
LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System
Management Mode

Julian Rauchberger1, Robert Luh2 and Sebastian Schrittwieser2

1St. Poelten University of Applied Sciences, St. Poelten, Austria
2Josef Ressel Center TARGET, St. Poelten University of Applied Sciences, St. Poelten, Austria

firstname.lastname@fhstp.ac.at

Keywords: Malware, Rootkit, BIOS, UEFI, System Management Mode.

Abstract: The theoretical threat of malware inside the BIOS or UEFI of a computer has been known for almost a decade.
It has been demonstrated multiple times that exploiting the System Management Mode (SMM), an operating
mode implemented in the x86 architecture and executed with high privileges, is an extremely powerful method
for implanting persistent malware on computer systems. However, previous BIOS/UEFI malware concepts
described in the literature often focused on proof-of-concept implementations and did not have the goal of
demonstrating the full range of threats stemming from SMM malware. In this paper, we present LONGKIT, a
novel framework for BIOS/UEFI malware in the SMM. LONGKIT is universal in nature, meaning it is fully
written in position-independent assembly and thus also runs on other BIOS/UEFI implementations with min-
imal modifications. The framework fully supports the 64-bit Intel architecture and is memory-layout aware,
enabling targeted interaction with the operating system’s kernel. With LONGKIT we are able to demonstrate
the full potential of malicious code in the SMM and provide researchers of novel SMM malware detection
strategies with an easily adaptable rootkit to help evaluate their methods.

1 INTRODUCTION

Hiding malware such as rootkits or bootkits inside
the BIOS/UEFI of a computer has long been deemed
a theoretical threat rather than an actual attack sur-
face. Implementation seemed too difficult and the
benefits for malicious actors aiming for quick profits
were considered negligible. However, with the recent
rise of Advanced Persistent Threats (APTs) and state-
sponsored attacks, sophisticated targeted attacks are
now considered a realistic threat to businesses (Luh
et al., 2016). For skilled attackers requiring high
stealth and persistence rather than widespread infec-
tion, the BIOS/UEFI of a computer provides an ideal
target as it allows their payload to act independently
of the operating system while still maintaining full
control over it. Moreover, in recent years, an in-
creased focus on security in software development
can be observed and common attack surfaces such
as operating systems and web browsers have become
more and more difficult to exploit. Today, a lot more
investment is needed to compromise a system and
”low-hanging fruits” are slowly disappearing, which
will force attackers to find different targets (Forristal,
2011). Lower operational levels such as the firmware

of a system are still underrepresented in security re-
search and contain vulnerabilities that might prove
more tempting a target in the long term.

The System Management Mode (SMM) is a
legacy mode of operation available in x86 and x86-64
CPUs. Originally, SMM was intended to be used for
maintenance tasks such as power and thermal man-
agement (Duflot et al., 2010). It is a highly privi-
leged mode of operation which has free I/O access,
can directly interact with memory and has no hard-
ware memory protections enabled. The operating sys-
tem itself is suspended during SMM and is therefore
unable to enforce any security policies. To emphasize
that SMM is even more privileged than hypervisors,
it is often referred to as Ring -2 (Domas, 2015; Wo-
jtczuk and Rutkowska, 2009).

Due to its high privileges, the SMM is one of the
key areas of many low-level attacks described in the
literature (Duflot et al., 2010; Kallenberg and Kovah,
2015; Domas, 2015; Duflot et al., 2006; Embleton
and Sparks, 2008; Embleton et al., 2013; Schiffman
and Kaplan, 2014). On modern operating systems, it
provides a level of access even above the kernel. The
main motivation for SMM attacks is therefore the es-
calation of privileges, often with the goal of installing

346
Rauchberger, J., Luh, R. and Schrittwieser, S.
LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System Management Mode.
DOI: 10.5220/0006165603460353
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 346-353
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



persistent malware on the system which is indepen-
dent from the operating system.

Malware running in System Management Mode
provides attackers with several more advantages
which traditional kernel or userland based malware
does not have due to access restrictions. It has
extremely high stealth and persistence capabilities:
under normal circumstances, System Management
RAM (SMRAM) cannot be read or written to from
outside the SMM, not even with Ring 0 privi-
leges (Kallenberg and Kovah, 2015). Thus, SMM
malware, which does not alter the operating system,
is very hard to detect, requiring manual dumping and
reverse engineering of the System Management Inter-
rupt (SMI) handler.

