
An Approach to Pruning Metamodels like UML

Zhiyi Ma
Software Institute, School of Electronics Engineering and Computer Science, Peking University, Beijing, China

Key Laboratory of High Confidence Software Technologies, Peking University, Ministry of Education, Beijing, China

Keywords: Metamodel, Pruning Algorithm.

Abstract: There are a large number of modeling languages based on metamodels, and many of the languages are large
and complex. In many cases, only part of a metamodel is needed. Hence, it is necessary to automatically
extract needed part from a metamodel. By deeply analyzing the characteristics such as special relations
between packages and step-by-step strictly defining mechanism of modeling concepts, this paper presents
an approach to pruning metamodels like UML as needed. The approach can effectively prune metamodels,
control the size of pruned metamodels, and make pruned metamodels comply with its initial metamodels.

1 INTRODUCTION

With the increase of the scale and complexity of
software, models become important artifacts in
software development nowadays. Such models
usually are built in modeling languages.

A metamodel is a model of models (OMG,
2013), i.e. a model that specifies the language for
building models. In this paper, metamodels are the
ones like UML. That is, a metamodel describes the
abstract syntax and the static semantic meaning of a
modeling language with meta-class diagrams and
object constraint languages, respectively (OMG,
2011b; OMG, 2011c; Flatscher, 2002). The abstract
syntax defines a set of modeling concepts, their
attributes, relationships between them, and the rules
for combining these concepts to build partial or
complete models; the static semantic meaning
typically specifies queries or invariant conditions
that must hold when applying a metamodel, e.g.
UML OCL expressions.

The core of many modeling languages is a
metamodel, with a detailed explanation (text
description in most cases) of the semantics of each
modeling concept, and such languages are called
metamodel-based modeling languages. The
organizations such as International Organization for
Standardization (ISO) and Object Management
Group (OMG) have released a large number of
metamodel-based modeling languages, e.g. OMG
has released more than 200 such specifications, and
many of such specifications have more than one

version, e.g. there are 14 versions of UMLs. With
the development of society, new metamodels will
come forth. In addition, many of the metamodels are
built upon existing metamodels using additional
techniques such as profiling and package merge, and
tend to become bigger and bigger (Frédéric et al.,
2013).

Many metamodel-based modeling languages are
large in size and complex in structure. For example,
the number of the pages of the core part of UML
2.4.1(OMG, 2011a; OMG, 2011b) is more than
1000, its meta-classes are more than 400, and a
meta-class may have many properties. Besides, there
are complex dependency relationships between the
meta-classes. The Common Warehouse Metamodel
(CWM) 1.1 is 600 pages long even without its Core
package. SysML is a profile of UML and nearly 300
pages long without the part of UML specification.

The size and complexity of such metamodels
make it is extremely difficult for language builders
and tool developers etc. to fully identify the
dependencies among concepts and to determine
whether the metamodels capture all required
dependencies (Frédéric, 2013; Robert, 2007).
Moreover, in many cases application modelers only
need to understand and apply parts of metamodels,
not whole.

It is difficult for users, such as application
modelers, transformation rule developers, and
modeling tool developers, to directly study and
apply the metamodels of large and complex
modeling languages. The novices usually first study

Ma Z.
An Approach to Pruning Metamodels like UML.
DOI: 10.5220/0006144004090417
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 409-417
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

409

the basic part of the metamodels, and then others.
That is, to learn a language, one should follow the
principle of making gradual and orderly progress.

With the evolvement of modeling languages
(such as UML), it is a trend that one defines
metamodels with more and more multiple
inheritance and deeper and deeper inheritance
hierarchy (Brian, 2005). The trend increases the
difficulty for users to learn and apply the modeling
languages (Dori, 2002). For technical experts, they
also often need to extract information on given
elements of the languages. For example, which
elements are used to define given elements, and
which elements are defined by given elements.
Therefore, it is necessary to extract needed parts
from the metamodels of the modeling languages.

