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Abstract: Medical drills are subject to wear process due to mechanical, thermal and, potentially, sterilisation 
influences. The influence of drill wear on friction contributes to the drilling temperature rise and occurrence 
of thermal osteonecrosis. During the cutting process drilling temperature cannot be adequately reduced by 
applying cooling fluid externally on the bone surface and a part of a tool which is not in the contact with the 
bone if higher wear rates occurs. Since it is not possible to directly establish or measure drill wear rate 
without interrupting the machining process, this important parameter should be estimated using available 
process signals. Therefore, the application of tool wear features extracted from acoustic emission signals in 
the frequency domain for the purpose of indirect medical drill wear monitoring process has been studied in 
detail and the results are presented in this paper.  

1 INTRODUCTION 

Beside several important factors related to the drill 
design, machining parameters, drilling depth, and 
cooling technique, drill wear rate is one of the most 
influential factors in temperature increase during 
bone drilling and potential occurrence of thermal 
osteonecrosis. Medical drills wear out due to the 
mechanical, and potentially also chemical and 
thermal factors which occur during sterilization and 
continuous application in different cutting 
conditions. Higher wear rate induces higher friction 
in the cutting zone, and consequently higher forces 
and heat generation. This logical and a well-known 
relationship has been confirmed several decades ago 
by Mathews and Hirsch, 1972, when they compared 
new drills with the used one which drilled more than 
200 holes. As expected, worn drills caused higher 
temperatures during drilling. 

Importance of a drill wear rate on bone thermal 
damages has been also emphasised in the more 
recent study performed by Allan, Williams, and 
Kerawala, 2005, where three types of drills were 
compared: new one, drill which drilled 600 holes, 
and drill which were used for several months. The 
results have shown important differences in mean 
temperature rise values – from 7.5oC (unworn drill) 
to 25.4oC (completely worn drill), measured in 

relation to the initial bone temperature of 37oC. 
Authors suggested drill replacement after every 
surgical intervention. 

The same negative influence of drill wear has 
been reported in Chacon et al., 2006, Querioz et al., 
2008, and Jochum and Reichart, 2000, where the 
temperature rise and thermal osteonecrosis is noticed 
after only 25, 30 and 40 drilled holes, respectively. 

According to the Singh, Davenport and Pegg, 
2010, whose research included 40 hospitals in the 
Great Britain, 75% of them had no guidelines for 
controlling and maintenance of medical drills. The 
remaining 10 hospitals confirmed they have 
instructions related to the identification and labelling 
of worn drills, and 8 of them confirmed that they 
actually implemented those regulations. From the 
total number of hospitals, 45% of them said that they 
use single-used medical drills. At the end of their 
report authors point to the frequent application of 
worn drills, as well as the absence of any consensus 
regarding the tool wear inspection. 

Although there has been many papers published 
in the past 25 years considering tool wear 
monitoring and identification in industrial 
applications (Jantunen, 2002), comprehensive 
analyses in the field of medical drilling are still 
missing. Industrial drilling dynamics usually differ 
from the one in medical applications in view of 
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different drill characteristics, machining parameters, 
and workpiece material characteristics. Therefore, it 
is necessary to establish the possibility of applying 
some of the proposed industrial solutions to medical 
drill wear monitoring. First analyses have confirmed 
the applicability of multi-sensor concept and 
advanced decision algorithms in the on-line medical 
drill wear monitoring (Staroveski et al., 2014, 
Staroveski, Brezak and Udiljak, 2015). 

In one of those two studies (Staroveski, Brezak 
and Udiljak, 2015) two types of signals were 
analysed: servomotor currents and acoustic 
emission. The acoustic emission signals were 
roughly processed in a way that each signal was 
fragmented in the frequency domain into 7 samples 
(between 50-400 kHz). Each sample was related to 
the belonging 50 kHz frequency bandwidth (50-100, 
100-150;...; 350-400 kHz). Drill wear features were 
then extracted from every sample individually. Since 
there was only one, arbitrarily chosen bandwidth (50 
kHz), additional analysis with different frequency 
bandwidths has been performed in this study in 
order to determine the full potential of AE signals in 
surgical drill wear monitoring. 

The paper is organised as follows. Section 2 
describes experimental setup and parameters used in 
data acquisition process, while Section 3 explains a 
method for drill wear feature extraction from 
measured AE signals. In Section 4 neural network 
classifier algorithm is briefly presented, and Section 
5 includes drill wear rate classification results. 
Concluding remarks are finally summarised in 
Section 6. 

