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Abstract: Georeferenced data is becoming increasingly more available through open source licenses. In this paper, an 

approach is explained to build a real-time interactive 3D virtual world using the Unity 3D engine by using 

the freely available OpenStreetMaps data. This virtual environment can serve as a base for the visualisations 

of spatial and georeferenced data. By making use of OpenStreetMaps this virtual environment can be kept 

up to date with changes in the world. This paper provides an introduction to OpenStreetMaps, discusses 

some of the challenges and provides examples how to process this data in order to generate a virtual 

environment.

1 INTRODUCTION 

OpenStreetMaps (OSM) data (OpenStreetMap, 

2016) has the advantage of being a single data 

source which can provide information about any 

location on Earth. Users can edit the maps through 

different online tools available on the OSM website 

or standalone applications. The size of the database 

is continuously increasing (Stats - OpenStreetMap 

Wiki, 2016).  

Various side projects have also emerged, which 

aim to improve the available map data in areas of 

need during emergencies or calamity situations. One 

of these is the Humanitarian OpenStreetMap Team 

project (Hotosm.org, 2016). Many other services and 

tools use the OSM data to provide routing 

information for GPS devices 

(Garmin.openstreetmap.nl, 2016) or smartphones 

(Osmand.net, 2016). OSM data is also used for 

offline visualisations such as city layout posters 

(Paologianfrancesco.com, 2016) and 3D tactile maps 

for people who are visually impaired (Kärkkäinen, 

2016). Indeed, open and freely available map data 

allows the creation of many diverse applications.  

This paper describes the results of a research 

project aimed at visualising spatial data in a virtual 

environment, which is based upon data provided by 

OpenStreetMaps. The origin of the visualised spatial 

data could come from output of model simulations, 

GIS data files or real-time data provided by online 

data services. We started with the generation of a 3D 

world (Figure 1) based upon OSM data to create a 

solid base for adding other data sources, as well as 

creating a visual reference point when the spatial 

data is viewed. In order to create a realistic 

experience, the Unity (Unity, 2016) game engine 

version 5.4 is used. 

 

Figure 1: Generated visualisation of the port of Rotterdam, 

Netherlands. 

2 RELATED WORK 

Various tools have been developed or are currently 

in development to visualise OSM data in 3D. Some 

tools generate their visualisations in a web browser 

such as F4Maps (F4map Demo - Interactive 3D 

map, 2016), Vizicities (UDST/vizicities, 2016) and 

OSMBuildings (Osmbuildings.github.io, 2016). 
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Other tools are standalone applications, such as 

osm2world (Knerr, 2016) and can save 3D model 

files, which in turn can serve as an input for other 

applications. All of these tools use the same OSM 

database as input, and have to process the data in 

order to generate the 3D worlds.  

Few projects use a game engine to load OSM 

data. ActionStreetMap (Actionstreetmap.github.io, 

2016) generates 3D worlds in Unity and allows a 

player to walk through and interact with the map as 

well as saving a scene back to the OSM XML file 

format. It also features the ability of dynamic 

loading of world elements, which is not present in 

our own project. 

3 ARCHITECTURE 

OSM data can be downloaded from various 

websites. One way to acquire this data is by 

downloading a data extract based upon 

administrative borders such as countries, provinces 

and states (download.geofabrik.de, 2016). Another 

way is to perform an actual query to receive an 

extract of a data set. One such query language is the 

OSM Extended API (Xapi - OpenStreetMap Wiki, 

2016), which was used in this project. Our query 

uses only the bounding box query option, as all data 

is potentially useful for 3D visualisation. Therefore 

the data of interest is extracted at a later step. The 

Xapi query language always returns the latest 

version of the dataset, previous versions of nodes 

(map elements) are not returned. The API returns 

files in the OSM XML format which can then be 

used by other software. 

3.1 Processing the Data 

There are many tools that can operate on OSM files. 

A large single XML file is difficult to index for a 

real-time application, which is why additional pre-

processing is required before we start generating 

world geometry. OSMFilter (Osmfilter - 

OpenStreetMap Wiki, 2016) is used to select the 

nodes that are interesting in the virtual environment: 

land use, buildings, waterways and infrastructure 

such as roads, railroads, high voltage towers and 

windmills. Some objects, such as windmills, have 

been selected for their generality. These objects are 

created as Unity prefabs that can easily be placed on 

the terrain and do not require extra processing. They 

add an extra dimension to the terrain as they are 

often landmarks in an area. After filtering, the 

command line application ogr2ogr.exe (Gdal.org, 

2016) is used to convert the OSM XML file to a 

SQLite database. This will automatically categorise 

the sources of data in tables with the names equal to 

the type of data stored: lines, multilinestrings, 

multipolygons and points. Geometry data is stored in 

the Well Known Binary (WKB) format.  

