
A Collaborative Tool for Modelling Multi-stage Attacks

Ian Herwono and Fadi Ali El-Moussa
Security Futures Practice, Research & Innovation, BT, Ipswich IP5 3RE, U.K.

{ian.herwono, fadiali.el-moussa}@bt.com

Keywords: Cyber Security, Attack Patterns, Pattern Recognition System, Knowledge Sharing.

Abstract: Cyber-attacks that are conducted in multiple stages over short or long periods of time are becoming more
common. One approach for detecting such attacks at an early stage is to make use of attack patterns and
attack signatures to provide a structure for correlating events collected from various sensors in the network.
In this paper, we present our ongoing work on a pattern recognition system that aims to support cyber-
defence analysts in sharing their attack knowledge and threat intelligence in the form of attack patterns or
scenarios that can later be used to discover potential security breaches in their network. Our main goal is to
allow the analysts to associate the attack patterns with their own organisation’s security data and thus
benefit from the collective attack knowledge without revealing any confidential information. We present the
architecture of the system and describe a typical process for modelling multi-stage attacks. We demonstrate
how its analytics engine interprets an attack pattern, tasks the data source agents to fetch and correlate
relevant security events, and reports the results back for visualisation and further investigation.

1 INTRODUCTION

Today’s detective tools are prone both to false
positives and to failure to detect novel or evasive
attacks. The alerts issued by such tools are usually
isolated episodes, localised in time and space,
leaving the cyber-defence analyst to join up the dots
and work out the bigger picture. Meanwhile,
considerable valuable information lies latent in
disconnected silos of low-level data. One approach
to overcoming these obstacles is to make use of
attack patterns to provide a structure for correlating
incidents that are separated in time and space in
order to aid recognition and diagnosis of malicious
activity and guide appropriate and timely response.

The challenge addressed in our work is how to
capture the knowledge of skilled analysts in the form
of attack patterns or scenarios embodying
regularities, causal relationships and correlated
observables, then use these reliably to recognise
attacks at an early stage, predict their evolution and
allow actions to be taken to mitigate their
effectiveness. A major obstacle is that while general
patterns are often followed, there can be significant
variation leading to uncertainties in both recognition
and prediction. The situation may be further
confused in large organisations or enterprises by
multiple attacks happening at the same time. It is

therefore important to encourage and support
security experts to share domain knowledge and
cyber intelligence with their peers either within or
outside the organisation. They should combine their
efforts to identify and validate various ways of
collecting and examining attack evidence from
multiple data sources in corporate network
environment. However sharing attack data and threat
intelligence between security providers and
businesses without revealing sensitive information
proves to be a major issue today. Our proposed
solution is to have a platform in place where security
analysts can share attack patterns within the same
enterprise or between multiple enterprises, and use
these patterns to check whether attacks have
happened without having to reveal any confidential
data. We designed a pattern recognition system to
lay the groundwork for such a collaborative
platform.

The remainder of this paper is structured as
follows. Section 2 presents related works. Section 3
introduces the architecture of our pattern recognition
system. Section 4 describes the attack modelling
process. Section 5 shows how the system’s analytics
engine works. Section 6 provides the conclusions
and discusses future work.

312
Herwono, I. and El-Moussa, F.
A Collaborative Tool for Modelling Multi-stage Attacks.
DOI: 10.5220/0006137103120317
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 312-317
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

Our work aims to design a system for recognising
cyber-attacks that are conducted in multiple steps or
stages using several attack paths to achieve its
ultimate attack objective, e.g. exfiltration of
corporate data. (Clark and Landau, 2010) analysed
such multi-stage attacks and discussed how to trace
them. (Alserhani et al., 2010) examined statistical
modelling techniques for alert clustering. (Bhatt et
al., 2014) developed a framework to detect multi-
stage attacks using the Intrusion Kill Chain model
(Hutchins et al., 2011). (Barnum, 2007) introduced
the concept of attack patterns as a mechanism to
capture the attacker’s perspective. The work was
related to the Common Attack Pattern Enumeration
and Classification (CAPEC) initiative of the
Department of Homeland Security (DHS)
(https://capec.mitre.org).

The system described in this paper employs the
knowledge-based model approach. Its knowledge
base consists of a repository of attack patterns that
will be captured from experienced security analysts,
along with relevant datasets such as Web Proxy logs.
We consider attack pattern as a structure to correlate
security and network events that are separated in
time and space in order to aid recognition of attacks
at an early stage. Such an attack pattern should not
be mistaken for an attack graph, which is a structure
to represent all possible sequences of exploits that an
intruder can carry out to attack computer networks
(Ammann et al., 2002). The method to formally
describe the attack pattern is specific to
implementation, and CAPEC schema may well be
used in the future.