Contributions. The main contributions of this pa-
per are:
• We introduce a flexible framework for

BIOS/UEFI rootkits in the SMM.

• We show how SMM rootkits can access the en-
tire 64-bit address space of the virtual memory by
entering the Long Mode.

• We explain LONGKIT’s ability of interfering with
the operating system’s kernel by locating and
parsing the page table used by the OS.

• We present a prototype of the LONGKIT frame-
work as well as the implementation and evaluation
of two typical rootkit functionalities (login bypass
and system call hooking).

2 BACKGROUND

SMM can only be entered when the CPU receives
a System Management Interrupt (SMI) which is a
hardware interrupt. However, triggering an SMI in
software is also possible, for instance by writing
to the Advanced Power Management Control Reg-
ister (APMC) (Duflot et al., 2010). Upon receiving
an SMI, the CPU will enter SMM and execute the
System Management Interrupt Handler which is lo-
cated in System Management RAM (SMRAM) (Du-
flot et al., 2010). SMRAM is a special region in mem-
ory which, if correctly configured, can only be read
and written to when the CPU is in System Manage-
ment Mode (Duflot et al., 2006). A part of SMRAM is
reserved for the state save area where the contents of
most CPU registers are stored when entering SMM.
When the SMI handler has finished, it executes the
RSM assembly instruction which restores the registers
with the values in the state save area and returns con-
trol to the operating system.

A recurring question regarding SMM malware re-
volves around the level of control the SMM has over
the system and what malicious actions it can exe-
cute (Kallenberg et al., 2014; Kallenberg and Ko-
vah, 2015). Since SMM has direct access to physical
RAM, malware running inside its boundaries can es-
sentially do everything lower privileged malware can.
The only difference is that said functionality might be
more difficult to implement because there is no au-
tomatic translation between virtual and physical ad-
dresses (Duflot et al., 2006) and it is not possible to
directly call APIs of the operating system. Attack-
ers might have to reimplement certain functionality
which is otherwise easily accessible.

By demonstrating the very real threat posed by
novel solutions such as LONGKIT, we hope to shift
attention to the SMM attack surface and inspire fu-
ture research in this area.

2.1 Related Work

In the past, the SMM was shown to be exploitable by
attackers to bypass certain security features (Duflot
et al., 2010). The authors identified four fundamental
flaws in the design of the SMM which they attribute to
the fact that security has mostly been an afterthought
in the specification. Moreover, they also identified
two common design flaws in SMI handlers. These
are not flaws in the specification but rather commonly
made programming mistakes which subvert security.
Similar observations have been made by (Kallenberg
and Kovah, 2015).

Boot script vulnerabilities are a class of attacks
that apply only to UEFI systems as they rely on in-
terpretation of the S3 boot script data structure which
is a feature of UEFI firmware. S3 resume allows for a
faster startup during a suspend/resume cycle by skip-
ping certain parts of a normal boot sequence and ex-
ecuting the S3 boot script to restore configuration. If
this script is stored insecurely, attackers with Ring 0
privileges can modify it and execute arbitrary code
during early boot (Wojtczuk and Kallenberg, 2014).

Additionally to the classes of attack vectors speci-
fied above, other, less generic exploits have been pub-
lished in the past. Speed Racer (Kallenberg and Wo-
jtczuk, 2015) is a race condition found on multi-core
systems with chipsets lacking or making no use of the
SMM BWP (SMM BIOS Write Protect Disable) reg-
ister. When this register is set, the BIOS region is only
writable if all processors are in SMM. If this feature
is missing or unused, a race condition exists which al-
lows reflashing of firmware by continuously attempt-
ing to unlock the BIOS region on one core and writing
to it on another core. In some cases, the firmware can-

LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System Management Mode

347



not re-lock memory fast enough and the write will go
through. Another attack, The Memory Sinkhole (Do-
mas, 2015), abuses a legacy feature of modern pro-
cessors that allows remapping of the Advanced Pro-
grammable Interrupt Controller (APIC) registers to
a chosen address in memory. If this remapping is
made to overlap SMRAM, reads and writes are redi-
rected to the APIC, allowing an attacker to ”sinkhole”
a small range of memory in SMRAM. By attacking
UEFI template code provided by Intel and used in
most modern UEFI implementations, the SMI Han-
dler can be forced to use a crafted Global Descriptor
Table (GDT) and jump outside of SMRAM to allow
hijacking of execution flow. A memory caching issue
that can be exploited to take control of SMM has been
independently discovered by (Duflot et al., 2009) as
well as (Wojtczuk and Rutkowska, 2009). It is ef-
fectively a cache poisoning attack that is being con-
ducted by marking the SMRAM region as cacheable,
writing the code to be executed to the physical ad-
dress which will then be cached and finally trigger-
ing an SMI which will now execute the SMI handler
from cache rather than the real one. Furthermore,
firmware older than 2006 seemed to commonly have
the problem of not making use of security features
such as write protection of certain memory regions or
registers, making exploitation trivial (Wojtczuk and
Rutkowska, 2009).

Practical Examples. To demonstrate the capabili-
ties of SMM malware, proof-of-concept implemen-
tations have been created by several researchers.
LightEater (Kallenberg and Kovah, 2015) persistently
infects SPI flash memory to show how SMM-based
malware can subvert the security of live operating
systems (e.g. Tails) booted from external media that
normally leave no trace on the hard disk drive of the
system. After initial infection during the use of Mi-
crosoft Windows, LightEater is able to fingerprint the
currently running OS and only execute its malicious
payload upon detection of Tails. It has been specif-
ically developed to scan the RAM for GPG keys,
passphrases and decrypted emails of the Claws email
agent.

(Domas, 2015) demonstrated the use of an SMM
rootkit based on research by Dmytro Oleksiuk User-
land processes signal the rootkit that they wish to be
elevated by writing a magic number to a specific reg-
ister. During the next System Management Interrupt,
the rootkit detects the magic number and grants the
process root privileges. This is possible only because
code running in SMM is free to modify RAM as it
sees fit, including data structures held by the kernel.

The Watcher is a proof-of-concept rootkit whose

only capability is to scan memory for a certain signa-
ture. If this signature is found, data following there-
after will be executed as code by the rootkit (Kallen-
berg et al., 2014). The idea behind The Watcher is
simple yet versatile and powerful. Since it directly
scans physical memory for a signature, all an attacker
has to do is place the signature and the code they want
to execute anywhere in RAM. This could be done by
embedding it in a document or simply by sending a
network packet containing the payload to an arbitrary
port. As long as the data will be stored in memory for
some time, The Watcher will find and execute it. A
demo of this idea has been implemented and is avail-
able online1.

Classified documents leaked by Edward Snowden
show that the NSA has had the capability to infect
BIOSs since at least 2008 (Appelbaum et al., 2013).
These ”implants” provide advanced stealth and per-
sistence capabilities and have been specifically cre-
ated for a wide range of platforms. The NSA shows a
clear preference to attack BIOSs rather than the op-
erating system itself, indicating that such malware
works very well and has low detection rates.

3 SMM ROOTKIT CONCEPT

In this section we introduce the LONGKIT frame-
work and discuss how our framework approach dif-
fers from existing solutions. Additional information
about system architecture and the low-level CPU in-
teraction can be found in Intel’s Software Developer
Manual (Intel, 2016).

LONGKIT is a fully functional exemplary imple-
mentation of a BIOS-based rootkit making use of Sys-
tem Management Mode (SMM) for advanced stealth
and persistence. It does not alter the contents of the
hard drive in any way and is stored solely in BIOS
flash memory. LONGKIT takes control of the operat-
ing system by installing a malicious System Manage-
ment Interrupt (SMI) handler at boot time. By over-
writing the handler for interrupt 0x01, it can intercept
debug exceptions that are generated when a hardware
breakpoint is encountered. To hide the modifications
made to the interrupt handler in RAM, a hardware
breakpoint is configured to watch reads and writes of
the modified memory area. If the operating system
tries to access that area, LONGKIT will be alerted and
can take countermeasures to avoid detection. In order
to hide modifications made to the debugging regis-
ters, a special feature of the x86 architecture is being
used. Setting the General Detect Enable (GD) flag in

1https://github.com/scumjr/the-sea-watcher (last ac-
cessed 8.8.2016)

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

348



the DR7 register activates debug register protection,
which causes any MOV instruction that accesses a de-
bug register to also generate a debug exception. This
allows LONGKIT to hide its presence when the system
tries to read or write a debug register.

In order to allow for greater compatibility with
other BIOSs which might configure SMRAM differ-
ently or require to append the malicious SMI handler
after the original, all code has been written position-
independent, ensuring it can run from anywhere in
memory.