3.2 Challenges of the OSM Data 

Using OSM data does come with potential 

challenges when creating visualisations. Although 

the amount of data in the database is steadily 

growing, many areas in the world are still 

incomplete which can leave lots of gaps between 

buildings in cities. Aside from that, the actual nature 

of OSM has both pros and cons; everyone can edit 

the database after making a free account. The 

advantage of this is that changes in the real world 

are accounted for quickly in the database. 

Unfortunately it also means that data can be 

incomplete (Figure 2) or mapped incorrectly. 

 

Figure 2: A city which is incompletely mapped. 

Tallahassee, USA. 

Therefore, certain assumptions in visualisations need 

to be made. For example, some of the problems that 

have been noticed are nodes with a building tag 

which are part of storage underneath a bridge. Or 

small wind turbines placed on roofs which in the 

generated world become large turbines. This is a 

challenge that every 3D OSM visualisation must 

handle.  

4 TERRAIN GENERATION 

All terrain and objects are generated as triangles and 

use Unity’s Mesh object to be rendered. In order to 

improve performance most of the geometry is 

marked as static geometry and aggregated as much 

as possible in one single mesh object.  
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In this project five elements have been marked as 

having significant influence for the visual 

representation of the terrain. These are: roads, trees, 

buildings, water surfaces and ground textures. Of 

course, there are many more man-made objects, 

some of which are tagged, but many of these do not 

add an extra sense of positional awareness on the 

average scale of our map; they are too small and far 

away to be seen. 

4.1 Terrain Mesh Creation 

The terrain is generated using tiles based on the 

OSM zoom level 14 (Zoom levels - OpenStreetMap 

Wiki, 2016). This was an early design choice based 

upon the average expected zoom level of the world, 

a trade-off between required tiles and expected map 

detail. OSM tiles use a Cartesian coordinate system 

based upon EPSG:3857. The actual downloaded 

OSM data makes use of the EPSG:4326 (WGS84) 

coordinate system. 

The elevation of the terrain is based upon the 

SRTMv3 (Shuttle Radar Topography Mission, 2016) 

global elevation map. This data is freely available 

and has accuracy from 30 to 90 meter depending on 

the area of interest. 

All terrain related information is generated and 

rendered per tile using Maperitive (Maperitive.net, 

2016). One single tile always represents an OSM tile 

at zoom level 14. Terrain is generated by building 

square geometry with a variable number of vertices.  

Originally a 32x32 regular grid was used to build 

the terrain tiles. But in order to reduce triangle 

count, a simple method of Level of Detail (LOD) is 

implemented by making use of an error threshold to 

determine where to place the vertices. This 

technique is loosely based on existing algorithms 

(Garland and Heckbert, 1995). The threshold is 

configured to be a 15% difference in elevation 

between the last vertex and the vertex that is being 

processed. When the threshold is exceeded, a new 

vertex is inserted at the location and will serve as the 

new starting point for the next difference 

comparison. Every terrain tile is built using this 

algorithm (Figure 3). For convenience, however, all 

terrain tiles will have vertices inserted at the four 

corner points, such that these will always connect 

properly and also guarantees that later tile 

tessellation algorithms generate a square exactly the 

size of a single OSM tile.  

For all the edges of the terrain we store the 

vertices in a list. We keep track of these as 

neighbouring terrain tiles will need to share the same 

vertices at the same location in order to prevent 

seams from appearing at the mesh boundaries due to 

differences in the elevation. 

Neighbouring tiles are quickly determined by 

using the OSM coordinates (x -1 or +1 for horizontal 

neighbours, y-1 or y+1 for vertical neighbours). 

 

Figure 3: An unoptimised (left) and optimized (right) tile. 

When the terrain geometry for a tile has been 

processed and all vertices have been created, the 

tessellation LibTessDotNet (speps/LibTessDotNet, 

2016) library is used to create renderable triangles 

using Delaunay triangulation. 

This process is repeated three times with 

different tolerance values in order to create meshes 

for the LOD system. The vertices at the mesh 

boundaries will always be kept the same, however. 

This allows for a seamless transition from one LOD 

level to another while preventing holes from 

appearing between the meshes in different LOD 

levels. The highest LOD level (with the most 

vertices) is used for this. 

This algorithm results in geometry which has a 

lower polygon count in flat areas, while areas with a 

more diverse elevation will have a higher polygon 

count where detail is needed. 

4.1.1 Texture Generation 

Terrain textures are generated using Maperitive. 