Software models are usually built in general-
purpose modeling languages (such as UML), but
such modeling languages cannot satisfy modeling
requirements of many fields. Therefore, the
modeling languages need to be extended. For
example, OMG has released many UML profiles.
Moreover, the modeling languages will constantly
evolve, with the development of business fields and
software development technologies. The evolution
means to change (i.e. add, delete, and modify)
constructs of the modeling languages. Therefore, it
is necessary to fix the range of influence of an
expansion and a change by calculating the elements
whose definitions are related to the extension and
change (Jiang, 2004). If the work is made manually,
it is tedious and error prone (Rober et al., 2007). The
work can be finished by extracting needed parts
from metamodels.

Model transformation, which transforms source
models into target models, is an important way to
develop applications. Two kinds of models are
usually built by using metamodels. Actually, only
parts of such metamodels are usually used. For
example, in object-oriented development,
transforming persistent classes and relations between
them into tables described in CWM only uses part of
UML’s Classes package and part of CWM’s Record
package. This means transformation rule developers
only need to study and apply needed parts. This
shows that extracting needed parts from metamodels
avails not only modeling but also model
transformation.

As mentioned above, modeling languages and
transformation languages will constantly evolve. For
maintaining existing models, it is usually necessary
to find which modeling elements used to build given
models are affected by the changed elements of the
languages and then to modify the models according

to the modeling elements. The first work can be
completed by extracting needed parts from
metamodels according to evolved elements. Similar
work is for maintaining transformations.

The quality of metamodels is very important
since one uses them to build models. Indeed, there
are defects in many metamodels (Brian, 2005; Ma et
al., 2013). An approach to assure the quality of
metamodels is using divide and conquer strategy, i.e.
extracting needed part around each of the subjects of
the metamodels and inspecting it.

The above analysis shows that, for large and
complex modeling languages, in many cases it is
necessary to extract needed parts from their
metamodels, namely pruning metamodels here.

It is extremely difficult to manually prune such
metamodels. A solution is automatically pruning
metamodels with tools, which may be built based on
the modeling tools that have encoded metamodels,
for example, Rational Rose and Eclipse UML 2. The
tools for pruning metamodels must support a
calculation that can decide which elements are
necessary.

The existing approaches for pruning class models
are not applicable to prune metamodels because
metamodels have their own characteristics (see
Section 2). There is some work on pruning a
metamodel, but such work even has nothing to do
with the architecture and some of the important
characteristics of a metamodel. Therefore, it is
necessary to present a new approach to
automatically pruning metamodels.

By deeply analyzing the characteristics of
metamodels such as the special relations between
packages and the step-by-step strictly defining
mechanism of modeling concepts, this paper
presents an approach to pruning metamodels.

The structure of the paper is as follows. Taking
the case of UML 2.4.1, Section 2 presents an
approach to pruning metamodels; Section 3
discusses the approach; Section 4 analyzes related
work. Finally, conclusions are drawn.

2 CALCULATION METHOD

In metamodels, meta-classes are defined in
packages, and some of them are defined step-by-step
in different packages. For example, meta-class
Classifier first appears in
Infrastructure::Core::Abstraction::Classifier, and
then is further defined in
Infrastructure::Core::Constructs via an import
relation. Therefore, we need to input the specified

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

410

meta-classes and the packages at which the meta-
classes locate when pruning metamodels. They form
a starting point set for pruning a metamodel.

Packages are usually applied to control the
complexity of large metamodels, and thus the size of
a class diagram in a package is not large and it is
unnecessary to limit the relation path length between
meta-classes in a package. However, the dependent
path length between packages is considerable (for
example, the maximum dependent path length
between packages in UML2.4.1 is 7), and thus the
length may be limited to get a smaller size
metamodel. For example, one usually learns a
concept from the near to the distant around it. For a
given meta-class, if the path length from the package
including it to the related packages is not specified,
the default value is the maximum dependent path
length from the package which it locates at to the
related packages, here we mark the default value is
@; if the length is 0, this means that the metamodel
in the package at which the given meta-class locates
is only calculated.

