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Abstract: Patients, their families and caregivers routinely examine pills for medication identification. Key pill 
information includes color, shape, size and pill imprint. The pill can then be identified using an online pill 
database. This process is time-consuming and error prone, leading researchers to develop techniques for 
automatic pill identification. Pill color may be the pill feature that contributes most to automatic pill 
identification. In this research, we investigate features from two color planes: red, green and blue  (RGB), 
and hue saturation and value (HSV), as well as chromaticity and brightness features.  Color-based 
classification is explored using MatLab over 2140 National Library of Medicine (NLM) Pillbox reference 
images using 20 feature descriptors. The pill region is extracted using image processing techniques 
including erosion, dilation and thresholding. Using a leave-one-image-out approach for classifier 
training/testing, a support vector machine (SVM) classifier yielded an average accuracy over 12 categories 
as high as 97.90%. 

1 INTRODUCTION 

The use of prescription drugs is increasing generally, 
especially among older persons, who are often 
burdened with polypharmacy. (Gu, Dillon, & Burt, 
2010; Schumock et al., 2015; Thielke et al., 2010). 
Almost 60% of adults took prescription pills in 2012, 
a figure which was only 50% in 2000 (Kantor, Rehm, 
Haas, Chan, & Giovannucci, 2015). The possibility 
of pill misidentification, and possible adverse drug 
events, has therefore increased. Automatic pill 
identification would help reduce the possibility of 
pill misidentification. Because there are so many 
different medications and generic varieties of each 
medication, it would be extremely difficult for 
anyone to identify all pills, without specific 
background knowledge. The National Library of 
Medicine (NLM) hosted a Pill Image Recognition 
Challenge as part of its research and development in 
Computational Photography Project for Pill 
Identification (C3PI).  In this research, we analyze 
the pill images presented in this challenge, using 
color features and a support vector machine (SVM) 
learning algorithm.  

The research began with the pill recognition 
aspect of the project. Utilizing the NLM curated 
Pillbox images, which also included metadata 
information of the physical attributes of each pill, 

enabled the development of a baseline recognition 
algorithm which performed well under controlled 
conditions. Generalization for the algorithm required 
accounting for real-world factors such as lighting 
condition, camera resolution, and non-homogeneous 
backgrounds. 

Previous work in this domain (Madsen et al, 
2013) and (Wan et al., 2015) yielded good results, 
but were limited to using images of similar quality as 
the Pillbox images.  In this study, we expand the 
number of target color to be recognized from 7 to 12 
and increase the number of Pillbox images to 
approximately 2100. 

 Using an SVM classifier, we were able to 
achieve a recognition accuracy based on 12 color 
categories of 97.90%. 

2 METHODOLOGY 

The workflow of this research consisted of first 
determining perceived five color component values 
(red, green, blue, yellow, white) and twelve 
perceived actual color values. There were 2151 high 
resolution pill images in the Pillbox database as of 
December 2014. The Pillbox images are of very high 
quality, with high resolution, controlled illumination, 
and uniform background. The high quality of the 
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database allows segmentation using a simple 
threshold to separate the pill object from the 
background for almost all pills.  Using the 
segmented pill, the color classification process was 
performed using a four-step approach which is 
outlined in Figure 1 and summarized as: 

Step 1: Segment the pill from the Pillbox image. 
Step 2: Determine the best axis to divide the 

segmented pill image into two halves. 
Step 3: Extract features from each half of the 

segmented pill region. 
Step 4: Classify the segments into a color 

category (classification) 

 
Figure 1: Pill color classifier development. 

2.1 Segmentation of Pill Region 

The Pillbox images are all dimensional similar; each 
being 768×1024. Demonstrated in Figure 2, the 
colored background, front and back of each pill are 
included in the Pillbox images. Since the 
background color can influence color detection it is 
not used for pill color analysis.  As such, a reliable 
segmentation algorithm of pill from background is 
needed.  

 

Figure 2: Example of a Pillbox image. 

The algorithm to segment the pill image is as 
follows:   

Step 1: Load red, green and blue (RGB) image  

Step 2: Take a sample of the background pixels 
(10 lines of pixels, shown in the Figure 2) 
and calculate the mean intensity of 
background. 

Step 3: Threshold the image based on the 
calculated mean intensity value 

Step 4: Repeat Step 2-3 for Green and Blue color 
channels 

Step 5: Use erosion to eliminate noise and 
dilation to fill holes  

Step 6: Combine the binary mask that was 
generated for each color plane using a 
union operation. 

Because the pill color is uniform on both sides of 
the pill in this data set, only one side of the 
segmented pill region (top-left side was arbitrarily 
chosen) is used for feature analysis.  The 
segmentation of pill region is shown in Figure 3, 
with background color set to be black (pixel value is 
0 in RGB color space) for convenience of feature 
calculation shown later. 

 

Figure 3: Segmentation of pill region. 

2.2 Creation of Vertical Segments of 
Pill Region 

In this process, the segmented pill region obtained in 
the previous step is divided into two vertical 
segments, left segment and right segment. The 
reason for creating two vertical segments instead of 
analyzing the whole segmented pill region is that 
some pills have two or more colors (see Figure 4). 
To avoid classification errors that would occur with 
whole-pill color analysis, the pill is divided into 
vertical two segments.  

