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Abstract: Considering the slow speed of panorama image stitching and the ghosting of traditional image stitching 
algorithms, we propose a solution by improving the classical image stitching algorithm. Firstly, a SIFT 
algorithm based on block matching is used for feature matching which was proposed in our previously 
published paper. Then, the collaborative stitching of the color and depth cameras is applied to further enhance 
the accuracy of image matching. Finally, according to a multi-band blending algorithm, we obtain a panoramic 
image of high quality through image fusion. The proposed algorithm is based on two problems in the 
technology of feature-based image stitching algorithm, the algorithm’s real-time and ghosting. A series of 
experiments show that the accuracy and reliability of the improved algorithm have been increased. Besides a 
comparison with AutoStitch algorithm illustrates the advantage of the improved algorithm in efficiency and 
quality of stitching. 

1 INTRODUCTION 

Currently image stitching technology have achieved  
rapid development in many fields such as weather 
forecasting, space exploration, super resolution 
processing, reconstruction, military reconnaissance 
and digital cameras. The task of seamless image is to 
obtain a pair of high resolution panoramic images 
which are of big vision and no seam by processing a 
group of image sequence that have an overlapping 
area (Brown 1999). 

A number of rsearchers have deeply studied about 
it. In the 1990s, Richard Szeliski (1996) proposed a 
mosaic model according to the camera’s motion, 
which was processed by the iterative nonlinear 
minimization operator (Levenberg Marquardt, LM) 
to complete the image stitching. Based on the 
frequency domain characteristic of the image, two 
dimensional Fourier transform is used to solve the 
geometry transformation between different images 
and thus image mosaic is achieved. Jang(1999) 
implemented a panorama stitching algorithm based 
on equal match, the source image of which is 
photographed by rotating in the horizontal direction, 
so it doesn’t apply in general situation. In 2003, 
Brown and Lowe proposed an image mosaic 
algorithm based on SIFT feature extraction, which 
had a huge impact in the field of image stitching. The 
algorithm is robust, and can automatically identify a 

plurality of view sand reject noise in the image. But 
its’ camera model is so simple that it often affected by 
parallax and results in obvious ghosting. Wherein, 
SIFT algorithm was proposed in 1999 by them and 
further improved in 2004. The feature points acquired 
by SIFT operator are of scale and rotational invariant, 
which makes SIFT algorithm be widely used.  In 
2003, Mikolajczyk and Smith proposed an intelligent 
stitching algorithm on the basis of Szeliski’s (2000) 
panoramic image stitching model. The algorithm can 
select a proper splicing model according to the 
camera’s movement, which optimizes the efficiency 
and quality of image stitching. One year later, after 
more deep research, they improved the algorithm to 
intelligently select the best stitching model, which 
greatly enhanced the automation of the algorithm. 
Since then, adaptive issue has become a hot in the 
field of image stitching (Gholipour 2007, Brown and 
Lowe 2007). Brown and Lowe, who did further 
research to their previous work, implemented a 
panoramic image stitching image which can 
automatically stitch disorder images10. The algorithm 
used a probabilistic model to choose the images 
associated with the panoramic image from the 
disorder image sequence, thereby removing noise in 
the image and realizing panoramic stitching. In the 
early 10 years of the 21th century, J. Shin (2010) 
presented a new method of stitching binding the 
energy  spectrum technology, which committed  to 
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Algorithm 1: Seamless Mosaic Based on Depth map. 

 
 
addressing the problem of ghosting. This algorithm   
achieved relatively good results but sacrificed in 
actual effect on a certain degree.  Another important 
step in the process of image stitching, image fusion   
has huge   influence to the quality of image 
stitching. The common mean of fusion is to fuse 
overlapping areas with weighted splicing operator, 
the main two methods of which are the cap-like 
function weighted approach and fade out and in 
weighted method (Gao 2011). The principle of the 
cap-like function is to spread to the surrounding  
pixels from the center of the overlapping area and 
make the weight descend (Singh 2007). 

Through detailed research work, we found that the 
traditional stitching algorithms based on feature 
matching are robust, and they can successfully get the 
final mosaic images. However, there are two 
commonly problems. First, the speed of panorama 
image stitching is slow. Because the image stitching 
algorithms need to extract feature points towards all 
the images in the image sets, which will take a long 
time. Second, in the actual shooting process, there 
will be disparity which will increase the difficulty of 
image registration and cause significant ghosting. 