2 EXPERIMENTAL DETAILS 

Acoustic emission (AE) signals have been measured 
during bone drilling on the 3-axis bench-top mini 
milling machine adjusted for the purpose of this 
research (Figure 1). The machine has been 
retrofitted with the 0.4 kW (1.27 Nm) permanent 
magnet synchronous motors with integrated 
incremental encoders (type Mecapion SB04A), 
corresponding motor controllers (DPCANIE-
030A400 and DPCANIE-060A400), ball screw 
assemblies, and LinuxCNC open architecture control 
(OAC) system. AE signals were measured using 
Kistler piezoelectric industrial accelerometer type 
8152B1 coupled with 5125B interface module. The 
sensor was mounted on the flange used to attach 
main spindle motor to Z-axis, near the motor front 
bearing and the drill. Its measuring range was from 
50 to 400 kHz. 

1)  Acoustic emission sensor
2)  Medical drill
3)  Industrial CCD camera with telecentric

lens system
4)  Bovine bone specimen
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Figure 1: Experimental setup. 

 

Figure 2: Images of cutting edges at the beginning and at 
the end of the drilling experiment with the sharp drill 
(SD), medium worn drill (MWD) and worn drill (WD). 
Drill wear is observable as a dark area along the cutting 
edge on the drill flank. 

Three types of standard, 4.5 mm in diameter, 
medical drills (Komet Medical Gmbh, S2727.098) 
with two flutes and a point angle of 90o were used in 
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the experiment. They only differed in the amount of 
drill flank wear level (Figure 2). First type belonged 
to a group of sharp drill (SD), second type was 
categorised as a medium worn drill (MD), and third 
type was defined as a worn drill (WD). Drilling 
temperature for WD type of a drill exceeded 55oC in 
almost all measured samples. 

Three cutting speed values were combined with 
four different feed rates (Table 1), and for each of 
those twelve combinations of machining parameters 
ten measurements were performed using randomly 
selected approach (two consecutive measurements 
had different machining parameters). Altogether, 
360 sets of data (120 sets for each drill wear level - 
SD, MWD, WD) have been recorded. 

Table 1: Combinations of machining parameters. 

Cutting speed (vc),  
Rotational speed* 

Feed rate (f) 
mm/rev 

0.01 0.03 0.05 0.1 
m/min rev/min* mm/s 

10 707.4 0.12 0.35 0.59 1.18 
30 2122.1 0.35 1.06 1.77 3.54 
50 3536.8 0.59 1.77 2.95 5.90 

Bone specimens were prepared using fresh 
bovine tibia with average diaphysis cortical 
thickness (drilling depth) of 8.5 mm and variable 
mechanical properties (hardness). AE signal sample 
was taken during one cortical bone drilling layer, 
and when drill entered into cancellous bone it was 
removed from the hole, moved along Y-axis for 
5 mm and positioned for the next drilling operation. 

3 DRILL WEAR FEATURES 
EXTRACTION 

Samples of AE signals were taken using multi-
function high-speed data acquisition I/O board PCI-
DAS4020/12. For every hole, signals were measured 
for 0.1 second with the sampling rate of 2 MHz after 
both cutting edges completely entered into the 
cortical bone. Measured AE signals were then 
analysed in the frequency domain using Fast Fourier 
transform (FFT) method. Analyses were performed 
within the AE sensor measuring range (50-400 kHz).  

Each signal has been divided into a series of 
samples depending on a chosen frequency 
bandwidth, and for each sample power spectrum 
density (PSD) was established. Since in Staroveski, 
Brezak and Udiljak, 2015, a 50 kHz frequency 
bandwidth was used, six additional and different 

bandwidths (5, 10, 15, 20, 30, and 40 kHz) were 
analysed in this study. In another words, in the case 
of 5 kHz bandwidth we got 70 samples per signal 
(each sample related to 70 different bandwidths 
within the 50-400kHz interval), while for 40 kHz 
bandwidth signal was divided into 9 samples, i.e., 
50-90 kHz, 90-130 kHz, ...., 330-370kHz, and 370-
400 kHz (the last sample had 30 kHz bandwidth 
because the upper frequency value cannot exceed 
sensor measurement range of 400 kHz).  

Energy of each sample of the analysed AE signal 
has been calculated from the expression 
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U

L

f

y
f

S df ,  (1)

where Sy is one-sided PSD function of the AE signal, 
while fL and fU are lower and upper frequency values 
chosen to reflect the energy in the range of interest 
(Scheffer, Heyns and Klocke, 2003).  

Energy values of all samples of AE signals were 
used together with the belonging combination of 
feed rate and cutting speed as drill wear features in 
the classification of one of three analysed drill wear 
conditions (SD, MWD, WD). 

4 NEURAL NETWORK 
CLASSIFIER 

Drill wear level classification was performed by 
using a well-known three-layered feed-forward 
Radial Basis Function Neural Network (RBFNN). 
This type of a neural network has good classification 
capabilities and can be trained in one step with 
simple hidden layer structure adaptation in view of 
the learning problem. 