3.1 SMRAM Infection

SeaBIOS2 is an open source implementation of a x86
BIOS and the default firmware for QEMU and KVM
but can also run natively on hardware with the use
of coreboot3. It behaves like most other commercial
BIOSs and uses certain platform security features to
lock SMRAM during boot, making it impossible to
read or write to it when not executing in SMM. To in-
stall LONGKIT, a modified version of SeaBIOS is be-
ing used in our example implementation (see section 4
for additional information). SeaBIOS copies the ma-
licious SMI handler to SMRAM prior to locking it.
The original SeaBIOS SMI handler is being copied
after LONGKIT and will be invoked by it as necessary
in order to preserve original functionality. Besides in-
stalling LONGKIT at boot time by means of modifying
the BIOS/UEFI of the motherboard, it would also be
possible to install it at runtime. This requires the use
of a firmware-specific exploit (see Section 2.1).

3.2 Rootkit: Bootstrapping

When SMM is entered and LONGKIT starts to exe-
cute, it first needs to locate itself in memory in or-
der to allow for relative addressing of its data struc-
tures. To do this, a trick commonly used in position-
independent shellcode is being employed. After con-
figuring a temporary stack, a relative CALL will push
the address of the next instruction on the stack which
can then be retrieved with a POP.

The instruction pointer in SMM as pushed by
CALL is not the physical address but rather a virtual
one, relative to the code segment (CS) register. To
ensure addressing behaves consistently and does not
become more complicated than necessary, all of these
segments are configured the same as CS.

After bootstrapping has been completed,
LONGKIT checks if the SMI was actually gen-

2https://www.seabios.org/SeaBIOS (last accessed
8.8.2016)

3https://www.coreboot.org/ (last accessed 8.8.2016)

erated to invoke it or if the original SMI handler
should be executed. Since the hijacked debug excep-
tion handler will always invoke LONGKIT by writing
a magic number to the APMC I/O port, it checks
port 0xB2 for this predefined constant. If it is found,
LONGKIT will enter Long Mode and further execute
its functionality. If not, it will transfer code execution
to the start of the original SeaBIOS SMI handler.

3.3 Rootkit: Entering Long Mode

After the initial execution environment has been con-
figured, LONGKIT switches the CPU to Long Mode in
order to have full access to 64 bit features. Entering
Long Mode allows addressing of more than 4GB of
RAM, accessing the full 64 bit of certain registers and
making use of instruction pointer relative addressing,
which makes writing position-independent code eas-
ier. Although undocumented by Intel, it is possible to
directly switch from real mode to Long Mode, com-
pletely skipping protected mode in the process. We
make use of this technique to avoid unnecessary com-
plexity.

In Long Mode, paging is mandatory and cannot
be deactivated. Therefore, the first step is to set up a
valid page table structure inside SMRAM. To make
paging as simple as possible, all memory is identity-
mapped, which means virtual and physical addresses
will always be exactly the same. For our demonstra-
tion, we only map the first gigabyte as this is enough
to demonstrate the concept. We set up a PML4 table
in memory with a single entry that points to a PDP
table, which again has only a single entry that points
to a PD table. This last table references 512 2MB
pages that identity-map the first lower GB of RAM.
For further details on the layout of these tables, see
Section 3.5.

After page tables have been set up and loaded in
CR3, LONGKIT sets some flags to prepare for the
transition to Long Mode. First, the Physical Address
Extension (PAE) bit has to be set in Control Register
4 (CR4). Next, we set the Long Mode Enable (LME)
bit which is bit 8 in the Extended Feature Enable Reg-
ister (EFER). Finally, bit 0 (Protected Mode Enable)
and 31 (Paging) are set in Control Register 0 (CR0).
After this, execution is now in 32 bit compatibility
mode. In order to execute real 64 bit code, a global
descriptor table has to be configured and the CS up-
dated to the correct segment.

In order to set up a minimal GDT for LONGKIT,
three segment descriptors are required. Each descrip-
tor is 8 byte in size and should be aligned on an 8 byte
boundary. The first one is a null descriptor, which by
definition should always be present and has every bit

LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System Management Mode

349



set to 0. The second one is a 64 bit code segment de-
scriptor that will be used for the CS register, and the
third is a data segment descriptor, which we will use
for all other segment selector registers.

Since the GDT is no longer used for segmentation
in Long Mode, all base and limit fields can be set to
0.