Considering above two issues, we propose a 
solution by improving the classical image stitching 
algorithm. Firstly, a SIFT algorithm based on block 
matching is used for feature matching which was 
proposed in our previously published paper and 
proved to be robust(Zou 2015). And the detailed 
description can refer to reference 15. Then, the 
collaborative stitching of the color and depth cameras 
is applied to further enhance the accuracy of image 
matching. Finally, according to a multi-band blending 

algorithm, we obtain a panoramic image of high 
quality through image fusion. And the specific 
process of image stitching algorithm based on depth 
image is shown as algorithm1. 

The proposed algorithm is based on two problems 
in the technology of feature-based image stitching 
algorithm, the algorithm’s real-time and ghosting. A 
series of experiments show that the accuracy and 
reliability of the improved algorithm have been 
increased. Besides a comparison with AutoStitch 
algorithm illustrates the advantage of the improved 
algorithm in efficiency and quality of stitching. 

2 COLLABORATIVE 
CALIBRATION BETWEEN THE 
DEPTHC CAMERA AND 
COLOR CAMERA 

In Brown’s and Lowe’s experiment, they used a 
simple camera model, pinhole camera model, which 
didn't take some factors into consideration such as the 
geometric distortion of camera, the jitter and skew 
while screening. The parameters they used to describe 
the camera were so easy, so it may cause very serious 
ghosting. To solve this problem, we use a 
collaborative calibration between the color and depth 
cameras to align the depth camera to the color camera. 
After determining the internal and external 
parameters of those cameras, we can get the 
projection transformation matrix. The system uses a 
flat calibration method, and the steps are as follows.  
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2.1 Calibration 

Depth camera can increase a channel to obtain the 
scene information for the computer. It is possible to 
build up the real-time three-dimensional scene 
through the real-time depth data of depth camera. 
However, in order to reconstruct a three-dimensional 
coordinate through the measured data of camera, the 
data in depth picture must to be aligned to the color 
pixels. And the process of alignment depends on the 
results of camera calibration. Because we can obtain 
the parameters through camera calibration which are 
necessary for alignment. Calibration includes the 
respective internal parameters and the external 
parameters between color and depth cameras. Color 
camera has been extensively studied. For depth 
camera, the existing research cannot meet the balance 
of accuracy and speed. And the results are easy to be 
influenced by the noise of depth data.  In this case, 
we studied the joint calibration of color and depth  
cameras.  

 
       (a)                  (b) 

Figure 1: Calibration of camera: (a) color camera and (b) 
depth camera. 

To achieve the joint calibration of the color and 
depth cameras, we  take the pictures of the 
checkerboard at different perspectives with the 
cameras to be calibrated, and calculate the matrix of 
the inner parameters of the camera and its outer 
parameters related to each image with the camera 
calibration interface provided by OpenCv library. 
Kinect depth camera uses an infrared speckle 
transmitter to emit infrared beam. Then when the light 
beam irradiates to the surface and reflects back to the 
depth camera, the depth camera will calculate the 
depth of the object through the geometric relationship 
between returning bulk spots. Figure 1 shows the 
calibration images of color camera and depth camera. 
And the right picture is the infrared figure 
corresponding to the color image. We can 
respectively calculate the internal parameters of the 
depth camera and color camera from Fig.1. Here, we 
use the interface provided by OpenCv to obtain the 
camera parameters. The distortion parameters of the 
color camera is [0.025163 -0.118850-0.006536-
0.001345] and that of the depth camera is [-0.094718 

0.284224 -0.005630-0.001429]. Then the internal 
parameters of the color camera and depth camera are: 	E௖ = ൥554.952628 0.000000	 327.5453770.000000 555.959694	 248.2186140.000000 0.000000 1.000000 ൩ 
ௗܧ	 = ൥597.599759 0.000000	 322.9787150.000000 597.651554	 239.6352890.000000 0.000000 1.000000 ൩ 

There are few points to be noted during the 
calibration. First, the calibration board should be as 
large as possible, at least to reach the size of A3 paper. 
Second, the angle between the board plane and the 
camera bead plane can’t be too large, which should 
be controlled below 45 degrees. Third, the tilts and 
positions of the board need to be as diverse as 
possible, because those boards parallel to each other 
have no help to the calibration results. Fourth, there 
should be at least ten images used to calibrate, which 
can help to improve the accuracy. Fifth, the resolution 
of the camera should be properly set, and the aspect 
ratio is preferably the same as the depth map. 