In the training phase matrix of synaptic weights c 
is calculated from the expression: 

1 ,c H y  (2)

where y stands for the matrix of desired output 
values and H is the matrix of hidden layer neurons 
(RBF activation functions) outputs. Since Gauss 
function was used as an activation function in this 
study, elements of matrix H are determined using 
the expression: 


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 
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ij expH = , i=1, ..., N,  j=1, ..., K ,  (3) 

where xi is a vector composed from ith element of 
all (L) input vectors, tj is a jth hidden layer neuron 
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position center vector, and j is an activation or 
RBF function width of the jth hidden layer neuron.  

Gaussian widths are calculated as a geometrical 
mean value of the Euclidean distances of the centre 
of the jth neuron and the centers of two of his 
neighbor neurons: 

1 2 j j j= p p ,  (4)

where p1j is the Euclidean distance between the jth 
neuron centre and the (j-1)th neuron centre, and p2j 
is the Euclidean distance between the jth neuron 
centre and the (j+1)th neuron centre.  

Matrix H was quadratic matrix in this study, 
since the number of hidden layer neurons was equal 
to the number of data set samples used in the 
training phase (K = N).   

In the testing phase, matrix or, in this case, three-
element vector of desired output values y is obtained 
from the expression: 

Hcy  . (5) 
Before entering in the training phase, all 

classifier input data values were normalised in the 
interval (0, 1). Elements of vector y or classifier 
outputs were defined as either "0" or "1", depending 
on the drill wear level class to which analysed 
combination of input features belonged to (network 
output belonging to the actual class was defined as 
"1" and the remaining two outputs as "0").  

5 RESULTS AND ANALYSIS 

For every combination of RBFNN inputs, 360 data 
sets have been prepared. They were then divided 
into two groups, where 180 sets were used in the 
RBFNN classifier training phase, and the remaining 
180 in its testing phase. Data used in the testing 
phase were additionally divided into 5 groups or 
tests (T1 – T5). Each group was composed from 36 
samples belonging to each of 36 different 
combinations of machining parameters and drill 
wear levels (three cutting speed values combined 
with four different feed rates and three drill wear 
levels). 

Performance analysis of drill wear features has 
been carried out in two steps. At first, energy values 
belonging to every analysed frequency bandwidth of 
the AE signals were individually analysed in 
combination with machining parameters using 
RBFNN classifier. Results were compared using 
performance index defined as Classification Success 
Rate (CSR), i.e., the ratio of successfully classified 
samples to all tested samples.  

All those features which satisfied minimal 

predefined CSR value (CSR_min) were taken in the 
second phase of the analysis. Based on the CSR 
values obtained for all drill wear features 
individually, two CSR limits have been established: 
CSR_min = 50% and CRS_min = 60%. 

In the second phase of this analysis, features that 
satisfied abovementioned conditions were mutually 
combined and tested again. Classification success 
rates of those combinations are presented in Tables 
2, 3, and 4. Features were first combined for each 
analysed frequency bandwidth separately (Table 2 
and 3) and then additionally regardless to the 
bandwidth association (Table 4). 

Table 2: Classification success rates of tests composed of 
all drill wear features (AE signal energies) of the analysed 
frequency bandwidth that individually fulfilled condition 
CSR_min ≥ 50%. 

Frequency 
bandwidth, 

kHz 

CSR of the tests, % 

T1 T2 T3 T4 T5 Avg. 

5 97.2 97.2 94.4 100 94.4 96.6 
10 94.4 94.4 86.1 97.2 97.2 93.9 
15 94.4 88.9 97.2 97.2 94.4 94.4 
20 94.4 97.2 88.9 94.4 97.2 94.4 

 100 97.2 94.4 91.7 94.4 95.6 
40 91.7 91.7 86.1 91.7 94.4 91.1 

Table 3: Classification success rates of tests composed of 
all drill wear features (AE signal energies) of the analysed 
frequency bandwidth that individually fulfilled condition 
CSR_min ≥ 60%. 

Frequency 
bandwidth, 

kHz 

CSR of the tests, % 

T1 T2 T3 T4 T5 Avg. 

5 91.7 88.9 100 97.2 94.4 94.4 
10 94.4 97.2 88.9 97.2 100 95.6 
15 97.2 97.2 94.4 94.4 100 96.7 
20 94.4 88.9 100 88.9 91.7 92.8 
30 97.2 94.4 97.2 94.4 91.7 95.0 
40 91.7 83.3 91.7 77.8 83.3 85.6 

Table 4: Classification success rates of tests composed of 
all drill wear features (AE signal energies) of all analysed 
frequency bandwidths that individually fulfilled condition 
CSR_min ≥ 50% and CSR_min ≥ 60%. 

CSR_min, 
% 

CSR of the tests, % 

T1 T2 T3 T4 T5 Avg. 

