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Abstract: The selection of discriminative features that properly define a person appearance is one of the current 
challenges for person re-identification. This paper presents a three-dimensional representation to compare 
person images, which is based on the similarity, independently measured for the head, upper body, and legs 
from two images. Three deep Siamese neural networks have been implemented to automatically find salient 
features for each body part. One of the main problems in the learning of features for re-identification is the 
presence of intra-class variations and inter-class ambiguities. This paper proposes a novel normalized double-
margin-based contrastive loss function for the training of Siamese networks, which not only improves the 
robustness of the learned features against the mentioned problems but also reduce the training time. A 
comparative evaluation over the challenging PRID 2011 dataset has been conducted, resulting in a remarkable 
enhancement of the single-shot re-identification performance thanks to the use of our descriptor based on 
deeply learned features in comparison with the employment of low-level features. The obtained results also 
show the improvements generated by our normalized double-margin-based function with respect to the 
traditional contrastive loss function. 

1 INTRODUCTION 

The person re-identification problem consists of 
visually associating people across camera views at 
different locations and time, this means recognizing 
an individual through different images. Automating 
the re-identification problem is an essential task for 
large scale distributed multi-camera surveillance 
systems, whose rapid expansion deals a vast quantity 
of visual data to manage.  

As most of the object recognition mechanisms, the 
re-identification process presents two main steps. 
First, the selection and computation of features to get 
a person representation, and second, the matching of 
two samples of the same person by means of 
measuring the similarity between them. However, 
visual appearance based matching becomes a 
remarkable challenge in unconstrained scenarios, 
where large changes occur in view angle, 
illumination, background, occlusion, and resolution, 
producing huge differences in a person’s appearance 
among different camera views.  

In order to face this problem, a large amount of 
research has been focused on the design of novel 
visual features able to represent the most discriminant 

aspects of an individual’s appearance, which are 
invariant to pose, scale and illumination. Some of the 
most commonly used representations, like RGB or 
HSV histograms (Bazzani, 2013), Gabor filters 
(Zhang, 2011) and HOG-based signatures (Oreifej, 
2010), are based on low-level local features, such as 
color, texture, and shape respectively. With the aim 
of integrating several types of features with 
complementary nature, like the used ones in 
(Farenzena, 2010), into a global signature, bag-of-
words (BoW) model has been widely employed. In 
(Ma, 2014), BoW model is improved by means of 
using the Fisher Vector, (Sánchez, 2013), which 
encodes higher order statics of local features. Other 
relevant methods to fuse different modalities of 
features are the ones based on covariance descriptors, 
extensively used in feature-oriented approaches, such 
the method proposed in (Corvee, 2010).  

To improve the robustness to partial occlusions, 
region-based approaches decompose a human body 
image in different articulated parts and extract 
features for each one. In that way, spatial information 
is also integrated into the feature representation. In 
(Bazzani, 2014), a symmetry-based silhouette 
partition is used to detect salient body regions.   
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Recently, research has been focused on the reduction 
of the number of high-level representations used to 
describe a person. Instead of using traditional 
dimensionality reduction methods, such as Principal 
Component Analysis (PCA), many re-identification 
algorithms choose an attributes-based approach, 
allowing a description, which is semantically 
meaningful to humans. In (Layne, 2014) attributes as 
hair or clothing style are combined with low-level 
features.  

An alternative solution to the feature selection 
problem is the use of deep learning algorithms, which 
provides a useful tool to automatically find salient 
high-level representations from an image. These 
algorithms usually train a neural network model with 
a high number of layers by means of a supervised 
learning process. Deep Convolutional Neural 
Networks have commonly been trained to perform 
object recognition or classification tasks, such as in 
the work presented in (Krizhevsky, 2012). 