2.2 Projection Transformation Matrix 

After the calibration of color camera, we need to 
obtain the projection transformation matrix, depth 
camera’s internal parameters and outside parameters 
related to color camera.  

In our calibration system, color camera is fixed on 
depth camera and they remain parallel.  So we only 
need to do some certain translation   transformation 
to project the depth data into the coordinate system of 
color camera. Then we need project the depth data 
into color image to form the final depth buffer. 
During the process, we must note that due to the 
different resolution of those two cameras, the depth 
buffer data  and  color  data  cannot be  fully  
realized  alignment  in  the strict sense, but we  
only  need part of the depth data to verify, therefore, 
depth image need not be enhanced. 

 

Figure 2: The transformation from depth data to 3D 
coordinates. 

On the corresponding area of the depth 
checkerboard image, we randomly calibrate a block 
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regardless of the shape of it, but we must ensure that 
the number of pixel points is greater than ten. As 
Figure 2, for a pixel point on the block, α represents 
its disparity. And depth is got from (1), through which 
the back projection is achieved and converted to the 3 
dimensional coordinate system to get the final 3D 
point ݌ௗ ( ௗ݌ = ௗିܧ ଵ ∙ ௗ̂݌ ∙ ℎݐ݌݁݀ ).And ̂݌ௗ  ( ௗ̂݌ ,ௗݑ]= ,ௗݒ 1]் ) is the homogeneous coordinate of ݌ௗ . 
After restoring the 3D coordinates for all the pixel 
points through their depth information, we can get the 
3D point cloud. ݀݁ݐ݌ℎ			= − 0.075tan(0.0002157ܽ − 0.2356) [݉] (1)

Then we need to calculate the projection 
matrix	 ܦܥܶ  . While converting its pixel point ݌ௗ  to 
the color camera’s coordinate, it can be expressed 
as	ܿ݌′ 	 	 (pୡ′ = ஼ܶ஽ ∙ pොୢ).  While the checkerboard is 
fit on the plate, the checkerboard acquired by color  
camera is on the same plane as that acquired by depth 
camera. That’s to say that ݌௖′ 	falls on the plane ofthe 
checkerboard acquired by color camera, so pୡ′  is fit 
to (2). Eliminating irrelevant variables, we can get 
equation as (3). For the point j in the sample i, we can 
get the equation as (4). ݌௜௝ is the plot of the ̂݌ௗ  of 
point j in sample i	and depth, and the vector can be 
calculated based on  the  sample.  Besides ܪ =஼ܶ ∙ ௗିܧ ଵ		஽ represents the plot of the rotation matrix 
and translate vector matrix and the inverse of internal 
parameters matrix of depth camera. 	ݎ௜ଷ் ∙ ′௖݌ = ௜ଷ்ݎ௜௖ (2)ߜ ∙ ܴ஼஽ ∙ ௗିܧ ଵ ∙ ௗ̂݌ ∙ ℎݐ݌݁݀ + ௜ଷ்ݎ ∙ 		 ܴ஼஽= 		 ௜ଷ்ݎ௜௖ (3)ߜ ∙ ܪ ∙ ௜௖݌ + ௜ଷ்ݎ ∙ ஼஽ݐ = ௜௖ (4)ߜ

The process of establishing and solving equations 
is as follows: 		H = ൥hଵ hଶ hଷhସ hହ h଺h଻ h଼ hଽ൩ ݐ஼஽ = ,ଵݐ] ,ଶݐ ௜௝݌ ்[ଷݐ = ,௜௝ݔ] ,௜௝ݕ ௜ଷݎ	்[௜௝ݖ = ′௜ଵݔ] , ′௜ଶݔ , ′௜ଷݔ ௜௝்ܣ்[ = ܾ௜	ܣ௜௝் = ܾ௜	