Now that the GDT has been defined, it can be
loaded with the LGDT assembly instruction. LGDT
has to be passed the address of a special structure
which contains information about the actual GDT. For
our rootkit it is important to note that the GDT address
in the pointer structure has to be the real, physical ad-
dress and not the address relative to the current CS.

After the GDT has been correctly set up, the seg-
ment registers have to be updated. As the CS register
cannot be directly written to, it has to be changed by
performing a far jump into the code segment. Again,
the address jumped to has to be the actual, physical
address and cannot be relative to the CS like the jumps
in real mode were. The correct segment selector for
the code segment is 8, as it is the second descriptor.
When the jump has been performed, the CPU is in
Long Mode and all additional features are available.
The last thing to do now is to update the rest of the
segment registers with the offset of the data segment
defined in the GDT and to re-setup the stack since the
stack pointer is no longer relative to the SS register.

3.4 Invoking SMM from Debug
Exceptions

The next step in taking control of the operating sys-
tem is to find a way to reroute debug exceptions into
system management mode so LONGKIT can handle
them. We decided to overwrite the operating system
interrupt handler for interrupt 0x01 with a new han-
dler that generates an SMI. Since this requires modi-
fication of RAM the OS has access to, we also needed
to find a way to hide the changes. By setting a hard-
ware breakpoint on read and write access of the modi-
fied memory location, LONGKIT can undo all changes
before the OS can process them. This also raises an
additional constraint for our exception handler: since
a hardware breakpoint can only monitor up to 8 bytes
of memory at a time, the handler cannot be bigger
than that or we would have to use multiple break-
points. Listing 1 shows the handler we decided to use.

Listing 1: Debug Exception Handler
push rax
mov al, MAGIC_NUMBER
out SMI_PORT , al
pop rax
iretq

First, RAX is pushed on the stack as we need to
modify and later restore its contents. When an inter-
rupt handler is invoked in Long Mode, only the SS,
RSP, RFLAGS, CS and RIP registers are saved. If
the handler modifies additional registers, it has to take
care of restoring their contents afterwards or the inter-
rupted code might behave unexpectedly.

By writing the MAGIC NUMBER constant to the
SMI PORT, LONGKIT is subsequently invoked. After
that, RAX is restored and IRET is used to return from
the interrupt handler. Restoring of RAX could also be
done from inside SMM, in case any need to further
shorten the handler should arise.

To overwrite the operating system handler, it
needs to be located first. The address of the interrupt
handler can be found in the interrupt descriptor table
(IDT). The location of the IDT itself is loaded in the
interrupt descriptor table register (IDTR). As the con-
tent of the IDTR is stored in the state save area upon
entering SMM, the most consistent way of getting it
is by loading it from there. The offset is 0xFE88 from
SMBASE. The IDTR however does not contain the
physical address of the IDT but rather the virtual ad-
dress used by the operating system. In order to get the
physical location it is therefore necessary to parse the
page table used by the operating system and manually
translate the address.

3.5 Translating a Virtual to a Physical
Address

Depending on whether 2MB or 4KB pages are used,
there are either 3 or 4 levels of page tables to parse.
1GB page tables are not supported by LONGKIT as
they are not used by the operating system we tested.

The first step in translating a virtual to a physical
address is to find the Page Map Level 4 (PML4) table.
This can be achieved by loading the content of the
CR3 register from the state save area, the offset from
SMBASE is 0xFF50.

The virtual address will then be split into multi-
ple parts which are used as indices into the page table
directories.

3.6 Hijacking the Debug Exception
Handler

The next step for LONGKIT is to take control of the
operating system’s debug exception handler.

After the physical address of the interrupt descrip-
tor table has been located, its contents can be parsed
to find the debug exception handler in memory. The
debug exception handler has interrupt number 0x01

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

350



and therefore starts at offset 16. We are only inter-
ested in the location of the handler, which is stored in
multiple parts in the ”Offset” fields.

After reading the virtual address of the handler, it
has to be translated to a physical address. For this,
the same code that was used to translate the IDT loca-
tion can be used. Now that the actual location of the
code in memory is known, it can simply be overwrit-
ten with our malicious handler that invokes the SMM
rootkit.

In order to be able to restore it later on, LONGKIT
first copies the legitimate exception handler to SM-
RAM before overwriting it.

