and less strong inter-
actions from knee and trunk. Hip stays as a source of
influences.

Transverse plane (Fig. 3) presents ankle and trunk
as the receivers with the highest PDC. Pelvis is des-
tination of intermediate influence, and hip persists as
an essential source of interactions.

5 DISCUSSION AND
CONCLUSION

The aim of this work was the analysis of the direc-
tion of influence of the kinematic data, considering

Figure 2: Mean values computed from individual maximum
PDC, in frontal plane, during running. As in Fig. 1, nodes
are the kinematic joints of ankle, knee, hip, pelvis and trunk.
Thicker stubs represent arrows.

Figure 3: Mean values computed from individual maximum
PDC, during running, in transverse plane. Also, nodes are
the kinematic joints of ankle, knee, hip, pelvis and trunk.
Thicker stubs represent arrows.

only the stance phase, during running, by the PDC
approach.

To the best of the authors knowledge, no study as-
sessed the direction of interaction flow of 3D kine-
matics of the ankle, knee, hip, pelvis and trunk cov-
ering stance phases during running. In (Nakashima
et al., 2014), the kinematic channels of one subject
were analyzed during the entire running cycle, with-
out any stance phase separation.

In fact, the hypothesis that there was a marked
proximal to distal influence to ankle motion indicated
in (Nakashima et al., 2014) was confirmed in this
study with a larger sample size, even analyzing specif-
ically the stance phase. Our data is also supported by
(Mackinnon and Winter, 1993) that hypothesized that
the trunk and hip motion could influence the ankle
motion during walking.

Interestingly, the hip influenced the most proxi-
mal (pelvis and trunk) and distal joints (ankle and
knee), supporting the importance of the core stabil-
ity to control de movements of the extremities (Peters
and Tyson, 2013); (Noehren et al., 2013). The trunk
joint was especially influenced in the sagittal and the
transverse planes. The pelvis joint received impor-
tant influences in sagittal and frontal planes. In frontal
plane, (Mackinnon and Winter, 1993) indicated an in-
fluence from the hip and (Powers, 2003) suggested an
effect from the knee.
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The next step is to analyze results from general-
ized PDC (gPDC), a variation of PDC that deal with
time series with different variances (Taxidis et al.,
2010).

These analyses can expose the directional influ-
ence patterns that may help physiotherapists to dis-
tinguish normal movements from altered ones during
running and to propose treatment running techniques,
prevention and rehabilitation programs.
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