Then ݆݅ܣ			   is represented as (5) ( 	ܾ݅ = ܿ݅ߜ ). 
And ௜௝்ܣ	 = b୧ is commonly replaced by (6). For M 
times’ experiments with  ௜ܰ	  points in each 

experiment, we can get (7). In this equation, ܽ௜௝	 
represents the weight from this point to the equations. 
Through the least squares method we can get the 
value of X, and then get the value of Hand ஼ܶ஽ ௜௝ܣ .  = [x௜௝r௜ଵ′ , y௜௝r௜ଶ′ , z௜௝r௜ଷ′ , x௜௝r௜ଵ′ ,									y௜௝r௜ଵ′ , y௜௝r௜ଶ′ , z௜௝r௜ଷ′ ,x௜௝r௜ଵ′ , y௜௝r௜ଶ′ , z௜௝r௜ଷ′ , r௜ଵ′ , r௜ଶ′ , r௜ଷ′ ]் (5)

௜௝்ܺܣ௜௝ܣ = ௜௝ܾ௜ (6)ܣ

෍෍൫ܽ௜௝ ∙ ௜௝ܣ ∙ ௜௝்൯ܣ ∙ ܺ	ே೔
௝ୀଵ

ெ
௜ୀଵ =	 
෍෍൫ܽ௜௝ ∙ ௜௝ܣ ∙ ே೔	௜௝்൯ܣ

௝ୀଵ
ெ
௜ୀଵ  

(7)

Next we need to remove two types of noise, the 
one of which is generated by the change of the 
distance from depth camera to the object, while 
another of which is generated by the depth camera 
when acquiring depth images. Here we use the weight 
coefficient	a୧୨ = φ୧୨ ∗ ∅୧୨  to remove them. 

 

Figure 3: Solution of homography. 

Kinect depth camera will produce noise along 
with the change of depth due to the principle of itself. 
Figure 3 shows the relationship between noise and 
depth, from which we can find that noise is 
proportional to the value of depth.  So for t he depth 
data in different areas, we need to add different 
penalty coefficient, which is shown as (8). 
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		߮௜௝
=
۔ۖۖەۖۖ
ۓ 11 + 1.2 − ℎ0.6ݐ݌݁݀ ℎݐ݌݁݀	݂݅				 < 1.21																						݂݅	1.2 ≤ ℎݐ݌݁݀ ≤ 3.511 + ℎݐ݌݁݀ − 3.51.5 ℎݐ݌݁݀	݂݅				 > 3.5																 (8)

Through above steps, we have got the depth point 
cloud of the data of group i.  Assuming that the 
equations of the plane is as n୧୘ ∙ X = δ୧	  . n୧represents the normal vector of the flat plane, and 
δ୧	 represents vertical distance from t-he origin of 
camera coordinate to the flat. Suppose Pୢ is a point on 
flat. Because we have got the internal parameters 
matrix of kinect depth camera, 	Pୢ = Eୢିଵ ∙ pො ′ . 	pො ′ =pොୢ ∙ depth represents the product of the depth and 
the 2D homogeneous coordinates of the pixel point 
on t-he area calibrated manually.n, = Eୢି୘ ∙ n, so		n,୘ ∙p′ = δ. According to	pෝ ′  , using Least Squares me-
thod to get 	n′୘ . For the point p୨′  on the area 
calibrated manually, φ୧୨can be defined as (9). 

߮௜௝ 		= ቐ0				݂݅ ቚห݊,் ∙ ′௝݌ − ௜หቚߜ > 0.015 ∙ ݂݅				௜1ߜ ቚห݊,் ∙ ′௝݌ − ௜หቚߜ ≤ 0.015 ∙ ௜ (9)ߜ

2.3 Homograph 

Those associated images which are of overlapping 
area will be the source image of the panorama 
stitching. Because we have got the related blocks 
between the images, the matching relationship can be 
easily obtained with the related blocks. During the 
process of feature matching, we have got many 
matching relationship of feature points. Then, to 
achieve image stitch, we need obtain the homography 
matrix between stitching images by using the result 
of camera calibration, the internal control matrix of 
camera and the out parameters in relation to each 
image.  

Homography refers to a reversible transformation 
from the real projective plane to the photography 
plane (Umeyama 1991, Chen 1994). In the domain of 
computer vision, any two images in the same space 
can be associated through homography (Triggs 2000). 