Maperitive reads the downloaded OSM file and can 

then render tiles in the OSM coordinate system, for 

different zoom levels. These tiles are generated with 

styling information based on rulesets which define 

the visual representation of elements on the map. 

Maperitive can be run headless (without user 

interface) to load large OSM XML files and is 

programmable with Python scripts. 
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After the tiles have been generated, the tool 

DXTCrunch (BinomialLLC/crunch, 2016) is used to 

optimize and reduce the memory footprint of the 

tiles as well as creating mip-maps in order to provide 

LOD for textures and reducing moiré effects. The 

files are saved in the compressed image format 

DXT1 which is common for use in game engines.  

Alternatively an aerial map can serve as a base 

layer by providing a Web Mapping Service (WMS) 

for such tiles (Figure 4). This creates a better 

understanding of the terrain type and land cover. But 

it comes with the risk of being low in resolution or 

having colour differences between tiles due to 

different times of photography or cloud cover. 

 

Figure 4: Difference between an aerial WMS layer and tile 

generated with Maperitive. 

Additionally, georeferenced shapefiles can be 

loaded on top of the created geometry to visualise 

different kinds of data (Figure 5). 

 

Figure 5: City of Colombo, Sri Lanka with the May 2016 

flood extend map added (data courtesy of Survey 

Department of Sri Lanka). 

4.1.2 Mesh Colliders 

The default “mesh colliders” of Unity are used to 

build a collision mesh for the generated terrain tiles. 

These can be used to perform hit detection using ray 

casting techniques. Raycasts are used to position 

certain objects (trees, roads) exactly on the terrain, 

such that they do not float above the terrain.  

All LOD levels share the collider of the highest 

and most accurate LOD level. This could lead to 

some floating objects on the terrain, but only when 

these object are so far away from the camera that 

such errors are practically invisible. When the user 

gets closer to the terrain objects, the terrain will be 

shown in the highest LOD level and therefore 

objects should match with the terrain. 

4.2 Building Generation 

The building data that OSM contains is most of the 

time a “floor plan”. So only the vertices are provided 

that composes the outline of the building.  

Before buildings are generated, some pre-

processing scripts using the GDAL libraries 

(Gdal.org, 2016) are used to clip the buildings that 

belong to a certain tile. The tile’s x-y coordinates are 

stored for each row in the database to make it easy to 

query.  
Buildings are generated for each tile rather than 

as one big mesh. The latter would make it 
impossible to load data dynamically depending on 
the camera frustum position. Currently these tiles are 
not loaded on demand yet, which is a feature that is 
planned for the future. Using tiles the rendering can 
also effectively cull buildings that are not visible to 
the camera. If it were just multiple large meshes 
covering the whole terrain area, one building could 
trigger the rendering of thousands of other buildings, 
therefore increasing the number of rendered 
triangles. 

Some buildings have additional information such 
as height (height of the building), number of floors 
and minimum height (distance from the ground). A 
single building can be made of several parts. In this 
case the OSM attribute building:part will be set to 
“yes”. Combined with the attribute min_height, this 
is a powerful option to create buildings which are 
more than just an extruded floor plan, as building 
parts can be stacked on top of each other (Figure 6). 

 

Figure 6: Euromast tower in Rotterdam, the Netherlands. 

It consists of multiple geometry elements using the 

“building:part=yes” tag. 

If the height of the building is available, this 
information is used directly in order to extrude the 
mesh. Otherwise, when the number of floors is 
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known, the “formula for calculating the height of a 
‘mixed-use’ or ‘function unknown’ tall building” 
(Ctbuh.org, 2016) is used to determine building 
height. When none of these are available, a default 
height of 6 meters is used. 

To generate 3D buildings several steps need to 
be performed. The building information is already 
stored per OSM tile in an earlier step. To make 
culling of buildings straightforward, all buildings are 
attached to the tile on which they are standing. For 
each tile we execute the following steps: 

 

Query SQLiteDB for buildings of tile  

For each building in tile  

Merge adjacent vertices to remove 

building walls 

 

Tessellate outline to triangles 

 

Copy outline and elevate by building 

height to create ceiling 

 

Build walls between floor and 

ceiling 

 

Boundary information is returned by the tessellation 

library, which we use to build the “roof” of the 3D 

building. This is a copy of all floor plan vertices 

where the y component has been increased by either 

the calculated height or a fixed default height value. 

Then we generate the walls by looping through 

the edges of the buildings and generating triangles 

for each inner or outer edge. 

All these generated vertices are added to the 

meshbuilder class which will automatically build 

meshes taking into account Unity’s maximum vertex 

limit of 2^16 (65536) vertices into account. 