3.7 Debug Registers

Now that all hardware breakpoints will cause an SMI
to be generated and LONGKIT to be run, the debug
registers have to be configured. In total, there are four
usable debug registers on x86-64 CPUs: DR0 to DR3
which contain the linear addresses on which execu-
tion should break, DR6 which contains information
about what condition triggered the debug exception,
and DR7, which configures the exact behavior of the
breakpoints.

DR0 to DR3 are not stored in the SMRAM state
save area upon entering SMM and can therefore be
modified directly. DR6 and DR7 are stored there and
need to be modified in the state save area as their con-
tents will be restored upon exiting.

DR7 is called the debug control register as it can
be used to specify on which conditions the addresses
in DR0 to DR3 should generate a debug exception.

Bit 13 of DR7 is called the general detect enable
(GD) flag and if set, enables debug register protection
which will generate a debug exception prior to any
MOV instructions that reads or writes a debug register.
The flag is used by this rootkit for stealth purposes in
order to detect when the operating system is trying to
make use of the debug registers.

DR6, the debug status register, reports the reason
the last debug exception has been triggered. The first
four bits indicate which of the four breakpoints have
been triggered. They may or may not be set if the cor-
responding breakpoint has not been enabled, so de-
bug handlers should only check the bits of the enabled
breakpoints.

Additionally, we have to take into account that
debug exceptions are generated for execution break-
points before the monitored instruction is being exe-
cuted. This means that upon returning from SMM, the
instruction would immediately generate a new debug
exception, causing an infinite loop. To fix this, the re-
sume flag (RF) has to be set in the RFLAGS register

at the time the instruction is executed. The RFLAGS
register is stored on the interrupt handler stack and
will be restored from there when IRET is executed.

3.8 Debug Register Setup

LONGKIT will use DR0 to create an 8 byte wide read-
/write breakpoint over the modified debug exception
handler. If this breakpoint is ever activated, the OS
tried to read or write to the modified area in RAM.
In this case, LONGKIT will attempt to hide its pres-
ence from the system. The other three debug break-
point registers DR1 to DR3 can be used to implement
traditional rootkit functionality such as backdoors or
monitoring and modification of OS functionality.

3.9 Debug Register Stealth Features

The contents of the DR6 register at the time of a De-
bug Exception can also be used to detect debugging
and rootkit detection attempts performed by the op-
erating system. Bit 14 (BS) is set if the exception
has been caused by single stepping, strongly indicat-
ing the use of a debugger. The 13th bit (BD) signifies
that the cause of the exception was a MOV instruction
which accessed a debug register.

If either of those bits has been set or if read/write
access to the patched debug exception handler has
been detected, LONGKIT removes itself from the op-
erating system by restoring the old debug exception
handler and clearing the debug registers.

The patched handler pushed RAX on the stack be-
fore invoking SMM. Therefore, these changes also
have to be undone before returning execution.

In order to achieve a high level of stealthiness, an
additional problem has to be solved. Although we
created a breakpoint that monitors access of the mod-
ified debug handler, exceptions will only be generated
after the corresponding instruction has been executed.
That means even if we immediately restore the old
handler, the first read will go through, leaking up to
8 bytes. However, since the OS has had no chance
to process the contents of this read yet, the contents
of the register used to read the handler can still be
changed from within SMM by patching it in the state
save area. Our example implementation searches all
general purpose registers for the 8 bytes used for our
patched debug exception handler and replaces them
with the original bytes if found. This implementation
has been tested and found to work well when memcpy
is being used to read the contents of the handler.

LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System Management Mode

351



4 SECURITY EVALUATION

To allow for easier testing, a prototype of LONGKIT
was developed using the QEMU emulator with KVM
on Linux. The virtual machine was booted with a
modified version of SeaBIOS which copies the ma-
licious SMI handler into SMRAM before it is being
locked. For evaluation purposes, the described meth-
ods have been tested using QEMU 2.6.0-rc3 on an
Ubuntu host with Linux kernel 4.4 and KVM enabled.
To demonstrate how our code facilitates the imple-
mentation of traditional rootkit functionality in SMM,
we added two commonly found features: monitoring
of a system call and a backdoor to the root user ac-
count. In our example implementation, DR1 is used to
create an 8 byte wide read/write breakpoint on the en-
try for execve in the Linux syscall table. The break-
point is used to intercept all invocations of the execve
syscall and demonstrates how LONGKIT can be used
to directly monitor what processes are executed on the
OS.