We use the interface of OpenCV to solve the 
homography matrix, the principle of which is as 
follows. It calculates the rotation matrix and 
translation vector of each field of view by using the 
various images of a same project at different viewing 
angles. The rotation matrix and translation vector 
totally have six parameters, and the internal 
parameter matrix of the camera has four parameters. 

So, for each field of view, there are 6 non-constant 
parameters and 4 constant parameters needed to be 
solved. Mapping a square to a quadrilateral can be 
described with 4 two-dimensional points. Suppose 
that the vertex coordinates of the square on the 
physical plane is (u，v) and the coordinates of the 
related points on the imager is (x, y), the relationship 
between them can be described as (10) and (11). After 
substituting the coordinates of the four points into the 
above formulas in turn, we can get 8 equations. That’s 
to say that a field of view of flat checkerboard can 
provide 8 equations.  Therefore, it needs 2 fields of 
view (two images) to solve above 10 parameters. 
Besides, the points on the flat of original image are 
connected with the points on the aim flat through the 
(12) and (13). In addition, to achieve the process, 
OpenCV offers an interface of C function for the 
solving of homography. 

          (a)                      (b) 

 
(c) 

Figure 4: Solution of homography: (a) original image1, (b) 
original image2 and (c) the image after registration. 

Lowe used RANSAC algorithm to solve 
homography, and a good result was got. Here the 
RANSAC is no longer needed. We use a very small 
sample to get the transformation parameters   
between   images, and find a solution that is best 
consistent with the parameters.  With this method, 
we needn’t set any threshold, so the processing work 
for different thresholds in different environment is 
avoided and the adaptability and automation 

ݑ = ,ݔ)݂ ݒ (10) (ݕ = ,ݔ)݃ ௗ௦௧݌ (11) (ݕ = ௦௥௖݌，௦௥௖݌ܪ =  ௗ௦௧ (12)݌ଵିܪ

ௗ௦௧݌ = ቈݔௗ௦௧ݕௗ௦௧1 ቉ , ௦௥௖݌ = 	 ቈݔ௦௥௖ݕ௦௥௖1 ቉ (13) 
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capability of the algorithm are improved.  For the 
color images a, b in Figure 4, we solve the 
homography of these two pictures through the 
external parameters of them, and implement the 
registration of these two images by matrix 
transformation. The result of registration is shown as 
picture c in Figure 4. 

3 BUNDLE ADJUSTMENT 

Bundle   Adjustment is used to reduce the error of 
projected position transformation between the match 
points of the image to be stitched (Burt 1983). The 
image to be stitched is placed in a beam adjuster, and 
the match image which is of the largest number 
conformance will be the first to be adjusted.  And in 
order to place the image to the best position for 
matching, the rotational transformation parameters 
and focus of all the images to be stitched need be 
adjusted to the same condition. 

In this paper, we choose a projection error square 
algorithm which is highly robust as the objective 
function. Every feature point is projected into the 
matched image. Besides, we will minimize the square 
of the distance from it to the relative image. Given a 
map u୧୩ ↔u୧୪ (u୧୩represents the position of   point 

k in image i), its residual is calculated using (14). p୧୨୩	 
is the map of the point related to u୧୩	from image j to 
image i, the process of which is described as (15). ݎ௜௝௞ = ௜௞ݑ − ௜௝௞݌  (14)

௜௝௞݌˜ = ௜ܴ௜ܭ ௝்ܴ ௝ିܭ ଵ	˜ݑ௝௟ (15)

Error function describes the square the sum of 
squared residuals generated by all images, shown as 
(16). And n is the total number of images. ℒ(i)	represents the image sequence matched to image 
i, and Ϝ(i, j)  represents the sequence of match 
feature points between i mage i and image j. We use 
the error function Huber, shown as (17). This error 
function mix a formal optimization strategy that L2 is 
fast convergent to the domestic point (intervals less 
than 	σ ), and it has good robustness of L2 to the 
peripheral points (intervals greater than 	σ ).In the 
initialization, we make the interval of peripheral point 
be ∞(σ = ∞), and let the pixel of σ = 2	in the final 
strategy. 