50 97.2 97.2 91.7 91.7 97.2 95.0 
60 86.1 88.9 94.4 91.7 97.2 91.7 

Practically all combinations of energy features 
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related to each frequency bandwidth separately 
accomplished high classification success rate of 
more than 90% (Table 2 and 3). However, if the 
results from Table 2 (CSR_min = 50%) are 
compared with the one presented in Staroveski, 
Brezak and Udiljak, 2015, (Table 5) where 
frequency bandwidth was 50 kHz, a slight 
improvement in classifier accuracy can be observed, 
particularly in the case of the features extracted from 
the samples with narrowest bandwidth of 5 kHz.  

Table 5: Classification success rates of tests composed of 
all drill wear features (AE signal energies) of the 50 kHz 
frequency bandwidth that individually fulfilled condition 
CSR_min ≥ 50% (Staroveski, Brezak and Udiljak, 2015). 

Frequency 
bandwidth, 

kHz 

CSR of the tests, % 

T1 T2 T3 T4 T5 Avg. 

50 86.1 91.7 94.4 86.1 91.7 90 

Combination of energy features from different 
frequency bandwidths (Table 4) obtained very 
similar results to those presented in Table 2 and 3.   

6 CONCLUSIONS 

Analysis of medical drill wear features extracted 
from the AE signals in the frequency domain using 
different frequency bandwidths has been presented 
in this study. Features were used to identify one of 
the three drill wear levels. Application of the AE 
signals in medical drill wear monitoring can be very 
useful due to the fact that that type of the signal has 
already shown insensitivity to variations of bone 
mechanical properties. This study has additionally 
confirmed high precision of the AE signals in drill 
wear level classification from sharp to completely 
worn drill. Although only slight improvement has 
been observed in comparison with the results from 
one of the previous study (around 6% higher 
classification precision), it can nevertheless 
positively contribute to the design of a reliable and 
precise multi-sensor medical drill wear estimators. 
Their purpose would be to reduce mechanical and 
thermal bone damages in the case of fully automated 
next-generation bone drilling machines applications. 

ACKNOWLEDGEMENTS 

This work has been fully supported by the Croatian 
Science Foundation under the project number IP-09-
2014-9870. 

REFERENCES 

L. S. Mathews, C. Hirsch, 1972, Temperature measured in 
human cortical bone when drilling, The Journal of 
Bone Joint Surgery, 54-A, pp. 297-308. 

W. Allan, E. D. Williams, C. J. Kerawala, 2005, Effects of 
repeated drill use on temperature of bone during 
preparation for osteosynthesis self-tapping screws, 
British Journal of Oral and Maxillofacial Surgery, 43, 
pp. 314-319. 

G. E. Chacon, D. L. Bower, P. E. Larsen, E. A. 
McGlumphy, F.M. Beck, 2006, Heat Production by 3 
Implant Drill Systems After Repeated Drilling and 
Sterilization, Journal of Oral and Maxillofacial 
Surgery, 64, pp. 265-269. 

T. P. Queiroz, F. Á. Souza, R. Okamoto, R. Margonar, V. 
A. Pereira-Filho, I. R. Garcia, E. H. Vieira, 2008, 
Evaluation of Immediate Bone-Cell Viability and of 
Drill Wear After Implant Osteotomies: 
Immunohistochemistry and Scanning Electron 
Microscopy Analysis, Journal of Oral and 
Maxillofacial Surgery, 66, pp. 1233-1240. 

R. M. Jochum, P. A. Reichart, 2000, Influence of multiple 
use of Timedur® – titanium cannon drills: thermal 
response and scanning electron microscopic findings, 
Clinical Oral Implants Research, 11, pp. 139-143. 

J. Singh, J. H. Davenport, D. J. Pegg, 2010, A national 
survey of instrument sharpening guidelines, The 
Surgeon, 8, pp. 136-139. 

E. Jantunen, A summary of methods applied to tool 
condition monitoring in drilling, 2002, International 
Journal of Machine Tools & Manufacture, 42, pp. 997-
1010. 

T. Staroveski, D. Brezak, V. Grdan, T. Bacek, 2014, 
Medical Drill Wear Classification Using Servomotor 
Drive Signals and Neural Networks,  Lecture Notes in 
Engineering and Computer Science, 2211 (1), pp. 599-
603. 

T. Staroveski, D. Brezak, T. Udiljak, 2015, Drill wear 
monitoring in cortical bone drilling, Medical 
engineering & physics, 37 (6), pp. 560-566. 

C. Scheffer, P. S. Heyns, F. Klocke, 2003, Development of 
a tool wear-monitoring system for hard turning, 
International Journal of Machine Tools and 
Manufacturing,43, pp.973–85. 

Frequency Domain Analysis of Acoustic Emission Signals in Medical Drill Wear Monitoring

177