3 SYSTEM ARCHITECTURE

The system architecture is depicted in Figure 1 and
the components are described in the subsequent
sections.

3.1 Authentication & Authorisation

A simple authentication system using username and
password mechanism is currently implemented. The
authorisation is based on administrative grouping.
This ensures that only authorised users can use the
system in accordance with their assigned roles, e.g.
administrator, analysts, etc.

Figure 1: System architecture.

3.2 Attack Pattern Manager

The attack pattern manager is responsible for the
entire lifecycle of each attack pattern, starting from
its creation up to its removal. It acts as the main
interface for user interactions. It also provides
control over the usage of existing attack patterns,
either for monitoring live events or investigating
historical events.

3.3 Assets Manager

The assets manager provides simple management of
(critical) assets that can later be associated with any
of the existing attack patterns. It provides grouping
of assets that can be identified by their IP address or
network sub-domain using Classless Inter-Domain
Routing (CIDR) notation.

3.4 System Database

The system database is usually a relational database
that is used to persistently store the attack patterns,
along with other application data such as details of
available external data sources, authentication
credentials, and critical assets.

3.5 Data Sources

Data sources are external data stores that collate
structured event or log data generated by various
systems in the network, e.g. IDS, DHCP, Web
Proxy, etc. We assume that any necessary pre-
processing and enrichment of various datasets, such
as parsing of event attributes or IP address lookup,
has already been carried out prior to storing the data.

Two types of data sources are currently
supported:

A Collaborative Tool for Modelling Multi-stage Attacks

313

 Conventional SQL database management
systems such as Oracle, MySQL, or
PostgreSQL, and

 ElasticSearch storage systems.
Details of a new data source, e.g. server/cluster

details, tables and attributes mapping, etc. can be
added at runtime via the admin user interface. An
ElasticSearch data source may typically contain
different types of event or log data as it is document-
oriented and does not use fixed schema.

3.6 Data Source Agents

Data source agents are centrally-managed software
agents that communicate with external data sources
to determine quantifiable measures for specific
cyber events, e.g. the number of failed login
attempts within a five minutes time frame, or the
number of detected malware within the last 24
hours. The query and filter parameters to match and
aggregate the relevant events are specified by the
user during the attack modelling exercise. In case of
ElasticSearch data source, much of the required
filtering and aggregation tasks are taken over by the
ElasticSearch engine.

3.7 Agent Manager

The agent manager is the single point of contact
within the system for instantiating and
parameterising different types of data source agents.
It is consumed by the analytics engine.

3.8 Analytics Engine

The analytics engine is responsible for matching the
attack patterns against historical and live datasets.
Historical data is normally used to test and validate
attack patterns or to carry out forensic analysis. Such
validation allows analysts to refine the patterns and
readjust the measures/metrics in order to increase
pattern detection accuracy. The analytics engine
interacts with a number of agents to query data from
different sources. Section 5 provides more details.

3.9 Visualisation

The visualisation component provides graphical
views of the attack patterns, their monitoring status
and results. An external visual analytics tool can be
loosely integrated into the system’s user interface in
order to support security analysts in their further
investigation of potential threats.

4 ATTACK MODELLING

4.1 Attack Pattern

Each attack pattern is essentially a plan template
embodying an attack strategy, typically consisting of
multiple steps or stages. Associated with each stage
and also with the overall pattern are observable
events and conditions that would normally occur
during, before and after execution of the plan.

The attack pattern repository will be populated
based on the experienced analyst’s knowledge of
historic attack cycles. For example, a Distributed
Denial of Service (DDoS) campaign often follows a
pattern: due diligence, intelligence gathering,
vulnerability scanning, defacement and DDoS. If the
events associated with due diligence, intelligence
gathering, and vulnerability scanning are observed,
then we can predict that defacement and DDoS will
probably follow after intervals similar to those
observed previously.

4.2 Quantifiable Measure

When modelling an attack the crucial step is to
specify a quantifiable measure or indicator for the
relevant events at each stage. The user needs to
select which external data source such measure
should be derived from and which parameters to use
for querying and aggregating the event data.

Figure 2: Specifying quantifiable measure.

Figure 2 shows an example setup for a data
source agent to detect possible brute force attack by
observing the number of failed login attempts into
an FTP server. The selected “Snort MACCDC2012”
data source represents an ElasticSearch data source
that contains Snort IDS alerts that were generated
from the 2012 Mid-Atlantic Collegiate Cyber
Defence Competition dataset (MACCDC, 2012).

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

314

Essentially the agent needs to count the total number
of alerts with the signature “INFO FTP Bad login”
that were reported within five-minute time windows
for each destination IP address.