In some cases, it is necessary for users to specify
which packages, meta-classes, and properties of the
meta-classes are undesired. For example, business
process modeling does not need the State Machines
package and Components package of UML, and
sometime not modeling elements such as
ActionInputPin and OutputPin in UML::Activities
package.

The desired limit on dependent path length
between packages, and the undesired packages,
meta-classes, and properties of the meta-classes are
the optional parameters for pruning metamodels.

A metamodel is pruned according to a starting
point set and optional parameters, see Figure 1.

Figure 1: Overview of the pruning method.

The following are the steps of pruning a
metamodel. First, packages at which specified meta-
classes locate are processed in an arbitrary order to
form a package queue, since our calculation method
is independent of the order of calculating packages.
Then each package in the queue is pruned, and the
packages that relate to each package in the queue are

added into the queue and recursively calculated. In
the calculation, it is necessary to record the visited
packages, relations between the packages, and the
pruned class diagrams in these packages. Finally, the
recorded elements are the output of pruning the
metamodel.

Pruning an innermost package, which only
includes class diagrams, means extracting the meta-
classes associated with specified meta-classes. The
paper calls the pruning algorithm as the pruning
single package algorithm.

The following discusses how to calculate the
associated packages. Some meta-classes in a
package may depend on meta-classes in other
packages, that is, the package may import and merge
other packages. These meta-classes are grouped
according to each package which they depend on,
respectively, and the meta-classes in each group are
taken as input to calculate the related package,
respectively. The calculating results may still depend
on the meta-classes in other packages, thus the
calculation above is continued until the packages
that do not depend on other packages or whose
dependent path length is more than the specified
value.

For a processed package, if it is calculated again,
the results of two calculations need to be merged.
For example, taking package Kernel in UML
Superstructure as input for pruning the metamodel,
PrimitiveTypes package is calculated twice
according to the dependency relations and the two
calculating results are usually different, thus it is
necessary to merge the two results.

For the given meta-classes and packages as
pruning inputs, we can calculate the elements that
define them and the elements which they define,
since metamodels describe how to define
metaclasses with other ones. We refer the first
calculation as backward pruning and the second as
forward pruning.

We first discuss backward pruning, then explain
how to do forward pruning based on the backward
pruning method.

2.1 Pruning Single Package Algorithm

A package may include more than one class
diagram. The paper merges the class diagrams in a
package into one for the sake of the convenient
calculation since many object-oriented modeling
tools can merge class diagrams.

To backward prune a package, we need to
consider the following cases:
(a) For each specified meta-class from input, its

An Approach to Pruning Metamodels like UML

411

parent meta-classes are recorded first, and then
the parent meta-classes of its parent meta-classes
are recorded, …, in this way, until the classes
without any parent meta-class.

(b) For each recorded meta-class, the meta-classes
with which it directly associates first are
recorded, and then the unvisited meta-classes
with which each of these meta-classes directly
associates are recorded, …, in this way, until the
meta-classes without any associated meta-class.

(c) For each of the recorded meta-classes in (b) that
have submetaclasses, because it inherits the
meta-association relations of their parent meta-
classes, its submetaclasses first are recorded, and
then the submetaclasses of each of the
submetaclasses are recorded, …, in this way,
until the meta-classes without any
submetaclasses.

The three cases need to be considered together in
following algorithms, not just sequentially.

To deal with the cases in the pruning single
package algorithm, we need three definitions and
one function.

Definition 1. A class diagram G is a 2-tuple G:=
(V, E) where V is a set of meta-classes, and E is a
set of relations between meta-classes. The relations
are divided into meta-inheritance, meta-association,
and meta-combination.