Each building has a white diffuse colour. OSM 

data sometimes contains wall colour information but 

this is not so common. Therefore it was decided to 

proceed with a uniform colour approach, while 

skipping efforts to texture buildings with a collection 

of premade wall textures. 

4.2.1 Fixed Model Buildings 

A number of buildings are not dynamically 

generated. Often buildings or structures are 

described by a point object (feature) instead of a 

polygon and therefore do not have the necessary 

information to generate a 3D model. 

In this case some prebuilt meshes are used. For 

example, for objects such as: high voltage towers, 

windmills and wind turbines. Occasionally more 

information is available for an object: the type of 

high voltage tower (Tag:power=tower, - 

OpenStreetMap Wiki, 2016) or the blade diameter of 

a wind turbine (Tag:generator:source=wind - 

OpenStreetMap Wiki, 2016). With this information, 

it is possible to select a 3D mesh from a library of 

prebuilt 3D meshes. Currently in this project only 

one pre-made mesh is used per recognized point 

object. 

4.3 Trees and Forested Areas 

Tree placement in this application takes three types 

of OSM data sources into account. The land use type 

landuse=forest is used for random tree placement 

while sometimes an actual single tree is defined 

(natural=tree) or a row of trees (natural=tree_row).  

4.3.1 Forest Areas 

The land use type forest is used to randomly place 

trees in a specified area. No trees should be 

generated outside these areas. Therefore a tree 

placing algorithm has been implemented. Polygons 

in this algorithm are created using the 

LibTessDotNet library which also takes care of 

holes in the geometry. 
 

For each polygon of natural type forest 

   

Tessellate to a 2D mesh using the 

polygon outline  

Calculate expected tree count 

Begin loop for expected tree count 

Choose random triangle of polygon  

 

Get random point in selected 

triangle by using barycentric 

coordinates 

 

Determine if there is already a 

tree at the given random location 

using a radius test 

 

If no tree nearby 

Place tree and continue  

Else  

Try another random location up 

to three times.  
If no acceptable location is 

found, skip tree and continue. 
 

The maximum number of trees that are placed 

per polygon is calculated using the area of a polygon 

multiplied with a tree density factor. A density of 1.0 

means that there will be one tree per square unit of 

the polygon. An absolute maximum regardless of 

polygon size ensures that very large polygons will 

not generate thousands of trees. 
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4.3.2 Reducing Uniformity of Trees 

The vertices of trees are modified by a randomiser 

function to give each tree more of an individual and 

unique look (Figure 7). First, the size is uniformly 

modified using a scale of 0.9 – 1.1 times the actual 

size. Therefore, all the trees vary in size. Secondly, 

the rotation of the tree is changed. Rotation of the x-

axis is from 0 to 360 degrees and on the y- and z-

axis the angle is between -2 and 2 degrees to make 

sure that trees are not all pointing upwards and 

perfectly straight. Finally, all trees have some colour 

variation applied by using vertex colours. For each 

tree a random greyscale colour is determined 

(between RGB 100 to 255), which is then applied to 

all the tree vertices. The trees are then added to the 

meshbuilder class which will again make sure that 

meshes are split when reaching Unity’s mesh limit, 

similar to the construction of buildings. The trees 

object will become a child of the terrain tile in order 

to perform efficient frustum culling. When the tile 

becomes invisible to the camera, so will all the trees 

on top of it. 

 

Figure 7: Trees without variation (left) and with (right). 

When rendering, the fragment shader will multiply 

the tree’s texture colour with the vertex colour, 

giving each tree a different colour. All these steps 

combined lead to a tree placement system which 

creates diverse forests, while keeping the rendering 

batches intact. This means that there is no 

performance loss for having many randomised trees 

compared to non-randomised trees. 

4.3.3 Level of Detail for Trees 

Unity’s own LOD system is used to reduce the 

number of triangles rendered for trees that are far 

away. A LOD system tries to lower the number of 

rendered triangles by replacing detailed meshes with 

meshes that have a lower polygon count. These 

systems work, using the fact that in perspective 

views, objects become smaller when distance to the 

camera is increased. With properly setup LOD 

levels, it is unlikely for the user to notice the 

changing geometry.  

For each tree type, three different meshes have 

been created in 3D modelling software: A normal 

“base” tree and two types of low-polygon meshes 

based upon the base tree (Figure 8). 

 

Figure 8: Two types of trees and their three LOD levels. 