The user should then assign the measure a
threshold value which will later be examined by the
analytics engine prior to making the decision
whether or not to trigger a transition to the
subsequent stage. Dependency between the events of
successive stages can be specified to indicate
whether events at a particular stage should only be
observed after some characteristic data from one of
the preceding stages, e.g. IP addresses of affected
hosts, has been passed on by its data source agent.
Events will be observed either periodically (e.g. until
their threshold value is exceeded) or only once (e.g.
to check if certain events have occurred in the past).

Figure 3 shows the complete setup for detecting
an attack stage “Brute force attack” using the above-
mentioned measure. As it will be the first stage in
the example attack pattern (Figure 4) it has no
dependency on other stages. The threshold is set to
20, i.e. twenty failed login attempts within five-
minute time window, which should be examined
periodically (monitor mode).

Figure 3: Attack stage “Brute force attack”.

Figure 4: Example attack pattern.

The “Brute force attack” stage is followed by
two subsequent stages, i.e. “Suspicious activity for
privilege gain” and “Suspicious activity for
information leak attempt”. Both subsequent stages
look for suspicious activities involving the
destination hosts that were selected at the preceding
stage, i.e. threshold conditions were met.

5 ANALYTICS ENGINE

The analytics engine owns the task of matching
attack patterns against sequences of observed events
from live or historical datasets in order to determine
if a potential attack campaign is under way. The
engine consists of independent process entities
whose workflows are dictated by the attack patterns.
Each active attack pattern is assigned a single parent
process which will create as many child processes as
necessary over time.

5.1 Parent Process

Once an attack pattern is activated, e.g. to analyse
historical cyber events, a (parent) process is started
and the following tasks will be performed.

5.1.1 Pattern Data Retrieval

The process control entity retrieves the pattern data
from the system database. It extracts the information
about which of the attack stages should be
monitored from the start, hence referred to as start
stages.

5.1.2 Agent Parameterisation

The data source agent associated with each of those
start stages is created. The parameters for its
quantifiable measure, such as type of measurement,
time frame, threshold value, etc. are passed on to the
agent.

5.1.3 Agent Scheduling

The time interval, at which each data source agent
executes its task, is configured in the scheduler. The
agent may then carry out its assigned task
periodically.

5.1.4 Result Examination

The result from each agent, i.e. the measurement
value, is reported back to the process control entity.
The agent indicates whether or not the threshold
condition has been satisfied.

5.1.5 Child Process Creation

Each time the threshold at particular start stage has
been met the control entity creates a new child
process for observing the subsequent stage. The
reporting agent (of the parent process) may hold
characteristic information about the relevant events,

A Collaborative Tool for Modelling Multi-stage Attacks

315

e.g. hosts’ IP addresses, which need to be monitored
at the subsequent stage. Each child process can be
seen as a path that needs to be followed throughout
the attack cycle separately.

5.2 Child Process

Throughout its lifecycle a child process will perform
similar tasks as its parent, i.e. parameterising and
scheduling data source agents, examining agent
measurement values, and creating new child process
for subsequent stages. A child process may
terminate as follows:
 End of attack cycle: This means that the final

attack stage in a sequence has been reached
and the associated data source agent has
indicated that the threshold has been met and
no more subjects (e.g. hosts) remain to be
monitored at that stage.

 Timeout: A child process times out if the
measurement threshold value has not been met
after a specific time; from the security point of
view this may suggest false alarms or that a
potential attack campaign has not progressed
any further.

5.3 Message Flow

Figure 5 depicts the flow diagram for a simple attack
pattern consisting of two stages, i.e. Malware alerts,
and IPS alerts. At the start stage (Malware alerts)
the system should report any device present in the
network that had more than five unique malware
alerts within the last 24 hours. Such information can
usually be obtained from a database that collated
alerts from host-based malware scanners. At the
subsequent stage (IPS alerts) the system should
continuously check whether any of those reported
devices had also triggered an alert on the network’s
Intrusion Prevention System (IPS).

The following communications and data
exchange happen between the process entities once
the attack pattern is activated:

1. The Parent Process Control entity (PPC)
retrieves the pattern data from the system
database and determines the start stage, i.e.
Malware alerts. It then sends a request to the
Agent Manager (AM) for instantiating an
Anti-Malware data source agent with the
corresponding measurement parameters and a
threshold value (i.e. 5 alerts). Eventually PPC
instructs the scheduler (SCH) to trigger the
agent (AMA) at a specific time interval.

2. Each time the trigger fires, AMA retrieves the
relevant data from the Anti-Malware data
source (ADS), calculates the measurement
value (i.e. the number of unique malware
alerts per device within the last 24 hours), and
applies the threshold. It then reports the result
back to PPC; the result contains the computed
measurement value, a flag indicating whether
or not the threshold has been satisfied, and
other information (e.g. IP address list).

