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Abstract: This paper is devoted to the healthcare-oriented characterisation of the human movements by means of the 
accelerometric and impulse-radar sensors – the sensors that may be employed in care services for 
monitoring of elderly and disabled persons. Characterisation of the movements in terms of the so-called 
self-selected walking velocity can be used by the medical and healthcare personnel to assess the overall 
health status of a monitored person. The quality of the characterisation, based on the measurement data from 
accelerometric and impulse-radar sensors, has been assessed in a series of real-world experiments which 
involved the estimation of the instantaneous and mean walking velocity of a person moving according to 
predefined patterns. Some indicators of uncertainty of the velocity estimation, determined with respect to 
assumed predefined velocity values, have been used for comparison of the performance of both types of 
sensors. The experiments have shown that impulse-radar sensors enable one to estimate the mean walking 
velocity more accurately than the accelerometric sensors: the estimates obtained on the basis of data from 
the latter sensors are affected by larger bias and are more widely spread around their mean values. 

1 INTRODUCTION 

The life expectancy has been growing in Europe for 
many years, while the healthy life expectancy has 
been slightly diminishing since the last decade of the 
XXth century (cf. http://www.healthy-life-years.eu/). 
Hence the growing importance of research on new 
technologies that could be employed in monitoring 
systems supporting care services for elderly and 
disabled persons. The capability of those systems to 
detect dangerous events, such as person’s fall, is of 
key importance (Hamm et al., 2016). However, 
those systems are expected not only to detect 
dangerous events, but also to predict those events on 
the basis of acquired data. The analysis of gait, as 
well as of the itinerary and timing of activities of the 
monitored persons, may thus contribute to the 
prevention (Baldewijns et al., 2016a). The relevance 
of features related to gait analysis in monitoring of 
elderly persons, and in particular – in fall 
prevention, has been emphasised in several recent 

papers (Buracchio et al., 2010, Studenski et al., 
2011, Lusardi, 2012, Egerton et al., 2014, Stone et 
al., 2015, Thingstad et al., 2015, Baldewijns et al., 
2016b). 

So far, the most popular monitoring technique, 
already applied in healthcare practice, is based on 
wearable devices (Bulling et al., 2014, Cola et al., 
2014, Luque et al., 2014, Brodie et al., 2015). Those 
devices do not require a pre-built infrastructure and 
thus may be used outdoor. The signals from 
movement sensors (mainly accelerometers and 
gyroscopes), worn by a monitored person, are 
transmitted via radio links to a computer and 
analysed. This solution makes also possible the 
acquisition of physiological data (such as values of 
blood pressure, ECG data or EEG data). 

Recently, numerous attempts have been made to 
apply various radar techniques for monitoring of 
elderly and disabled persons (Cuddihy et al., 2012, 
Liu et al., 2012, Tomii and Ohtsuki, 2012, Jian et al., 
2014, Su et al., 2015, Miękina et al., 2016b). Those 
attempts are mainly motivated by the conviction that 
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those techniques may be less intrusive than vision-
based solutions (e.g. digital cameras), less 
cumbersome than wearable solutions (e.g. 
accelerometers and gyroscopes), and less invasive 
with respect to the home environment than 
environmental solutions (e.g. pressure sensors). 

This paper is devoted to the assessment of the 
uncertainty of the estimation of the walking velocity, 
on the basis of data acquired by means of impulse-
radar sensors and by means of accelerometric 
sensors. As suggested in the literature, e.g. (Fritz and 
Lusardi, 2009), the walking velocity is highly 
informative for healthcare experts; for example: 
 the velocity lower than 0.6 m/s enables them to 

predict an increase in the risk of falls and 
hospitalisation of a monitored person; 

 an improvement in walking velocity of at least 
0.1 m/s is a useful predictor for well-being; 

 a decrease of the same amount is correlated with 
deterioration of the health status or advancement 
of disability.  

The comparative study, reported in this paper, is 
based on an extensive set of real-world experiments 
which comprise: 
 simultaneous recording of measurement data 

from both types of sensors, representative of the 
gait characteristics of a person moving according 
to predefined patterns; 

 statistical analysis of those data, aimed at 
determination of certain indicators of uncertainty 
of the velocity estimation.  