Definition 2. A package P is a 5-tuple P:=<G,
Creq, NCreq, NPreq, OCLExps> where Creq is a set
of the specified meta-classes, NCreq is a set of the
specified undesired meta-classes, NPreq is a set of
the specified undesired properties of all meta-
classes, and OCLExps is a set of constraint
expressions by written in OCL (OMG, 2003). The
default value of Creq is all meta-classes in P, and the
default values of NCreq, NPreq, and OCLExps all
are null.

Definition 3. If a meta-class x is a submetaclass
of a meta-class y, or x can navigate to y via a meta-
association or meta-combination, y is an adjacent
point of x. In the latter case, if y has a submetaclass
z, z is an adjacent point of x.

Function 1. OCLRelatingMetaclasses
(OCLExps,v), for a given class diagram, returns all
meta-classes except meta-class v in the OCL
expressions that include v.

The following is algorithm for pruning a single
package P.

Algorithm 1: CalcPackage(P).

1 Initialization

FOR EACH v∈P.G.V DO visited[v]:=false;

ClassSet:=Ø;

2 Calculate related meta-classes in OCL
expressions of P

FOR EACH v∈P.Creq DO

ClassSet←ClassSet ∪ OCLRelatingMeta-
classes (P.OCLExps, v);

P.Creq ←P.Creq ∪ClassSet;

3 Delete the specified undesired meta-classes

P.Creq ←P.Creq–P.Ncreq;

4 Recursively prune the metamodel in P, taking
each needed meta-class as a starting point

FOR EACH v∈P.Creq DO

IF visited[v]=false THEN CALL Traversal
(P, v)

In a meta-class diagram, there are usually meta-
associations and meta-combinations, that may be
unidirectional or bidirectional. For a bidirectional
relation, if it has been traversed and marked in a
direction, Traversal (P, v) does not traverse it from
another direction since it has been marked.

Algorithm 2: Traversal(P, v).

1 Delete the specified undesired properties of
meta-classes v

v.Attributes←v.Attributes – P.Npreq;

2 Mark v , i.e. v is visited.

Mark(v);

3 Get the first adjacent point of v in P

w:=FIRSTTADJ(P.G, v);

4 Recursively calculate all related meta-classes,
taking v as a starting point

WHILE w≠0 DO

4.1 If w is not visited and is not an undesired
meta-class, record the relation between v and w, and
then calculate all related meta-classes taking w as a
starting point.

IF visited[w] = false AND NOT w∈P.NCreq
THEN Mark (<v, w>); Traversal (P, w);

4.2 get next adjacent point

w:=NEXTADJ(P.G, w);

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

412

2.2 Pruning Whole Metamodel
Algorithm

We already know that there are 3 kinds of relations
between packages. Include means that a package is
included in another package, and the meaning
reflects in the package path names.

Though import and merge are different relations
between packages, they all means that the defining
meta-classes in a package needs to use meta-classes
in another package, thus the paper deals with two
relations as dependency relation for pruning
metamodels. For a package depended on by a set of
meta-classes, these meta-classes are the input of
pruning it. Such packages are added into a package
queue to wait for calculation.

Since the definition of a meta-class in a package
may depend on the meta-classes in other packages, it
is necessary to calculate these packages if they are
not undesired packages and their path lengths are not
more than given maximum dependent path length.

To deal with the above cases in the pruning
whole metamodel algorithm, we need one definition
and six functions.

Definition 4. A metamodel MM is 2-tuple
MM:=<V, E> where V is a set of packages, E is a
set of dependency relations between packages. The
relations are divided into include, import, and
merge.

Function 2. PathLength(p) returns the maximum
length of dependent paths from package p being
calculated to a set of specified starting point
packages, which are input for pruning.

Function 3. CalcImportingPackages(p) returns all
package names that are used in the package p.

Function 4. CalcImportingElements(p, pi) returns
a set that consists of all meta-classes whose package
prefix name is pi in package p.

Function 5. CalcMergingPackages(p) returns the
names of the packages that are direct and transitively
merged by p and have the same name meta-classes
with p.

Function 6. CalcMergingElements(pi) returns a
set that consists of all meta-classes whose names are
in package pi.