݁ =෍ ෍ ෍ ℎ(r௜௝௞ )௞∈Ϝ(௜,௝)௝∈ℒ(௜)
௡
௜ୀଵ  (16)

ℎ(ݔ) = ൜ ，ଶ|ݔ| |ݔ|								 < |ݔ|2σߪ − σଶ，								|ݔ| ≥ (17) ߪ

 

This is a problem of non-linear least squares, 
which is solved by Laffan Grignard algorithm. Every 
iteration is completed with (18), in which Φ	is all the 
parameters and r is the residuals. For the change of 
parameters in covariance matrix  	C୮ 	 , we need to 
encode its prior condition.  The standard difference 
of angle is set to be	σ୤ = f/̅10, which can help choose 
a proper step size to accelerate the convergence. 

൭෍ ௜ܺ ௜்ܺ௡
௜ୀଵ ൱ ݑ = 0	 (18)

Image registration has utilized the parameters 
obtained after camera calibration, but there are still 
unknown rotation transformations in image. Since  
the  real  camera  is unlikely to be  completely 
level  and does not  tilt, if  we  simply  assume 
R=I  for an  image, there  will  be an impact on 
the final output waveform   panorama. Inspired by 
the way of shooting panoramic images in reality, we 
are able to correct the waveform influence by the 
method of automatically stretching panorama. In 
actual shooting, we barely twist the camera with 
respect to view moment, so the camera vector X 
(horizontal axis) is usually located in a plane. 
Searching the zero vector of covariance matrix of the 
camera vector X, we can find its normal vector u, 
which is shown as (18).Because the normal vector u 
of a global rotational transformation is vertical, the 
waveform influence to the out-put image can be 
effectively eliminated. 

4 MULTI-BAND BLENDING 

We choose a multi-band blending algorithm to 
achieve image fusion after deep study to fusion 
algorithms. On the one hand, having completed the 
similar block segmentation in feature match section, 
multi-band blending can make use of it further and 
improve the effectiveness. On the other hand, this 
algorithm has been widely used and performances 
well in AutoStitch algorithm. 

The core idea of multi-band fusion is based on the 
view of the dam theory. Specifically, first, the image 
to be stitched is divided into two parts according to its 
overlapping area, so that each image is divided into 
two parts which means four image blocks, where we 
only use two parts. These two parts are decomposed 
into different frequency bands using the Laplace 
transform, which is similar to scale space. With this 
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method, two Laplace pyramids are got, and then 
image stitching will completed in different scales. 
Finally, the final image is obtained by remodeling. 

Through previous work, we have got an image 
sequence like 	I୧(x, y)(i ∈ {1…n})  and these 
imageshave been matched. This image sequence may 
be presented in a same coordinates	I୧(θ, ∅). To fuse 
the information of different images, we set a weighted 
function W(x, y) = w(x)w(y)			 or each image, 
where	w(x)	 distributes as the linear change from the 
center of the image to the edge of the image. 
Weighting function need be re-sampled in a special 
spherical coordinate system 	W୧(x, y) . A simple 
image fusion method is a weighted sum along the 
intensity of radiation, where the following weighting 
function shown as (19) is used.  I௟௜௡௘௔௥(ߠ, ∅) = ∑ I௜(ߠ, ∅)W௜(ߠ, ∅)௡௜ୀଵ 		∑ W௜(ߠ, ∅)௡௜ୀଵ 		 (19)

 I୪୧୬ୣୟ୰(θ, ∅)  is a composite spherical image by 
linear mixing. However, if the stitching has a slight 
error, this method may result in high frequent detail 
blur. To avoid this situation, we use a multi-band 
fusion algorithm proposed by Burt and Adelson21, 
which fuses low-band image in a large scale and high-
band in a small scale.  We initial the mixed weight 
of the image by finding the points sequence which are 
of highest confidence in image i. The process is 
described by (20), in which W୫ୟ୶୧ (θ, ∅) represents 
that image i is1 at the biggest weight and 0 when other 
images have bigger weight. A rendered image of high 
throughput ate is formed in the manner of (21) and 
(22). In these equations, g஢(θ, ∅)	 represents the 
Gaussian function of standard deviation	σ	, and the 
operator * denotes the convolution. B஢(θ, ∅)		 represents the spatial frequencies of the 
wave length in the range of	λ ∈ [0, σ]	.We use a b-
lend weight way to fuse the different frequency bands 
between images, which are shown as (23). 

W஢୧ (θ, ∅) represents the blend weight under the 
range of 		λ ∈ [0, σ] .   If k ≥ 1 , the following 
Equations are got. 