The deep Siamese networks, recently employed in 
re-identification field, allow the learning of high-level 
features by means of modelling the similarity 
between a pair of images. The approach presented in 
(Yi, 2014) not only uses Siamese networks to learn 
deep features but also to address a distance metric 
learning jointly. A Siamese network consists of two 
convolutional neural networks sharing parameters 
and joined in the last layer. In this last layer, the loss 
function leads the whole network to discriminate 
between pairs of similar or dissimilar images. 
Therefore, the re-identification task is treated as a 
pairwise classification problem.  In order to reduce 
the intra-class variation and highlight the inter-class 
variation, the contrastive loss function, described in 
(Hadsell, 2006), has been widely employed as loss 
function in the last layer of deep Siamese networks. 

The matching process in re-identification consists 
of recognising the person shown by an image that has 
been selected in one view (probe image) in all the 
images from another view (gallery images). This is 
achieved by calculating the distances between the 
probe image and all gallery images using the 
extracted features, and returning those gallery images 
with the smallest distances as potential matches. 

In this paper, a novel three-dimensional 
representation to describe the similarity between two 
images is proposed. The human shape has been 
divided into three parts: head, body, and legs. For 
each part, a deep Siamese Network has been 
implemented to model the appearance similarity 
between this body part from different images. The 
result is the learning of three similarity distances 
(head, body, legs) whose computation gives the value 

of each one of the components of our three-
dimensional descriptor.  

With the aim of obtaining a single value metric to 
perform the re-identification matching, the 
comparison between two images has been calculated 
as the module of our three-dimensional descriptor.   

The main contributions presented in this paper are 
the improvements performed over the contrastive loss 
function originally employed in Siamese networks. In 
the first place, a new formulation based on two 
margins instead of only one is proposed. 
Subsequently, a second enhancement has been 
achieved by means of implicitly including the 
normalization of the compared features in the loss 
function. This novel loss function allows to obtain 
more discriminative features, which present more 
robustness against intra-class variations and inter-
class ambiguities, as well as, a faster training stage, 
due to the reduction in the number of the required 
iterations.   

The re-identification capacity of our method has 
been evaluated over the challenging PRID 2011 
dataset (Hirzer, 2011), proving the improvement 
obtained with the use of our normalized double 
margin-based loss function, in comparison with the 
traditional one. Furthermore, these results have been 
compared with a re-identification method based on 
low-level features, highlighting the advantages of 
employing deep features.  

The rest of the paper is organized as follows. 
Section 2 describes the proposed approach, Section 3 
presents the experimental results obtained, and some 
concluding remarks are given in Section 4. 

2 THE PROPOSED METHOD 

Considering the person re-identification task as an 
isolated module of a more complex surveillance 
system, its objective is to recognize a certain person 
rendered in an image that has been selected in one 
camera view (probe images), in all the images from 
another view (gallery images). Therefore, it is 
assumed that these person images have been 
previously detected in both non-overlapping camera 
views. 

In this paper, that re-identification goal is 
achieved by calculating the distances between the 
probe image and all gallery images using a 3D deep 
feature. Our 3D descriptor measures the degree of 
similarity between two images. Therefore, 
understanding the descriptor as a vector, its module 
should present the smallest values for the matchings 
between the images rendering the same person.  
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Figure 1: Re-identification Method Architecture. 

The following sections present the architecture of this 
re-identification method, the training of the deep 
features models, the formulation of the new loss layer 
employed, and the interpretation of our descriptor as 
a 3D point, or as a Euclidean distance. 

2.1 Re-Identification Method 
Architecture 

The proposed re-identification method follows the 
architecture presented in Figure 1, as explained 
bellow. 