Function 7. Add(Pqueue, (pi, CalcElements(p,
pi)) adds a package with a set that consists of needed
meta-classes into a package queue Pqueue.

The following are the parameters of the pruning
algorithm for entire metamodels. MM is a source
metamodel. A package queue Pqueue is formed with
the packages which the specified meta-classes locate
at. NPackage is a set that is formed with the
specified undesired packages. MaxLength is the

specified maximum dependent path length between
packages.

Algorithm 3: PruningMetamodel(MM, Pqueue,
NPackage, MaxLength).

1 Initialize a metamodel

MMt←MM

2 Delete undesired packages

MMt←Delete(MMt, NPackage)

3 Calculate each package in Pqueue

FOR EACH p in Pqueue do

IF PathLength(p) ≦MaxLength THEN

3.1 Call the pruning single package algorithm
and mark the pruned package

CALL CalcPackage (p); Mark(p);

3.2 If PathLength(p) ≠ MaxLength, calculate
the dependent packages of P and the related
meta-classes belonging to each of these
packages. These packages are added into
Pqueue, and the relations between the
packages are marked.

IF PathLength(p) ≠MaxLength

3.2.1 For importing packages

PDep←CalcImportingPackages(p);

FOR EACH pi in PDep DO

 pi.Creq=alcImportingElements(p, pi);

Add(Pqueue, pi); Mark(<p, pi>);

3.2.2 For merging packages

PDep←CalcMergingPackages(p);

FOR EACH pi in PDep DO

 pi.Creq=CalcMergingElements(p, pi);

Add(Pqueue, pi); Mark(<p, pi>);

4 Delete not marked elements

4.1 Delete not marked packages and the
relations between them

FOR EACH p∈MMt.V DO

IF Unmarked(p) THEN Delete(MMt, p);

FOR EACH e∈MMt.E DO

 IF Unmarked(e) THEN Delete(MMt, e);

4.2 Delete not marked meta-classes and the
relations between them

FOR EACH P ∈MMt.V DO

FOR EACH v∈P.G.V DO

 IF Unmarked(v) THEN Delete(P.G, v);

FOR EACH e∈P.G.E DO

IF Unmarked(e) THEN Delete(P.G, e);

An Approach to Pruning Metamodels like UML

413

The algorithms above are applied to backward
pruning, i.e. to find which elements are used to
define given elements. The following discusses
forward pruning, i.e. to find which elements are
defined by given elements.

To forward prune a package, we need to consider
the following cases:
(a) For each specified meta-class from input, its

submetaclasses first are recorded, and then the
submetaclasses of each of its submetaclasses are
recorded, …, in this way, until the meta-classes
without any submetaclass.

(b) For each recorded meta-class, the meta-classes
with which it directly associates first are
recorded, and then the meta-classes with which
each of these meta-classes directly associates are
recorded, …, in this way, until the meta-classes
without any associated meta-class.

Comparing with the backward pruning, we need to
redefine adjacent point in the definition 3, and
change the definitions of functions 3, 4, and 5.
Except for these, forward pruning algorithms are the
same as backward pruning algorithms. That is, we
can use backward pruning algorithms to implement
forward pruning with these redefined concept and
functions.

Definition 3’. If a meta-class x is a parent meta-
class of a metaclass y, or x can navigate to y via a
meta-association or meta-combination, y is an
adjacent point of x.

Function 3’. CalcImportingPackages(p) returns
the names of all packages that depend on package p.

Function 4’. CalcImportedElements(p, pi) returns
a set that consists of all meta-classes whose package
prefix name is p in package pi.

Function 5’. CalcMergingPackages(p) returns the
names of all packages that direct and transitively
merge package p and have the same name meta-
classes with p.

3 DISCUSSION

First, it should be pointed out that the approach can
be used to prune the other metamodels developed by
using MOF, though the paper takes the case of UML
in many places.