ఙ௜(௞ାଵ)ܤ = I௞ఙ௜ − I(௞ାଵ)ఙ௜  I(௞ାଵ)ఙ௜ = I௞ఙ௜ ∗ gఙᇲ W(௞ାଵ)ఙ௜ = W௞ఙ௜ ∗ gఙᇲ 
The standard deviation of Gaussian blur function 

is σᇱ = ඥ(2k + 1)σ	.This will make the later band 
have the same wavelength range. For each band, 
image sequences with overlapping areas are linearly 
mixed, which is shown as (24). This will result in high 
frequency bands are mixed in a small area, and low 
frequency bands are mixed in a larger context. We 
have selected a spherical coordinate system	θ, ∅.  In 
principle, we   can choose   the   two-
dimensional parametric surface around any view 
point. And a good choice is to render to the triangle 
of the sphere, and reconstruct the results of blend 
weight in the surface of image sequence. This has 
great advantage to processing image sequences, and 
allows re-sample to another plane. But it notes that 
co-ordinates 	θ, ∅	will have some distortion at the 
singularities of the poles. I௞ఙ௠௨௟௧௜(ߠ, ∅) = ∑ ௞ఙ௜ܤ ,ߠ) ∅)W௞ఙ௜ ,ߠ) ∅)௡௜ୀଵ 	∑ W௞ఙ௜ ,ߠ) ∅)௡௜ୀଵ  (24)

We have conducted some experiments to compare 
the multi-band image fusion algorithm with an 
outdoor collection of images (as the five color source 
images in Figure 5).  For the limitations of kinect 
camera, the experiment did not join the collaborative 
stitching, which aims to illustrate the specific effects 
of multi-band fusion. 

 

Figure 5: Color source images. 

The experiment used color source images 
gathered outdoors with a Huawei glory 6. The image 
resolution was 3214×1840, and the size of the image 
was 1.26M. These five images were captured under 
different exposure and focal length whose gradients 
were approximately equal to each other. Figure 6 
shows the results of the fusion which did not use any 
fusion method, and we can see a clear seam generated 
by the different exposures of the images. While 
Figure 7 shows the results of the common linear 
filtering fusion, the weighted average fusion 
algorithm. We can find the seam has been preliminary 
eliminated, but there are a large exposure differences 
between   the two parts of the fused image. Because 

௠ܹ௔௫௜ ,ߠ) ∅)= ൜1						݂݅	W௜(ߠ, ∅) = arg݉ܽݔ௝	W௝(ߠ, 							݁ݏ݅ݓݎℎ݁ݐ݋							0(∅ 																												 ൠ (20)

ఙ௜ܤ ,ߠ) ∅) = I௜(ߠ, ∅) − Iఙ௜ ,ߠ) ఙ௜ܫ(21) 									(∅ ,ߠ) ∅) = I௜(ߠ, ∅) ∗ gఙ(ߠ, ∅)			 (22)						 ఙܹ௜(ߠ, ∅) = ௠ܹ௔௫௜ ,ߠ) ∅) ∗ gఙ(ߠ, ∅) (23)
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the fusion quality problems, it is difficult for this 
method to deal with more complex source images. 
And Figure 8 shows the results of multi-band fusion. 
The seam has been fully eliminated, and the whole 
image exposure is not significantly different in 
different regions, so the fusion is better than the 
simple weighted fusion.  

 

Figure 6: Fusion rendering without any fusion algorithm. 

 

Figure 7: Fusion rendering with Linear Filtering. 

 

Figure 8: Fusion rendering with multi-band fusion 
algorithm. 

5 IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

Our experiments with different algorithms are 
achieved with OpenCV library under the environment 
of Intel Core i5 3210M CPU, 2.5GHZ, and 4GRAM. 
This paper mainly solves the ghost due to image 
registration errors and enhances the efficiency of 
stitching algorithm. And we select AutoStitch 
algorithm as the comparison algorithm. 