To measure the similarity between two person 
images, firstly, each image is divided into three parts 
roughly corresponding to the head, upper body, and 
legs, using the human shape proportions. Secondly, a 
Convolutional Neural Network (CNN) computes a 
multi-dimensional descriptor, ܦ	௕௣

	
௜, for each one of 

the mentioned parts, whose formulation is shown in 
(1), where the index bp represents one of the labels h, 
b, and l, to refer to the head, upper body or legs 
descriptor respectively. The index i takes the values 1 
or 2 corresponding to each one of the two input 
images. Every element of the array descriptor 
presents the form ݀	௕௣

௝
௜ , where the index j represents 

each one of the elements of the descriptor array. 
Therefore, j can take values from 1 to N, being N the 
dimension of the descriptor. The value of N is 100 for 
௛	ܦ 	
௜, and 200 for	 ௕	ܦ 	

௜ and ܦ	௟ 	
௜. 

௕௣	ܦ
	
௜ ൌ ൫ ݀	௕௣

ଵ
௜ , … , ݀	௕௣

ே
௜ ൯ (1)

Subsequently, for every body part, bp, a comparison 
function,		 ௖݂	

௕௣ , calculates the distance between the 
multi-dimensional descriptors obtained for the two 
images, as in (2).  

௖݂	
௕௣ ൌ ට∑ ൫ ݀	௕௣

௝
ଵ െ ݀	௕௣

௝
ଶ൯

ଶே
௝ୀଵ   (2)

The distance obtained for each body part comparison 
is an element of a three-dimensional descriptor 
P൫݌௫, ,௬݌	  ௭൯, as it is set in (3), (4) and (5). The݌
module of this vector is then calculated and employed 
as the metric to measure the appearance differences 
between the images.  

௫݌ ൌ ௖݂
௛  (3)

௬݌ ൌ ௖݂
௕  (4)

௭݌ ൌ ௖݂
௟  (5)

2.2 Siamese Deep Neural Network 
Training 

In order to train each one of the three Convolutional 
Neural Networks used in the proposed re-
identification method, a deep Siamese architecture 
has been configured. For each body part, a training 
process has been conducted using a Siamese network. 
The training is supervised, therefore the images must 
be labelled with an identification number, ID, which 
represents the identity of the rendered person.  

 

Figure 2: Siamese deep training algorithm for head CNN. 
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Figure 3: Convolutional Neural Network model. 

Figure 2 shows the Siamese network employed to 
train the head model. This model follows a CNN 
architecture traditionally applied in computer vision 
classification, which is shown in Figure 3. This neural 
network is considered as a deep one because of the 
relatively high number of layers compounding it, 
whose implementations have been performed using 
the Caffe libraries (Jia, 2014). The essential layers of 
this network are two convolutional layers, two max-
pooling layers and an inner product layer, which is a 
fully connected layer whose number of outputs is 
equal to N, (1). The main parameters of the layers are 
presented in Figure 3, where each layer is named with 
the following combination of several fields 
layernameR_i_bp. The layername field indicates the 
layer type; R only is needed when more than one layer 
of the same type is used in the model and takes 
different values in order to differ those layers; i 
represents the labels a and b to refer to each one of 
the two input images, and bp takes the values 1, 2, or 

3, corresponding to each body part, i.e. head, upper 
body, and legs, respectively. 

With the aim of learning the CNN weights values, 
this model is duplicated. The input of each one of the 
two obtained identical models is each one of the 
images to be compared. Therefore, two CNN sharing 
their parameters are joined by means of the 
comparison function, (2). Moreover, a labeller layer 
takes the identification numbers as inputs and its 
output, y, values 1 if the IDs are the same number and 
0, otherwise.  