Figure 5: Flow diagram for an attack pattern.

3. PPC logs the result and checks the threshold
flag. If the threshold has not been satisfied, no
further action is taken. AMA will keep
periodically querying new data and reporting
the result to PPC.

4. Once the threshold is exceeded, PPC extracts
the measurement parameters of the subsequent
stage (i.e. IPS alerts) and proceeds with the
creation of a new Child Process Control entity
(CPC). PPC extracts the list of device IP
addresses from the received agent’s (AMA)
result and passes it on to CPC. The system
will be using temporal information and the IP
address list to correlate events retrieved from
two different data sources, i.e. Anti-Malware
and IPS Alerts data sources.

5. CPC sends a request to AM for instantiating
an IPS data source agent (IPA) with the task to
compute the number of IPS alerts within the
last 24 hours on devices with the specified IP

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

316

addresses. CPC then instructs the scheduler
(SCH) to trigger the agent (IPA) at a specific
time interval.

6. Whenever IPA receives a trigger signal, it will
then retrieve the relevant data from the IPS
Alerts data source (IPD), calculate the
measurement value (i.e. the number of alerts
per device within the last 24 hours), apply the
threshold, and send the result back to CPC.
CPC will log the result and check the
threshold flag. If the threshold has not been
satisfied, no further action is taken. IPA will
keep observing new relevant events until it
times out.

The results that have been logged by the parent
and child process entities can be processed by the
system’s Visualisation component and presented to
the users.

6 CONCLUSIONS

Our vision was to build a collaborative platform
where security analysts of different organisations
can combine their efforts and contribute to a
repository of attack patterns that prove to be up-to-
date, comprehensive and reliable for detecting
sophisticated cyber-attacks at an early stage, such
that appropriate countermeasures can be initiated in
timely fashion. Our approach was to model an attack
or security breach as a sequence of observable
events. We found that defining an attack pattern was
not a straightforward task unless combined with the
ability to analyse historical or sample attack data at
the same time. It was essential for security analysts
to have access to relevant data sources in order to
derive the metric or measurement parameters such as
threshold value or time window as part of the attack
modelling process.

Our ultimate goal was to allow security analysts
to share attack patterns and apply them to their own
organisation’s security data without revealing any
confidential information. To some extent this has
already been supported in our current system, but
further work is required to carefully identify the
security and privacy requirements and implications
in enterprise environments and to develop
techniques and policies to ensure that sensitive data
is not shared inappropriately.

ACKNOWLEDGMENTS

This work has been carried out in the framework of
the Collaborative and Confidential Information
Sharing and Analysis for Cyber Protection – CISP
project, which is partially funded by the
Commission of the European Union. The views
expressed in this paper are solely those of the
authors and do not necessarily represent the views of
their employers, the CISP project, or the
Commission of the European Union.

REFERENCES

Clark, D. D., Landau, S. 2010. The Problem isn’t
Attribution; It’s Multi-Stage Attacks. In Proceedings
of the Re-Architecting the Internet Workshop
(Philadelphia, US, Nov 2010). ReArch 2010. ACM.

Alserhani, F., Akhlaq, M., Awan, I. U., Cullen, A. J.,
Mirchandani, P. 2010. MARS: Multi-stage Attack
Recognition System. In Proceedings of the 24th IEEE
International Conference on Advanced Information
Networking and Applications (Perth, WA, April 20-23,
2010).

Bhatt, P., Yano, E. T., Gustavsson, P. M. 2014. Towards a
Framework to Detect Multi-Stage Advanced Persistent
Threats Attacks. In Proceedings of the IEEE 8th
International Symposium on Service Oriented System
Engineering (Oxford, UK, Apr 2014). SOSE 2014.

Hutchins, E., Cloppert, M., Amin, R. 2011. Intelligence-
Driven Computer Network Defense Informed by
Analysis of Adversary Campaigns and Intrusion Kill
Chains. In Proceedings of the 6th International
Conference on Information Warfare and Security
(Washington, DC, Mar 2011).

Barnum, S. 2007. An Introduction to Attack Patterns as a
Software Assurance Knowledge Resource. In OMG
Software Assurance Workshop (Fairfax, VA, Mar
2007).

Ammann, P., Wijesekera, D., and Kaushik, S. 2002.
Scalable, Graph-based Network Vulnerability
Analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security
(Washington, DC, Nov 2002). CCS’02.

MACCDC. 2012. Capture files from Mid-Atlantic CCDC
(Collegiate Cyber Defense Competition). URL:
https://www.netresec.com/?page=MACCDC.

A Collaborative Tool for Modelling Multi-stage Attacks

317