The location of the syscall table is hardcoded for
Ubuntu Server 14.04 LTS and would need to be up-
dated for other distributions. Alternatively, the syscall
table could also be dynamically located in memory.

DR2 is configured as an execution breakpoint on
the commit creds kernel function, again hardcoded
for Ubuntu Server 14.04 LTS. This function is in-
voked whenever the Linux kernel sets new creden-
tials, for instance when executing a process as a dif-
ferent user. LONGKIT intercepts these calls and will,
upon detection of a certain UID, replace the commit-
ted user credentials with root credentials. This effec-
tively allows the backdoor user to be treated by the
system as if it were root. The breakpoint shows that
LONGKIT is not only capable of monitoring the oper-
ating system but can also directly influence it, e.g. by
changing function call arguments like in this example.

To evaluate the stealthiness of our approach, we
wrote a kernel module which tries to access the debug
registers and found that this will be reliably detected
by LONGKIT in all tested scenarios. We also found
that LONGKIT immediately detects the use of GDB
(GNU Project Debugger) on the compromised sys-
tem and hide its presence by erasing its hooks from
memory. If debuggers are being used to create hard-
ware breakpoints, LONGKIT will transparently detect
their use and hide itself at the time the breakpoints are
created, allowing the debugger to execute normally.
We simulated a tool which tries to specifically detect
LONGKIT by reading the interrupt 0x01 handler and
comparing it to a known good value. When using
memcpy (which processes 8 bytes at a time) to read the
full handler, LONGKIT successfully detects the tool

and patches the register used, making it completely
invisible even for the OS kernel.

4.1 Countermeasures

Due to the high privileges of System Management
Mode, devising a general purpose detection method
for arbitrary SMM malware is a complex problem.
In order to defend against SMM malware with cur-
rently existing technologies, the best way is to avoid
infection in the first place or reliably detect tamper-
ing with the BIOS/UEFI firmware. Computer sys-
tems can be either infected at runtime by the use of
one or more SMM exploits or through manual flash-
ing of the firmware which requires access to the hard-
ware. To avoid runtime infection, it is advised to keep
the BIOS/UEFI firmware fully updated at all times.
Technologies such as Intel’s Chipsec4 can be used to
evaluate the security of firmware. Additionally, re-
search suggests that firmware older than 2006 often
makes no use of even basic security features and can
be easily exploited (Wojtczuk and Rutkowska, 2009).
If such firmware is being used, it should be very care-
fully examined to make sure none of the known is-
sues affect it. Even if all these measures are taken,
advanced attackers might still be able to compromise
SMM by using previously unknown attack vectors.
Existing attacks often need kernel privileges to be car-
ried out successfully, which makes it likely that newly
discovered vulnerabilities have the same limitation.
Hardening the operating system so malicious actors
cannot easily run their code in Ring 0 thus helps to
protect against SMM malware.

If the adversary has access to the hardware and
can install arbitrary firmware, defense should focus
on detecting such changes by checking the integrity
of BIOS/UEFI flash memory. One way would be
the use of a Trusted Platform Module (TPM) to de-
tect changes made to the firmware. The problem with
this approach, however, is that it uses the BIOS/UEFI
to check its own integrity, which is impossible to do
securely in the presence of BIOS/UEFI-based mal-
ware. A proof-of-concept implementation exists that
is able to infect the firmware and bypass TPM-based
integrity checks (Butterworth et al., 2013). A better
option is the use of Intel ”Boot Guard” technology
which moves the root of trust from the firmware to
the CPU. If Boot Guard is supported, the Intel Au-
thenticated Code Module (ACM) can be launched to
measure the first code in BIOS/UEFI and put the re-
sult into the TPM. The ACM code itself is signed
by Intel and the signature is checked directly on the

4https://github.com/chipsec/chipsec (last accessed
8.8.2016)

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

352



CPU, making this a viable option to detect unautho-
rized modifications (Intel, 2013). Another way is the
use of the Intel Trusted Execution Technology (TXT)
which can be used with Intel’s open source bootloader
”tboot”. It should be noted that in order for TXT to
be secure, the use of Dual Monitor Mod (DMM) is
required because otherwise attackers might be able
to avoid detection by hiding in SMRAM (Kallenberg
and Kovah, 2015).