During the training, by means of the forward and 
back propagation method (Rumelhart, 1988), the 
parameters of both CNN are lead to values which 
make the comparison function, ௖݂	

௕௣ , get closer to 
certain objective values. The objective values for the 
comparison function, both when y equals to 1 and 0, 
are defined in the loss function, ܬሺఏሻ. This function 
measures the deviation of the comparison function 
value from the objective ones. 
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2.3 Loss Function 

Siamese networks have commonly been trained using 
the contrastive loss function, presented in (6), as loss 
function, ܬሺఏሻ. ݉	 is a constant parameter called 
margin, and B is the batch size which means the 
number of pairs used to compute the cost function in 
every iteration. θ is an array, whose elements, ߠ	௡, are 
the distances computed by the comparison function 
for each one of the images pair of a batch of B 
samples, i.e. ߠ	௡ is the ௖݂	

௕௣  of the sample n. 
This equation measures the half average of the 

error computed for every pair, taking into account 
both cases, when the input images patches belong to 
the same person, positive pair (y=1), or to different 
ones, negative pair (y=0). The contribution of a 
positive and a negative pair to the loss function are 
described by (7) and (8), respectively. 

ሺఏሻܬ ൌ 	
1
ܤ2

෍ߠݕ	௡ ൅ ሺ1 െ ሺ݉ݔሻ݉ܽݕ െ ,௡ߠ 0ሻ
஻

௡ୀଵ

 (6)

	݁௣ ൌ ௡ (7)ߠ
݁௡ ൌ ሺ݉ݔܽ݉ െ ,݊	ߠ 0ሻ (8)

According to (7), positive samples cause an error or 
loss even when the distance measured is under the 
value of the margin given, as is shown in Figure 4a. 
This loss leads the training to learn features which 
make the distance between images null, causing at the 
same time that the distance corresponding to quite 
negative samples is also lower than the margin, m, 
also causing an increment of the total loss.  Therefore, 
the total loss value oscillates throughout the training 
due to the difficulty of leading the distances in 
positive samples near the zero value, as Figure 5a 
shows.  

One of the main contributions of this paper is the 
design of a new contrastive loss function based on 
two margins. These two margins establish the 
separation between the objective values of the 
distances (calculated for the comparison function) for 
positive and negative samples. The result of using two 
margins is an increment in the discriminative capacity 
of the learned features. 

The formulation of the double-margin-based 
contrastive function is described in (9), where ݉ ଵ and 
݉ଶ are two constant parameters called margins, and 
B is the batch size, being each element, ߠ	௡, the 
distance computed by the comparison function, ௖݂	

௕௣ , 
for the sample n. 

ሺఏሻܬ ൌ 	
ଵ

ଶ஻
∑ ݕ ൉ ௡	ߠሺݔܽ݉ െ ݉ଵ, 0ሻ ൅
஻
௡ୀଵ

																													ሺ1 െ ሺ݉ଶݔሻ݉ܽݕ െ ,௡ߠ 0ሻ  
(9)

 
(a) 

 
(b) 

 
(c) 

Figure 4: Loss contribution of a positive, ݁௣, and 
negative,	݁௡, single pair sample caused by the loss function 
in the cases: (a) using the traditional contrastive loss 
function, (6), with m=1.5 and	ߠ ൌ ௖݂	

௕௣ ; (b) using the 
double-margin contrastive loss function (9) with ݉ଵ ൌ
1and ݉ଶ=2 when ߠ ൌ ௖݂	

௕௣ and (c) using the double-margin 
contrastive loss function, (9), with ݉ଵ ൌ 0.3and ݉ଶ=0.7 
when	ߠ ൌ ௡݂௢௥௠	

௕௣ . 

The contribution of a positive and a negative pair to 
the loss function, (9), are described by (10) and (11), 
respectively. 

݁௣ ൌ ௡ߠሺݔܽ݉ െ݉ଵ, 0ሻ (10)

݁௡ ൌ ൫݉ଶݔܽ݉ െ ,݊	ߠ 0൯ (11)

According to (10) and (11), no loss is caused by 
positive samples with a distance value lower than the 
first margin, ݉ ଵ, and negative samples with a distance 
higher than the second margin, ݉ଶ, as is shown in 
Figure 4b. The function forces the comparison values 
obtained for positive pairs to be lower than the first 
margin, and those obtained with negative pairs to be 
higher than the second margin. This results in a 
reduction in the amplitude of the oscillation in the 
total loss value throughout the training process, as 
well as in a decrease in the value around which the 
loss function oscillates. Furthermore, such a value is 
achieved in a lower number of iterations, becoming 
the learning process faster, as Figure 5b shows. 
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(a) 

 
(b) 

Figure 5: Loss function evaluated over a cross-validation 
set of samples throughout the training process of the head 
part in the cases: (a) using the traditional contrastive loss 
function, (6); and (b) using the double-margin contrastive 
loss function, (9). 