The nine experimental images are shown in 
Figure 9, which are shoot with the phone (Huawei 
glory6) in different positions. In order to be closer to 
the real situation, the pixels of the nine source images 
are adjusted to six gradients, and the aspect ratio are 
roughly constant at 4:3. The pixels of the six groups 
of images are 480×320, 640×480, 800×600, 1140
×850, 1520×1140 and 2100×1520. Since previous 
experiments have demonstrated the overall stitching 
quality of the algorithm, it is no longer to show the 
corresponding depth image of each image. With the 

proposed algorithm, firstly, the color images are 
divided into blocks to do extract and match of feature 
points with SIFT algorithm. Then, combined with the 
collaborative calibration, the depth information is 
attached to the color image and the final result of 
image stitching is got through RANSAC algorithm 
and the internal and external parameters got by 
camera’s collaborative calibration. And the final 
fusion image is shown as Figure 10. And Figure 11 
shows the fused image by AutoStitch algorithm.   

Figure 9: Experimental images gathered in lab. 

 

Figure 10: Seamless stitching rendering with the proposed 
algorithm. 

 

Figure 11: Seamless stitching rendering with the AutoStitch 
algorithm. 

After a series of experiments, we select the 
average value as the final experimental data. A 
comparison of the time used in each stage between 
the original algorithm and improved algorithm is 
shown as Table 1. We can find that in the part of SIFT  
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Table 1: Experimental results table. 

Running 
 time（s） 

Test 1 Test 2 Test 3 
Improved 
algorithm 

AutoStitch Improved 
algorithm

AutoStitch Improved  
algorithm

AutoStitch 

SIFT feature  
extraction 1.68 1.85 1.86 2.03 3.17 3.45 

Feature  
matching 0.67 0.92 0.68 0.93 0.67 0.92 

Homography 0.03 0.09 0.04 0.09 0.04 0.08 

Image 
stitching  
and 
correction 

0.07 0.06 0.08 0.07 0.08 0.06 

Image  
fusion 1.02 1.06 1.29 1.34 1.43 1.54 

Total time 
3.47 3.98 3.95 4.46 4.47 5.05 

Test 4 Test 5 Test 6 
Improved  
algorithm 

AutoStitch Improved 
algorithm

AutoStitch Improved  
algorithm

AutoStitch 

4.57 4.97 6.56 7.14 8.97 9.76 

0.67 0.92 0.67 0.92 0.67 0.92 

0.04 0.08 0.04 0.08 0.04 0.08 

0.08 0.06 0.08 0.06 0.08 0.06 

1.94 2.15 2.25 2.46 3.17 3.53 

7.3 8.18 9.6 10.66 12.93 14.35 

feature extraction, the SIFT algorithm based on block 
matching improves approximately 8% in timeliness 
compared to the AutoStitch feature extraction. 
However, compared to AutoStitch algorithm, the time 
consuming in feature matching of the proposed 
algorithm significantly reduces. This is because that 
AutoStitch builds KD tree for full image feature 
points, while the improved algorithm in this paper 
only builds KD tree for the feature points in 
overlapping area. In the part of solving homography, 
this paper uses the method of camera calibration, 
while AutoStitch uses RANSAC method. As a 
random sampling method, RANSAC algorithm is 
poor in timeliness. In image stitching and correction 
and image fusion, these two algorithms are not very 
different, so the running time is almost same. 

Compared to AutoStitch algorithm, the time- 
consuming of improved algorithm in this paper 
decreases by 10%, and we can find from Table 1 that 
with the increase of image data, the reduction   
percentage in time consuming of the improved 

algorithm in this paper is almost unchanged. This is 
because that the overlapping area is bigger with the 
increase of image data, the proportion of which 
remains almost unchanged in each image with respect 
to the overall data. 

6 CONCLUSIONS 

Our research has achieved a seamless image stitching 
method based on depth map. The SIFT algorithm 
based on block matching effectively shield the non-
overlapping areas, which avoids the feature points 
extraction and matching of the whole image and 
increases the efficiency of the algorithm. The 
collaborative calibration system based on the depth 
camera and color camera maps the depth data into a 
color image to complete registration, further 
increasing the quality of image stitching. 

Experiments proof that the ghosting caused by 
shooting parallax and registration error significantly 
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reduces. Combined with the actual needs, we select 
the multi-band image fusion algorithm for image 
fusion. Experiments to this algorithm show that the 
applicability of this algorithm is great. Then, we 
conduct a series of experiments and analysis to the 
seamless image algorithm based on the depth image, 
which increases the efficiency of stitching algorithm 
and reduces the ghosting. 
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