Due to the operation principle of both types of 
sensors, one may expect that the position of a 
monitored person can be better estimated on the 
basis of the data from impulse-radar sensors 
(hereinafter called radar data for brevity), and its 
acceleration – on the basis of data from the 
accelerometric sensors (hereinafter called 
accelerometric data for brevity). Therefore, despite 
the fact that both the position and the acceleration 
may also be of interest for the healthcare personnel, 
this study is confined to the uncertainty of the 
estimation of the velocity, which requires similar 
degree of the measurement data preprocessing for 
both types of sensors. 

2 METHODOLOGY OF 
EXPERIMENTATION 

2.1 Data Acquisition 

The raw measurement data for experimentation have 

been acquired by means of the APDM Opal 
accelerometric sensor (cf. http://www.apdm.com/ 
wearable-sensors/) attached to the waist of a 
monitored person, and by means of a pair of 
synchronised impulse-radar sensors – cf. (Morawski 
et al., 2014) – whose location is shown in figure 1. A 
monitored person has moved at the distance of ca. 
1–6.5 m from each of them. 

The walking velocity has been assessed on the 
basis of real-world data acquired when an 
experimenter has been walking at various constant 
velocities, ranging from 0.5 m/s to 1.0 m/s, forth and 
back along a straight line – 20R   times along the 
x-axis, between points (0,3) and (4,3), and R  times 
along the y-axis, between points (2,1) and (2,5) (cf. 
figure 1). In order to assure a known constant 
walking velocity, a metronome has been used. 

 

Figure 1: Experimental setup; the crosses indicate the 
reference points, i.e. the points where marks have been 
placed on the floor. 

2.2 Data Preprocessing 

2.2.1 Radar Data 

The  measurement  data from a pair of impulse-radar  
sensors – after preliminary preprocessing, as 
described in (Miękina et al., 2016a) – take on the 
form of a sequence of numbers representative of the 
x-y coordinates of a monitored person. 

A sequence of the estimates of the instantaneous 
walking velocity may be obtained by numerical 
differentiation of the sequence of the position 
estimates, e.g. by means of the central-difference 
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method (Wagner et al., 2015), defined by the 
formula: 
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where  nd  is a sequence of data to be 

differentiated, and 1 1n n nt t t     are the 

differentiation steps, with nt  denoting the time 

moments at which the data have been acquired. That 
method is, however, very sensitive to errors 
corrupting the data used for derivative estimation; 
therefore, it should be regularised through, e.g., 
optimisation of the differentiation step. The total 
velocity magnitude has been calculated according to 
the formula: 
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where (1)ˆnx  and (1)ˆny  are estimates of the first 

derivatives, computed on the basis of the estimates 
of the x- and y-data sequences. 

2.2.2 Accelerometric Data 

An accelerometric sensor – composed of an 
accelerometer, magnetometer and gyroscope – 
provides a sequence of data representative of the 
monitored person’s instantaneous acceleration in 
three directions, viz. magnetic north, magnetic west, 
and vertical. A sequence of the estimates of the 
instantaneous velocities in these directions can be 
obtained by numerical integration of the sequences 
of the acceleration values. It must be, however, 
taken into account that – since both systematic and 
random errors corrupting accelerometric data 
propagate through the integration process (Thong et 
al., 2004) – the velocity estimates may be subject to 
a growing-with-time drift and random errors whose 
standard deviation is also growing with time. As a 
consequence, non-zero estimates may appear even 
when a monitored person is standing still; therefore, 
the velocity estimates have to be corrected by means 
of a so-called zero-velocity compensation procedure 
(Bang et al., 2003). It can be applied to a velocity 
trajectory whose first and last values are known to 
be zero. In the research reported here, the following 
correction formula has been used: 
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where 
2 1