The selection of the margins values is a critical 
issue which depends on the range of values presented 
by the distances, ௖݂	

௕௣ . However, this range varies 
along the training process. For that reason, a new 
intermediate step of normalization has been added 
with the goal of obtaining normalized distances, 

௡݂௢௥௠	
௕௣ , with a range of values [0,1). The distances 
calculated by the comparison function ௖݂	

௕௣ , are 
normalized by the function presented in (12). 

௡݂௢௥௠	
௕௣ ൌ 2 ൬

1

1 ൅ ݁ି ௙೎	್೛ െ 0.5൰ (12)

Subsequently, the normalized distances, ௡݂௢௥௠	
௕௣ , are 

the inputs, ߠ	௡, of the loss function, (9), whose margin 
parameters have been set with the values ݉ଵ ൌ 0.3 
and  ݉ଶ=0.7. The loss contribution of a positive 
sample, (10), and a negative sample, (11), in function 
of the value of the distance ௖݂	

௕௣  present a slightly 
different shape, as Figure 4c shows.  

2.4 Three-Dimensional Feature Module 

Once the deep features for head, upper body, and legs 
have been learned, the distances computed by the 
comparison function for each one of them, ௖݂	

௛ , ௖݂	
௕  

and ௖݂	
௟ , respectively, constitute the elements of our 

three-dimensional descriptor, P, according to Figure 
1.  The last step to obtain a single metric to measure 
the appearance difference between person images is 
the computation of the module of P, as in (13). 

|ܲ| ൌ ඥ݌௫ଶ ൅ ௬ଶ݌ ൅ ௭ଶ  (13)݌

The descriptor P can be understood as a 3D point, and 
consequently, its module, |ܲ|, is the distance from the 
origin of the coordinates system to the 3D point P.  
Figure 6 represents that point for a test set of images 
pairs. The point positions for positive samples are 
nearer the origin than those for the negative ones, 
proving that the training process has been effectively 
conducted. 
 

 
(a) 

 

 
(b) 

Figure 6: Three-dimensional representation of descriptor P, 
in green for positive samples, and in red for the negative 
samples for a test set in the cases: (a) using one margin 
contrastive loss function, (6), in the training, and (b) using 
double-margin contrastive loss function, (9), in the training. 

The result of a proper training is the formation of 
two separated clusters, those formed by the points 
representing the positive samples and the negative 
ones. The separating boundary between them is a 
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cube, whose dimension is the value of the margin 
parameter employed in the loss function. Therefore, 
if the loss function employed is based on only one 
margin, m, like the traditional contrastive loss 
function, (6), the points representing positive samples 
should be inside a cube of dimension m, and the 
negatives outside, as Figure 6a shows.  

If the novel double-margin contrastive loss function, 
(9), is employed, the resulting clusters present a 
bigger separation between them, which means that 
more discriminative features have been learned. The 
points representing positive samples should be inside 
a cube of dimension ݉ଵ, and the negatives outside a 
larger cube of dimension ݉ଶ, as Figure 6b shows. 

2.5 Euclidean Distance as Metric 
Distance 

A common approach for the re-identification task 
consist of the extraction of a number of features and 
subsequently the computation of a metric distance to 
measure the appearance similarity between two 
person images from their vectors of features.  