There are several application areas where the
approach can make its useful contributions:
a) Gaining needed part of a metamodel for study
Using backward pruning, users such as modelers and
transformation rule builders can get and study
needed part of a metamodel.

b) Evolving and extending modeling languages
Even if one attribute of a meta-class (as an extension
point) in a large metamodel is changed, it is usually
difficult to manually fix its influence scope. Fixing
the influence scope of the extension points with our
forward pruning algorithms is the work of very
significance for evolving and extending modeling
languages.
c) Gaining needed part of a metamodel for model
transformation
It is easy to get needed part with our backward
pruning algorithms. The resulted part includes not
only package diagrams and meta-class diagrams
extracted from the metamodel but also the code file
extracted from the metamodel. The reason is that a
metamodel built with a metamodeling tool is stored
in code files that describe the elements of
metamodels and the relations between the elements,
not just diagrams (OMG,2011c), and such tool
supports a bidirectional mapping between the
diagrams and the code files.
d) Fixing the range of influence of a change of a

metamodel and inspecting models
Taking modeling elements (i.e. concrete
metaclasses) used to build the existing models and
transformation rules and the old and new versions of
a metamodel as input of our backward algorithms,
respectively, users can fix the range of the influence
of the change of the metamodel by comparing the
differences between two pruning results, and further
inspect the influence on the models according to the
modeling elements in the range.
e) Finding and handling defects
Using the divide-and-conquer strategy, we can
extract part of a metamodel around a subject with
the approach, and then find and handle defects, even
measure the quality of the part.

The following discussions focus on other aspects
of the approach.
a) Feasibility
Modularity, layering, partitioning, extensibility, and
reuse are five design principles of metamodels
(OMG,2011b). Such principles ensure that the built
metamodels are well structured and their
components such metaclasses and packages all have
independence. This provides a foundation for
pruning metamodels with good effects.
b) Flexibility
The approach not only can bidirectionally (i.e.
forward and backward) prune metamodels, and but
also has a good scalability for controlling size of
pruned metamodels. To do this, users can specify the
desired and undesired packages, meta-classes,

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

414

properties of the meta-classes, and a dependent path
length between packages.
c) Precision and Recall
Since a metamodel describes the abstract syntax of a
modeling language with meta-class diagrams and
package diagrams, the key to
accurately and completely extract needed part of the
metamodel is parsing the relations between the
elements of the metamodels, i.e. which elements are
used to define given elements, and which elements
are defined by given elements.

For a package, the algorithms 1 and 2 traverse
metaclasses inside it according to the relations
between them, i.e. generalizations and associations
(including combinations), and if and only if the
metaclasses between which there are such relations
are extracted. This assures that needed metaclasses
all can be extracted and extracted metaclasses all are
right. It should be pointed out that when the
algorithms extract metaclasses with OCL
expressions, there may be superfluous metaclasses
because OCL expressions are not deeply parsed in
semantics.

Similarly, for the overall package structure of a
metamodel, the algorithm 3 traverses packages
according to the relations between them, i.e.
inclusions, imports, and merges, and if and only if
the packages between which there is such relations
are extracted. This assures that needed packages all
can be extracted and extracted packages all are right.
d) Tool Support
The algorithms used in the approach can be
implemented in object-oriented modeling tools built-
in metamodels without too much difficulty. The
modeling tools can build package models and class
models with package diagrams and class diagrams,
respectively, and can save the models as XML files
or the others. The built-in metamodels are also
described in XML files or the others in the object-
oriented modeling tools, and thus it is not difficult
for the tools to show the built-in metamodels as
package diagrams and meta-class diagrams.
Therefore, it is feasible to integrate the module that
implements the approach with the tools.
e) Compliance
According to explicit relations (such associations
and inheritances) and implicit relations analyzed
from OCL expressions, the approach only traverses
and extracts elements from a metamodel for forming
a new metamodel, and does not modify and add
metamodel elements, and thus the new metamodel
holds only necessary and sufficient metamodel
elements according to the given pruning parameters.
This means that all instances (models) of the pruned