ˆ ˆn nv v   , 1n  and 2n  are the indices of the 

first and last time instants of the movement, 
respectively; the latter parameters have been 

determined experimentally. The corrected velocity 
trajectories in the magnetic north and west directions 
(denoted with ˆN

nv  and ˆW
nv , respectively) have been 

used for computing the total velocity magnitude 
according to the formula: 
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2.3 Criteria of Performance Evaluation 

In each experiment, R  sequences of the 
instantaneous total velocity estimates have been 
computed using equations 2 and 4 on the basis of 
both radar data and accelerometric data: 
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Prior to the evaluation of the uncertainty of the 
estimation, some outlying sequences have been 
removed to prevent the misinterpretation of the 
results. The outlying sequences have been identified 
as those whose mean value: 
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by more than three standard deviations: 

 
 2( )

1

1
ˆ ˆ ˆ

1

R
r

rR
  



 
   (8) 

Next, the qualitative assessment of the 
uncertainty of the estimates has been performed. It 
has been based on the inspection of the estimates of 
the mean: 
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and standard deviation: 
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of each element of the sequence of the instantaneous 
velocity estimates; R  denotes the number of 
sequences in a set under consideration after 
removing the outlying sequences. 

Finally, the quantitative assessment of the 
uncertainty of the estimates of the mean walking 
velocity has been done using the following 
indicators:  
 the absolute discrepancy between the mean value 

of the estimates of the velocity and the 
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predefined value of that velocity, 
 the absolute root-mean-square discrepancy of the 

estimates with respect to the predefined value, 
 the lower and upper bounds of the absolute 

discrepancy between the estimates and the 
predefined value. 

The above indicators have been calculated 
separately for each set of R   estimates of mean 
walking velocity, obtained in each experiment by 
averaging its N  samples. 

3 RESULTS AND DISCUSSION 

In figures 2–5, the mean sequences of instantaneous 
velocity estimates of a moving person, obtained on 
the basis of the radar data and accelerometric data – 
for both directions of movement (i.e. along x-axis 
and along y-axis) and for all predefined velocity 
values – are presented. 

It is worth being noticed that the uncertainty of 
estimation, based on radar data, is direction 
dependent: for the movement along the x-axis and 
predefined velocity values from 0.5 m/s to 0.7 m/s, 
the estimated mean value of the velocity oscillates 
around the predefined value during the movement. 
This cannot be observed for the movement along the 
y-axis in the same range of velocity values. 
Moreover, it may be seen that the standard deviation 
of the velocity is greater for the movement along the 
x-axis. 

Those differences are caused by the fact, that the 
calculation of the position of the moving person is 
easier when the distance between the person and 
each of the radars is equal (i.e. when each radar sees 
the same side of the human body).  

On the other hand, it may be noticed that the 
uncertainty of estimation, based on accelerometric 
data, is direction independent. 

a)                                                                           b) 

   

   

Figure 2: Uncertainty indicators determined for estimates of the velocity of a moving person, obtained on the basis of the 
radar data (a) and accelerometric data (b), for the movement along x-axis with the velocity values ranging from 0.5 m/s to 
0.6 m/s. In all sub-figures: the thick solid line denotes the sequence of mean values, while the dotted lines – the sequences 
of values that are three standard deviations away from the mean sequence. 
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a)                                                                             b)  

    

    
 

    
 

    

Figure 3: Uncertainty indicators determined for estimates of the velocity of a moving person, obtained on the basis of the 
radar data (a) and accelerometric data (b), for the movement along x-axis with the velocity values ranging from 0.7 m/s to 
1.0 m/s. In all sub-figures: the thick solid line denotes the sequence of mean values, while the dotted lines – the sequences 
of values that are three standard deviations away from the mean sequence. 
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a)                                                                       b) 

   
 

   
 

   
 

   

Figure 4: Uncertainty indicators determined for estimates of the velocity of a moving person, obtained on the basis of the 
radar data (a) and accelerometric data (b), for the movement along y-axis with the velocity values ranging from 0.5 m/s to 
0.8 m/s. In all sub-figures: the thick solid line denotes the sequence of mean values, while the dotted lines – the sequences 
of values that are three standard deviations away from the mean sequence. 
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a)                                                                              b) 

   

   

Figure 5: Uncertainty indicators determined for estimates of the velocity of a moving person, obtained on the basis of the 
radar data (a) and accelerometric data (b), for the movement along y-axis with the velocity values ranging from 0.9 m/s to 
1.0 m/s. In all sub-figures: the thick solid line denotes the sequence of mean values, while the dotted lines – the sequences 
of values that are three standard deviations away from the mean sequence. 