Following that structure, the vector of features 
extracted, for each image i, by the proposed method 
is an array of 500 deep features, ܨܮܦ	

	
	
௜, which is 

formed by means of concatenating the vectors of 
features calculated for head, upper body and legs, 
	 ௛	ܦ 	

௜, ܦ	௕ 	
௜ and ܦ	௟ 	

௜ respectively, as in (14).  

	ܨܮܦ
	

	
௜ ൌ

൫ ݀	௛ ଵ
௜ , … , ݀	௛ ଵ଴଴

௜ , ݀	௕ ଵ
௜ , … , ݀	௕ ଶ଴଴

௜ , ݀	௟ ଵ
௜ , … , ݀	௟ ଶ଴଴

௜ 	൯  
(14)

The metric distance used by our method is the 
Euclidean distance, as can be deducted from the 
computation of P module, (13). Taking into account 
that the elements of P are the distances calculated by 
the comparison function for each one of the body 
parts, the module of P can be computed as (15) 
presents. Using (2) to substitutes each one of the 
distances, the modules computation takes the form 
shown in (16), which is clearly the formulation for the 
Euclidean distance between ܨܮܦ	

	
	
ଵ and ܨܮܦ	

	
	
ଶ. 

 

|ܲ| ൌ 	ට ௖݂	
௛ ଶ ൅ ௖݂

௕ ଶ ൅ ௖݂	
௟ ଶ (15)

|ܲ| ൌ

ۣ
ളള
ളള
ളള
ളള
ളള
ളള
ളള
ളള
ളള
ളለ

෍൫ ݀	௛ ௝
ଵ െ ݀	௛ ௝

ଶ൯
ଶ

ଵ଴଴

௝ୀଵ

൅෍൫ ݀	௕ ௝
ଵ െ ݀	௕ ௝

ଶ൯
ଶ

ଶ଴଴

௝ୀଵ

൅෍൫ ݀	௟ ௝
ଵ െ ݀	௟ ௝

ଶ൯
ଶ

ଶ଴଴

௝ୀଵ

 (16)

3 EXPERIMENTAL RESULTS 

In this section, the evaluation method is described, as 
well as the dataset used to perform the different tests. 
Finally, the obtained results are presented and 
discussed. 

3.1 Evaluation 

The Cumulative Matching Characteristic (CMC) 
curve (Moon, 2001) has been calculated in order to 
evaluate the performance of the proposed re-
identification method. The CMC, which is a standard 
performance measurement, renders the matching rate 
for each rank, r, i.e. the expectation of finding the 
correct match within the top r matches.  

To obtain the CMC curve, first, every image from 
the probe set is matched with all the images from the 
gallery set, considering as top matches those which 
present the lowest values for the module of  our three-
dimensional descriptor, |ܲ|. 

3.2 Dataset 

The tests have been performed on one of the most 
widely used datasets for evaluating re-identification 
approaches, the PRID 2011 dataset (Hirzer, 2011). 
This dataset is formed by person images recorded 
from two different static cameras, presenting 
substantial differences in camera parameters, 
illumination, person poses, and background. Two 
versions are provided, single-shot, that contains only 
one image for each person from each camera, and 
multi-shot that presents several images for each 
person and each camera. In this work, the first one has 
been selected, where camera view A contains 385 
individuals, and camera B, 749. There are 200 of 
these pedestrians appearing in both views, which are 
randomly divided into two groups of 100 individuals, 
one used in the training process, and the other in the 
test, that is the CMC curve computation. For 
evaluation on the test set, the procedure described in 
(Hirzer, 2011) is followed, i.e., the images of view A 
for the 100 individuals selected as test set has been 
used as probe set, and the gallery set has been formed 
by 649 images belonging to camera view B (all 
images of view B except the 100 corresponding to the 
training individuals). 