metamodel are also instances of the initial input
metamodel, that is, the extracted metamodel still
complies with the original one.
f) Limitation and Future Research
When handling OCL expressions in the approach, if
a needed meta-class appears in an OCL expression,
the other meta-classes in the expression all are
related to the meta-class. In fact, some of the meta-
classes are unrelated, and related meta-classes can
be classified as direct correlative meta-classes and
conditional correlative ones. If an OCL expression
includes conditional statements, distinguishing
different alternative segments of a metamodel (e.g.
labeling or coloring) is better treatment. The above
work can be finished by aid of an OCL parser.

As for the input of the pruning metamodel
algorithms, what the paper gives are a metamodel,
specified packages, and options, etc. We plan to
consider the necessity to take meta-relations as the
input of the pruning algorithms.

Our algorithms only can prune the metamodels
like UML, and we also plan to study other kinds of
metamodels to provide a general pruning approach.
g) Threats to Validity
Because we measure UML 2.4.1 in terms of counts
for metamodel elements and relations between the
elements, there is no threat to the measurements.

The metamodels like UML all are defined in
MOF or extended based on UML, CWM, SysML,
and SPEM etc. that also are defined in MOF, and
thus the principle of building these metamodels is
the same as UML’s. Therefore, UML 2.4.1 is a
representative of metamodels like UML in the paper
and our algorithms have universality for pruning
metamodels like UML.

A possible threat is lack of a formal proof of the
correctness of the algorithms since the proof is a
supplemental proof.

4 RELATED WORK

Sagar Sen et al., present a metamodel pruning
algorithm (2009). They omit that package is an
important mechanism for organizing the elements of
a lager metamodel into groups, and think that the
multiplicity * of UML is optional, and thus delete all
meta-associations with *. In fact, multiplicity is a
specification of the range of allowable cardinalities
which an entity (including a relation) may assume
(OMG, 2011a), and thus multiplicity * has specific
semantics for defining metamodel elements. Their
algorithm only considers the meta-classes appearing

An Approach to Pruning Metamodels like UML

415

in OCL expressions, and not the meta-classes related
to these meta-classes just because the related meta-
classes do not appear in the OCL expressions. Arnor
Solberg et al. point out the importance of pruning
metamodels from the aspects of model-driven
development and aspect-oriented modeling (2009),
but do not further give solutions. Jung Ho Bae et al.,
propose an algorithm for pruning small metamodels
for seven types of UML diagrams (2008), and their
algorithm does not consider packages and OCL
expressions in UML metamodel and optional
parameters.

For the comprehension and maintenance of
metamodels, Strüber et al., present a tool that
supports the decomposition of a meta-model into
clusters of metamodel elements (Daniel et al., 2013).
They apply clustering algorithms to obtain segments
of metamodels, and our algorithm is for extracting
the needed submetamodels that are complete in
syntax and semantics according to the definition
relations between metaclasses.

The static slicing technologies of class models
are similar to ours. Jaiprakash et al. present an
algorithm for static slicing of UML architecture
models (2009), and their slicing criterion only
consists of one class and one message. Huzefa Kagdi
et al., propose an idea to enrich slicing criterion
(2005), and only defines several concepts for
context-free slicing of single UML class model.
Fangjun et al propose a slicing algorithm for class
diagrams (2004), and their algorithm is designed for
dependence analysis for class diagrams by simply
finding all relevant classes for a given class. Arnaud
et al. present a language to build model slicers
(2011), which can extract model slices from domain-
specific models, and the built slicers can take
dependent path length, optional classes, and optional
properties as input, but do not take into account
OCL expressions and packages, and thus their work
is unsuited to prune metamodels.

5 CONCLUSIONS

The metamodels are important information sources
with their own characteristics, and one only needs
parts of the large and complex metamodels in many
cases. According to the characteristics, the paper
presents an approach to automatically bi-
directionally extract needed part from a metamodel
like UML by parsing network structure of packages
and calculating metaclass models. Moreover, a
pruned metamodel complies with its initial
metamodel, and its size is agilely controlled with

input options. The approach can service to a variety
of applications that need to prune metamodels.