In figure 6, the so-called box plots representing 
the aggregated uncertainty of the estimation of the 
mean walking velocity, performed on the basis of 
the radar data and accelerometric data, for each 
investigated value of the walking velocity, are 
presented. Each box plot indicates: 
 the median value; 
 the interquartile range (IQR), i.e. range between 

the first and third quartile;  
 the smallest value still within 1.5 IQR from the 

first quartile, and the largest value still within 1.5 
IQR from the third quartile; 

 the values lying outside 1.5 IQR from the first 
quartile and 1.5 IQR from the third quartile 
(marked with crosses). 

In table 1 and table 2, the numerical results of all 
experiments – performed for various walking 
velocities – are collected. 

The results presented in tables 1 and 2 show that 
the estimates of the mean walking velocity, obtained 

on the basis of the radar data, are far more accurate 
than those obtained on the basis of the 
accelerometric data. For the estimation of the 
velocity based on the radar data the mean 
discrepancy, i.e. the difference between estimated 
mean value and a predefined value of the velocity, 
varies from –0.12 to 0.03 m/s, while it varies from  
–0.18 to 0.24 m/s for the estimation based on 
accelerometric data. Moreover, it can be observed 
that the estimates obtained on the basis of the radar 
data are more concentrated around their mean values 
– the root-mean-square discrepancy of the radar-
data-based velocity estimates varies from 0.02 to 
0.12 m/s, while it varies from 0.08 to 0.27 m/s for 
the accelerometric-data-based estimates.  

It can also be noticed that the estimates of the 
mean walking velocity, obtained on the basis of the 
radar data, tend to be underrated with respect to the 
predefined walking velocity for the movements 
along    the    x-axis,    and   very   accurate   for   the 
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Figure 6: Box plots representing the uncertainty of the estimation of the walking velocity, based on the radar data (R-
estimates) and accelerometric data (A-estimates); a) x-axis movement, b) y-axis movement. 

movements along the y-axis. On the other hand, the 
estimates of the mean walking velocity, obtained on 
the basis of the accelerometric data, seem to be 
underrated for lower walking velocities and 
overrated for faster movements. 

Lastly, it should be noted that the impact of the 
imperfections of the movements of the experimenter, 
reproducing the predefined patterns, are the same for 
both sensors; so, not changing the result of 
comparison. 

4 CONCLUSIONS 

The novelty of the study, whose results are presented 
in this paper, consists in systematic comparison of 
two monitoring techniques, viz. impulse-radar 
sensors and accelerometric sensors, when applied for 
healthcare-oriented characterisation of the human 

movements. 
The performance of both types of sensors has 

been compared on the basis of data acquired by 
means of them in a series of real-world experiments 
which involved tracking of a person moving 
according to predefined patterns. The indicators of 
uncertainty of the velocity estimation have been 
determined with respect to the assumed predefined 
values of velocity. 

Prior to the evaluation of the uncertainty, the 
measurement data from both types of sensors have 
to be adequately processed. The velocity estimates, 
obtained on the basis of the accelerometric data, are 
determined by numerical integration of the 
sequences of the acceleration estimates and 
corrected by means of a zero-velocity compensation 
procedure. The velocity estimates, obtained on the 
basis of the radar data, are determined using the 
regularised numerical differentiation of the sequence 
of the position estimates. 
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Table 1: Uncertainty of mean velocity estimation for the movement along x-axis. 

