Walking Pattern Generation by using Preview Control 
of Zero-Moment Point. In Proceedings of the IEEE 
International Conference on Robotics and 
Automation, pp. 1620–1626. 
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, 
S. A. and Hudspeth, A. J. (2012). Principles of Neural 
Science. McGraw-Hill Education. 
Lee, S. H. and Goswami, A. (2012). A momentum-based 
balance controller for humanoid robots on non-level 
and non-stationary ground. Autonomous Robots, 33(4), 
pp. 399–414. 
Liu, Z. and Li, C. (2003). Fuzzy neural network quadratic 
stabilization output feedback control for biped robots 
via H∞ approach. IEEE Transactions on Systems, 
Man, and Cybernetics, Part B, 33(1), pp. 67–84. 
Lober, R., Padois, V. and Sigaud, O. (2014). Multiple task 
optimization using dynamical movement primitives 
for whole-body reactive control. In Proceedings of the 
IEEE-RAS International Conference. on Humanoid 
Robots, pp. 193–198. 
Luo, D., Han, X., Ding, Y., Ma, Y., Liu, Z. and Wu, X. 
(2015). Learning push recovery for a bipedal 
humanoid robot with Dynamical Movement 
Primitives. In Proceedings of the IEEE-RAS 
International Conference. on Humanoid Robots, pp. 
1013–1019. 
Maalouf, N., Elhajj, I. H., Asmar, D. and Shammas, E. 
(2015). Model-Free Human-Like Humanoid Push 
Recovery. In Proceedings of the IEEE International 
Conference on Robotics and Biomimetics, pp. 1560–
1565. 
Nichols, E., Mcdaid, L. J. and Siddique, N. (2013). 
Biologically inspired SNN for robot control. IEEE 
Transactions on Cybernetics, 43(1), pp. 115–128. 
Rai, J. K., Singh, V. P., Tewari, R. P. and Chandra, D. 
(2012). Artificial neural network controllers for biped 
robot. In Proceedings of the International Conference 
on Power, Control and Embedded Systems, pp. 625-
630. 
Sano, A. and Furusho, J. (1990). Realization of natural 
dynamic walking using the angular momentum 
information. In Proceedings of the IEEE International 
Conference on Robotics and Automation, pp. 1476–
1481. 
Saputra, A. A., Botzheim, J., Sulistijono, I. A. and Kubota, 
N. (2016). Biologically Inspired Control System for 3-
D Locomotion of a Humanoid Biped Robot. IEEE 
Transactions on Systems, Man, and Cybernetics: 
Systems, 46(7), pp. 898-911. 
Stephens, B. J. (2007). Humanoid push recovery. In 
Proceedings of the IEEE-RAS International Conferen-
ce. on Humanoid Robots, pp. 589–595. 
Stephens, B. J. and Atkeson, C. G. (2010). Push recovery 
by stepping for humanoid robots with force controlled 
joints. In Proceedings of the IEEE-RAS International 
Conference. on Humanoid Robots, pp. 52–59. 
Sun, C., He, W., Ge, W. and Chang, C. (2016). Adaptive 
Neural Network Control of Biped Robots. IEEE 
Transactions on Systems, Man, and Cybernetics: 
Systems, PP(99), pp. 1-12.  
Taga, G., Yamaguchi, Y. and Shimizu, H. (1991). Self-
organized control of bipedal locomotion by neural 
oscillators in unpredictable environment. Biological 
Cybernetics, 65(3), pp. 147-159. 
Tamura, K., Nozaki, T. and Kawamura, A. (2015). Visual 
Servo System for Ball Dribbling by Using Bipedal 
Robot Nao. In Proc. Annual Conference of IEEE 
Industrial Electronics Society, pp. 3461–3466. 
Tedrake, R., Kuindersma, S., Deits, R. and Miura, K. 
(2015). A closed-form solution for real-time ZMP gait 
generation and feedback stabilization. In IEEE-RAS 
International Conference. on Humanoid Robots, pp. 
936–940. 
Vukobratović, M. and Stepanenko, J. (1972). On the 
stability of anthropomorphic systems. Mathematical 
Biosciences, 15(1–2), pp. 1–37. 
Vukobratović, M., Borovac, B. and Potkonjak, V. (2006). 
ZMP: a review of some basic misunderstandings. 
International Journal of Humanoid Robotics, 3(2), pp. 
153–175. 
Wieber, P. B. (2006). Trajectory Free Linear Model 
Predictive Control for Stable Walking in the Presence 
of Strong Perturbations. In IEEE-RAS International 
Conference. on Humanoid Robots, pp. 137 – 142. 
Yu, J., Tan, M., Chen, J. and Zhang, J. (2014). A survey 
on CPG-inspired control models and system 
implementation.  IEEE Transactions on Neural 
Networks and Learning Systems, 25(3), pp. 441-456.