ACKNOWLEDGEMENTS

The work supported by the National Natural Science
Foundation of China (No. 61672046).

REFERENCES

Arnaud Blouin et al. (2011) ‘Modeling Model Slicers’,
MoDELS, LNCS 6981, 62-76.

Arnor Solberg, Robert France, and Raghu Reddy. (2005)
‘Navigating the MetaMuddle’. In: Proceedings of the
4th Workshop in Software Engineering and
Application, Jamaica, 2005, 315-321.

Brian Henderson-Sellers. (2005) ‘UML– the Good, the
Bad or the Ugly? Perspectives from a panel of
experts’, Software System Model, 2005(4), 4–13.

Daniel Strüber,Matthias Selter, and Gabriele Taentzer.
(2013) ‘A Tool support for clustering large meta-
models’. Proceeding. In: Proceedings of the Workshop
on scalability in model driven engineering, NY, USA
,2013. ACM New York, 1-4.

Dori Dov. (2002) ‘Why significant UML change is
unlikely’, Communications of the ACM, 45(11), 82–
85.

Fangjun W. and Tong Y. (2004) ‘Dependence analysis for
UML class diagrams’, Journal of Electronics, 2004,
21(3), 249–254.

Flatscher RG. (2002) ‘Metamodeling in EIA/CDIF –
Meta-metamodel and Metamodels’ ACM Trans.
Modeling and Computer Simulation, 12(4), 322–342.

Frédéric Fondement, Pierre-Alain Muller, Laurent Thiry,
Brice Wittmann, and Germain Forestier. (2013) ‘Big
Metamodels Are Evil’. Model-Driven Engineering
Languages and Systems, Lecture Notes in Computer
Science, Volume 8107, 2013,138-153.

Huzefa Kagdi, Jonathan I. Maletic, Andrew Sutton. (2005)
‘Context-Free Slicing of UML Class Models’. In:
Proceedings of the IEEE International Conference on
Software Maintenance. Washington, 2005,635 – 638.

Jaiprakash T. Lallchandani and R.Mall. (2009) ‘Static
Slicing of UML Architectural Models’, Journal of
Object Technology, Vol. 8(1), 159-188.

Jiang Yangbing, Weizhong Shao, Lu Zhang, Zhiyi Ma,
Haohai Ma. (2004) ‘On the Classification of UML’s
Meta Model Extension Mechanism’, Lecture Notes in
Computer Science,3273, 54-68.

Jung Ho Bae, Heung Seok Chae. (2008). ‘UMLSlicer: A
Tool for Modularizing the UML Metamodel using
Slicing’. In: Proceedings of the IEEE 8th
International Conference on Computer and
Information Technology, Sydney, 2008,772–777.

Ma Zhiyi, Xiao He, Chao Liu. (2013) ‘Assessing the
quality of metamodels’, Frontiers of Computer

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

416

Science,Volume 7(4), 558-570.
OMG. (2003) UML 2.0 OCL Specification. OMG ptc/03-

10-14.
OMG.(2011a) Unified Modeling Language Superstructure

Version 2.4.1. OMG formal/2011-08-06.
OMG. (2011b) Unified Modeling Language Infrastructure

Version 2.4.1. OMG formal/2011-08-05.
OMG. (2011c) Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification. OMG
formal/2011-01-01.

OMG. (2013) Meta Object Facility (MOF) 2.4.1. OMG
formal/2013-06-01.

Robert France and Bernhard Rumpe. (2007) ‘Model-
driven Development of Complex Software: A
Research Roadmap’. In: Proceedings of the 2007
Future of Software Engineering, France.IEEE,37–54.

Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc
jezequel. (2009) ‘Metamodel Pruning’, MoDELS,
LNCS 5795, 32-46.

An Approach to Pruning Metamodels like UML

417