Uncertainty indicators characterising  
estimates of mean velocity 

Predefined walking velocity [m/s] 

0.50 0.60 0.70 0.80 0.90 1.00 

 Impulse-radar sensors 

Mean discrepancy [m/s] 0.03 0.04 0.06 0.08 0.08 0.12 

Root-mean-square discrepancy [m/s] 0.04 0.05 0.06 0.08 0.09 0.12 

Upper bound of the discrepancy [m/s]  0.01  0.03 0.03 0.06 0.07 

Lower bound of the discrepancy [m/s] 0.05 0.07 0.09 0.13 0.12 0.14 

 Accelerometric sensors 

Mean discrepancy [m/s]  0.17 0.06 0.12 0.12 0.18  

Root-mean-square discrepancy [m/s] 0.19 0.17 0.17 0.14 0.23 0.13 

Upper bound of the discrepancy [m/s]  0.01 0.27 0.42 0.25 0.44 0.29 

Lower bound of the discrepancy [m/s] 0.29 0.41 0.18 0.03 0.04 0.18 

Table 2: Uncertainty of mean velocity estimation for the movement along y-axis. 

Uncertainty indicators characterising  
estimates of mean velocity 

Predefined walking velocity [m/s] 

0.50 0.60 0.70 0.80 0.90 1.00 

 Impulse-radar sensors 

Mean discrepancy[m/s] 0.02 0.03 0.03    

Root-mean-square discrepancy [m/s] 0.03 0.03 0.03 0.03 0.03 0.02 

Upper bound of the discrepancy [m/s]  0.04 0.06 0.07 0.05 0.07 0.04 

Lower bound of the discrepancy [m/s] 0.02 0.01 0.01 0.01 0.04 0.03 

 Accelerometric sensors 

Mean discrepancy [m/s]  0.18  0.24 0.12 0.17 0.07 

Root-mean-square discrepancy [m/s] 0.19 0.21 0.27 0.13 0.18 0.08 

Upper bound of the discrepancy [m/s]  0.06 0.55 0.43 0.21 0.29 0.18 

Lower bound of the discrepancy [m/s] 0.27 0.40 0.01 0.03 0.06 0.03 

 
The experiments performed have demonstrated 

that impulse-radar sensors enable one to estimate the 
walking velocity more accurately than the 
accelerometric sensors. The estimates obtained on 
the basis of data from the latter sensors are affected 
by larger bias and are more widely spread around 
their mean values. 

Since falls among elderly persons are the main 
cause of their admission and long-term stay in 
hospitals (Abbate et al., 2010), the systems for 
monitoring of elderly and disabled persons are 
expected to perform some functions related to fall 

prevention and/or fall detection. The functions 
related to fall prevention are implemented to 
overcome fall risk factors, implied by natural aging-
related physical disabilities, and promptly indicate 
the increasing risk of falling; the functions related to 
fall detection are to reliably detect falls, when they 
occur, and minimise the potential injuries. Sensors 
used for fall prevention are expected to be accurate 
enough to enable the monitoring system to identify 
changes in the monitored person’s health status on 
the basis of relatively slow and subtle changes in 
his/her gait characteristics, e.g. changes of the mean 
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walking velocity. Sensors used for fall detection 
should be selected and optimised with respect to 
their sensitivity as to enable the monitoring system 
to detect short abrupt changes in person’s velocity or 
acceleration. 

In light of the results presented in this paper, the 
impulse-radar sensors seem to be promising means 
for reliable fall prevention since they enable the 
through-the-wall monitoring of persons (as the 
electromagnetic waves propagate through non-metal 
objects) and highly accurate estimation of their 
velocity; those sensors are, however, less 
appropriate for fall detection because of the 
relatively low rate of data acquisition. On the other 
hand, the accelerometric sensors appear to be not 
well-suited for the long-term monitoring of the 
person’s gait characteristics, but better satisfy the 
requirements related to fall detection, due to their 
higher sensitivity, significantly higher rate of data 
acquisition, and suitability for outdoor use. 

One may thus conclude that both types of sensors 
studied in this paper, viz. impulse-radar sensors and 
accelerometric sensors, are in some way 
complementary, and therefore the combined use of 
both of them may contribute to the increase in the 
reliability of the monitoring of elderly and disabled 
persons. 
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