The simplified trees are made like this to prevent 

“popping” of the geometry. Three meshbuilder 

classes are used simultaneously to generate the LOD 

meshes. Each tree that is placed inside the first LOD 

(high detail) meshbuilder is also automatically added 

to the other two mesh builders. This will 

immediately create the meshes for the medium and 

low-polygon trees. Unity’s LODGroup component is 

then added to this object so that Unity can 

automatically determine when to render which mesh 

at what distance. 

4.4 Infrastructure 

Various types of infrastructure are visualised as 

well: Most types of car roads and railways are 

visualised. The 3D models of the roads are generated 

using the linestrings that are available from the OSM 

data. OSM provides many categories for these. The 

data is specifically filtered as follows: ‘unclassified’, 

‘motorway_link’, ‘road’, ‘motorway’, ‘trunk_link’, 

‘primary_link’, ‘service’, ’secondary_link’, 

‘tertiary_link’, ’primary’, ’secondary’, ‘tertiary’ 

and ’residential’. Some categories are currently 

skipped (e.g. trails) because they are rather small 

and do not add significant detail to the virtual world. 

They might be visible on the ground layer tiles. 

An important aspect of roads that requires 

attention is multiple layered roads such as 

intersections, tunnels and bridges. OSM data has a 

solution for objects which share the same x-y 

coordinates but not elevation. The attribute layer 

makes it possible to distinguish these. This way 3D 

roads can be constructed which are layered on top of 

each other or join two different levels together, such 

as intersection junctions. 

The default width of the roads is 5 meters. 

Additionally, width is calculated when properties are 

available such as the number of lanes or if an actual 
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width has been set. The width of a single lane is 

currently configured to be 3.5 meters. This number 

varies internationally, however. The road meshes are 

generated by using a quadratic Bézier curve 

algorithm. Corners become rather angular when road 

sections are drawn straight from point to point. 

These quadratic curves provide much smoother and 

more realistic representation of the roads (Figure 9).  

 

Figure 9: Top-down view of point to point roads (left) and 

quadratic curves (right). 

4.5 Water Surfaces 

Various sources of water surfaces can be found in 

OSM data; these are of the type multipolygon in the 

earlier generated SQLite database. OSM data has 

many classifications of water types (e.g. rivers, 

lakes, canals, etc.). These polygons are tessellated 

directly without additional processing. One aspect 

that has to be considered is that some water surfaces 

such as oceans might not be mapped in OSM as 

polygons. Rather, their coastlines have been 

mapped. Datasets which contain these as polygons 

can be downloaded freely (Openstreetmapdata.com, 

2016). Texture mapping of these water surfaces is 

based upon their absolute position in the virtual 

world. A variation of flow maps (Vlachos, 2010) 

gives these surfaces more water-like dynamics. 

Normal implementations of the flow maps 

commonly use textures for velocities of the water.  

But in our water surfaces vertex colours are used 

instead, as there is no need for high resolution 

flowing water, while also reducing the memory 

footprint for each surface. In order to make sure 

there are no unexpected colour changes in the water, 

the polygons do not share their vertices and every 

triangle has unique vertices. 

5 CONCLUSIONS AND FUTURE 

WORK 

This paper covered an approach to generate a 3D 

virtual world based upon OSM data (Figure 10). 

Various approaches have been shown that were used 

to generate terrain tiles, perform tree placement, 

create infrastructure of roads and railways, plus 

generating polygons of water surfaces. 

There is still room for improvement by 

implementing various other techniques for 

generating efficient geometry. Recent versions of 

Unity support GPU instancing. This creates 

opportunities in displaying massive amounts of 

geometry, such as trees, without having an enormous 

performance impact. Recent DirectX versions 

support dynamic tessellation which allows the 

creation of details on the vertex shader itself without 

having to generate additional vertices on the CPU 

side.  

Another improvement would be to generate 

geometry on the fly instead of only once during start 

up. Dynamic creation of tiles makes it possible to 

explore any place in the world without running into 

potential memory issues, as well as reducing loading 

times at the start of the virtual environment. 

Batching of terrain tiles could be further 

optimized by making use of texture atlases. A single 

4096x4096 pixels texture can fit up to 16x16 terrain 

textures. This would reduce the number of draw 

calls by a factor of 256. Care needs to be taken 

regarding the mip-mapping of these texture atlases 

as border pixels might bleed to the texture of 

neighbouring tiles. It is very likely that some of the 

pre-processing can be skipped by making use of the 

OSM Spatialite-tools (Gaia-gis.it, 2016). These tools 

create a SQLite database with spatial extensions 

which provide a fast way to query geometry from 

the database. As well as keeping OSM node 

references, which potentially allows better merging 

of geometry. 

 

Figure 10: Visualisation of Hamburg, Germany. 
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