3.3 Results 

The tests performed involve the computation of the 
CMC curve using the PRID 2011 dataset as it has 
been explained above.  
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Three versions of the re-identification method 
proposed in this paper have been tested, according to 
the loss function used to learned the deep features: 
 Deep Features Learned by One Margin-based 

contrastive loss function (6), (DFL-1M).  
 Deep Features Learned by Double Margin-based 

contrastive loss function (9), (DFL-2M).  
 Deep Features Learned by Normalized Double 

margin-based contrastive loss function (9) y (12), 
(DFL-N2M).  

The CMC scores are presented in Table 1, and the 
corresponding curves are plotted in Figure 7. 

Table 1: CMC scores (%) for three versions of the proposed 
re-identification method. 

Rank  1 10 20 50 100 
DFL-1M 1 5 9 19 34 
DFL-2M 3 15 25 37 56 

DFL-N2M 6 20 26 38 63 

The use of our novel double-margin based 
contrastive loss function cause remarkable 
improvement in the performance of the re-
identification method. In addition, the normalization 
of the distances considered by that loss function also 
lightly enhances the obtained results. For that reason, 
this last version has been selected as the definitive one 
to be implemented in our re-identification algorithm. 

 

 

Figure 7: CMC curves for Three Versions of the Proposed 
Re-Identification Method. 

In order to evaluate the effect of using deeply learned 
features instead of other low-level features (LLF) 
selected, our method performance has been compared 
with an algorithm based on the Euclidean distance 
between color and texture features, extracted as 
(Hirzer, 2012) describes. This algorithm has been 
selected because our algorithm can be understood as 
the computation of the Euclidean distance between 
the deep features computed for each image of a pair, 
as it has been explained in section 2.5. In that way, 

since the distance metric used for both of the 
compared methods is the Euclidean distance, the 
difference in the performance is only due to the use 
of deeply learned features in contrast to low-level 
ones.  

The CMC scores for both approaches are 
presented in Table 2, and the corresponding curves 
are plotted in Figure 8. 

Table 2: CMC scores (%) for the proposed Re-
Identification method and a method based on Low-Level 
Features. 

Rank  1 10 20 50 100 
DFL-N2M 6 20 26 38 63 

LLF 3 10 14 28 45 

The automatic selection of features provided by the 
proposed deep learning algorithm results in a 
considerable improvement of the re-identification 
performance compared with the computation of low-
level features based on color and texture, which have 
been traditionally employed.  

 

 

Figure 8: CMC curves for the Proposed Re-Identification 
method and other based on Low-Level Features. 

4 CONCLUSIONS 

This paper presents a re-identification approach based 
on the learning of deep features for different body 
parts, providing a three-dimensional descriptor which 
results in a notable improvement in the performance 
in comparison with an algorithm based on low-level 
features. 

In addition, the traditional contrastive loss 
function employed in the learning process has been 
enhanced by the design of a novel formulation based 
on two margins and the normalization of the variable 
on which it depends.  

The evaluation of the proposed method has been 
performed over a highly challenging dataset, the 
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PRID 2011 dataset, that presents many of the 
variations occurring in a real world surveillance 
scenario, such as changes in human pose, 
illumination, background, and even camera 
parameters. The evaluation results demonstrate that 
deeply learned features provide more robustness 
against these challenges than low-level features based 
on color and texture.  

The conducted tests have proved the remarkable 
improvement in the performance due to the use of the 
new loss function. This normalized double margin-
based loss function leads the training process to learn 
more discriminative features, which reduces the intra-
class variation and highlights the inter-class variation. 
Moreover, the proposed new loss function makes the 
training process faster, since an acceptable model is 
learned in a lower number of iterations, thanks to the 
use of two margin parameters.  

The obtained results present the normalized 
double-margin contrastive loss function as a 
potentially useful tool in the learning of appearance 
similarity descriptors for multiple applications, as 
well as, in the learning of a distance metric to get the 
proper weighting of the deep features in the 
construction of the optimal discriminative descriptor 
for re-identification. 
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