5 CONCLUSION

In this paper, we introduced LONGKIT, a novel frame-
work for BIOS/UEFI malware in the SMM which is
written entirely position-independent, fully supports
64-bit computers and is memory-layout aware for tar-
geted interaction with the operating systems kernel.
With the LONGKIT prototype we were able to show
the full potential of concealed malware in the SMM,
where most previous approaches were limited to sim-
ple proof-of-concept scenarios. By implementing two
typical rootkit functionalities (authentication bypass
and system call hooking), we demonstrated the effec-
tiveness of the LONGKIT framework in real-world ap-
plications. Furthermore, we discussed the stealthiness
of LONGKIT and possible ways of identifying future
SMM-based malware.

Based on our comprehensive research and the im-
plementation details provided, further investigation
into practical countermeasures of BIOS/UEFI mal-
ware becomes possible. In order to encourage fu-
ture research into malware and APT defense, all code
will be made available for researchers upon request.
Besides malware, LONGKIT provides many features
which are likely also useful for other SMM research.
The whole code being position independent makes it
very versatile and easily reusable in many different
scenarios. For example, LONGKIT could serve as a
foundation for the development of an open source al-
ternatives to the currently often closed source SMI
handlers provided by many manufacturers. At the
time of writing, the SMI handler used by SeaBIOS is
very minimal and LONGKIT could be used to develop
more sophisticated functionality.

ACKNOWLEDGEMENTS

The financial support by the Austrian Federal Min-
istry of Science, Research and Economy and the Na-
tional Foundation for Research, Technology and De-
velopment is gratefully acknowledged.

REFERENCES

Appelbaum, J., Horchert, J., and Stöcker, C. (2013). Shop-
ping for spy gear: Catalog advertises nsa toolbox. (last
access: 9.8.2016).

Butterworth, J., Kallenberg, C., Kovah, X., and Herzog,
A. (2013). Bios chronomancy: Fixing the static core
root of trust for measurement. ACM Conference on
Computer and Communications Security, Berlin, Ger-
many.

Domas, C. (2015). The memory sinkhole - unleashing an
x86 design flaw allowing universal privilege escala-
tion. BlackHat, Las Vegas, USA.

Duflot, L., Etiemble, D., and Grumelard, O. (2006). Using
cpu system management mode to circumvent operat-
ing system security functions. CanSecWest, Vancou-
ver, Canada.

Duflot, L., Levillain, O., Morin, B., and Grumelard, O.
(2009). Getting into the smram: Smm reloaded.
CanSecWest, Vancouver, Canada.

Duflot, L., Levillain, O., Morin, B., and Grumelard, O.
(2010). System management mode design and secu-
rity issues. IT-DEFENSE, Brühl, Germany.

Embleton, S. and Sparks, S. (2008). Smm rootkits. Se-
cureComm, Istanbul, Turkey.

Embleton, S., Sparks, S., and Zou, C. C. (2013). Smm
rootkit: a new breed of os independent malware. Se-
curity and Communication Networks.

Forristal, J. (2011). Hardware involved software attacks.
CanSecWest, Vancouver, Canada.

Intel (2013). Hardware-based security for intelligent retail
devices. (last access: 9.8.2016).

Intel (2016). Intel 64 and ia-32 architectures software de-
velopers manual.

Kallenberg, C. and Kovah, X. (2015). How many million
bioses would you like to infect. CanSecWest, Vancou-
ver, Canada.

Kallenberg, C., Kovah, X., Butterworth, J., and Cornwell,
S. (2014). Extreme privilege escalation on windows
8/uefi systems. BlackHat, Las Vegas, USA.

Kallenberg, C. and Wojtczuk, R. (2015). Speed racer:
Exploiting an intel flash protection race condition.
Bromium Labs.

Luh, R., Marschalek, S., Kaiser, M., Janicke, H., and Schrit-
twieser, S. (2016). Semantics-aware detection of tar-
geted attacks: a survey. Journal of Computer Virology
and Hacking Techniques.

Schiffman, J. and Kaplan, D. (2014). The smm rootkit re-
visited: Fun with usb. Availability, Reliability and Se-
curity (ARES), Fribourg, Switzerland.

Wojtczuk, R. and Kallenberg, C. (2014). Attacking uefi
boot script. 31st Chaos Communication Congress,
Hamburg, Germany.

Wojtczuk, R. and Rutkowska, J. (2009). Attacking smm
memory via intel cpu cache poisoning. Invisible
Things Lab.

LONGKIT – A Universal Framework for BIOS/UEFI Rootkits in System Management Mode

353