After the pill region of interest is obtained 
through segmentation, a vertical central axis needs 
to be located. The central axis is simply defined as 
the middle column in the segmented pill region 
because of the accuracy of the segmentation. For a 
segmentation mask image of size , the middle 
column is defined as column	 /2 . The central axis 
location and vertical segments can be viewed in 
Figure 5. 

Segment pill region in original image 

Creating vertical segments of left and right part 

Feature extraction 

Color classification 

Color Feature-based Pillbox Image Color Recognition

189



 

 

 

Figure 4: A two-colored Pillbox image. 

 

Figure 5: Central axis and left/right vertical segments. 

2.3 Feature Extraction 

For each vertical segment of the pill region image, 
there are five different categories of color features 
computed from the segmented pills, including: (1) 
RGB intensity, (2) HSV intensity, (3) Chromaticity, 
(4) Left-Right averages, and (5) Brightness.  An 
overview of the features extracted for each feature 
category is presented in Table 1.  The algorithms for 
computing each feature are given in detail following 
Table 1. 

Table 1: 20 Color Features. 

Feature 
Category 

Labe
l 

Measure Description 

 
RGB Mean  
And Std. Dev. 

F1 Red intensity Red, Green and 
Blue color space 
statistics 

F2 Green 
intensity 

F3 Blue 
intensity 

F4 Std. Dev. 
Red intensity 

F5 Std. Dev. 
Green 
intensity 

F6 Std. Dev. 
Blue 
intensity 

 
HSV Mean  
And Std.  Dev. 
 

F7 Hue Mean Hue, Saturation 
and Value color 
space statistics 

 

F8 Value Mean 
F9 Saturation 

Mean 
F10 Hue Std. 

Dev.  
F11 Value Std. 

Dev. 
F12 Saturation 

Std. Dev.  

 
Chromaticity 
Means 
 

F13 Red 
chromaticity 
Mean 

Chromaticity 
measures color 
quality and 
overall values of 
brightness.   
Red chromaticity 
= R/(R+G+B); 
green and blue 
are similar. 
Chromaticity 
combines the 
features of 
saturation (color  

purity) and 
hue (color 
specificity) in a 
single value. 

F14 Green 
chromaticity 
Mean 

F15 Blue 
chromaticity 
Mean 

F16 Yellow 
chromaticity 
Mean 

Combination F17 RGA Averages of 
colors for each 
two-color 
combination. 

F18 GBA 

F19 BRA 

Brightness F20 Intensity 

3
 

2.3.1 RGB Intensity 

The RGB color model is additive in the sense that 
the three primary color spectra are added together, 
wavelength for wavelength, to make the final color 
spectrum (Boughen & Gross, 2003; Poynton, 2003).  

After the pill region image is obtained, the color 
image is decomposed into red, green and blue 
images (figure 6). The background pixels are set to 0. 
All nonzero pixel values indicate pill region pixels; 
for this region, SumRed, SumGreen and SumBlue 
represent the summation of intensity values for pill 
region pixels. The number of pill region pixels is 
found by NumRed, NumGreen and NumBlue. 

 
            (a)                        (b)                         (c) 

Figure 6: The grayscale images of pill region. a) red 
channel, b) green channel, c) blue channel. 

In each of the three channels, the mean of red 
intensity (F1), green intensity (F2) and blue intensity 
(F3) are calculated according to the equations 1-3.  

 (1)

 (2)
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The standard deviation for the three channels of 
the RGB color space, denoted as Std Red (F4), Std 
Green (F5) and Std Blue (F6) are calculated using 
the Matlab® function “std.” 

2.3.2 HSV Intensity 

The hue, saturation and value (HSV) color space 
represents colors in a way that is similar to the way 
that humans perceive colors.  HSV attempts to the 
separate chroma and luminance such a particular hue 
is the same independent of luminance. The 
conversion from RGB to HSV color space is 
provided by Matlab® with the function “rgb2hsv” 
which is detailed on Matlab official document 
webpage (MathWorks, 2016). The given pixel value 
represents the current pixel parameter (hue, 
saturation or value), as the entire image is distributed 
in these three channels. Figure 7 gives an example of 
a pill region in HSV color space. 

 
           (a)                        (b)                         (c) 

Figure 7: Illustration of grayscale image of HSV color 
space. a) hue, b) saturation, c) value. 

The pixel value sums for each of the three 
channels, SumHue, SumSat and SumVal, can be 
obtained by summing the non-zero pixels (black 
pixels also have 0 values in HSV color space). The 
counting of pill region pixels NumHue, NumSat and 
NumVal is similar to RGB pixel counting. Hence, 
the HSV feature are also extracted using equations 
4-6, similar to RGB feature extraction. 

	  (4)

	  (5)

	  (6)

Note that the HSV calculations are also 
accomplished with the Matlab® function “std,” and 
are processed in all three HSV color space channels. 

2.3.3 Chromaticity and Brightness Features 

For each channel of the HSV color space image, 
along with red, yellow, and blue chromaticity (See 
Equations 7-10) features were calculated for every 
pill. As an objective specification of the quality of a 
color regardless of its luminance, chromaticity can 
give us another view of the color being recognized 
and help in the color classification. And for this 
category of feature, four chromaticity features are 
defined: red, green, blue and yellow chromaticity. 
Each of these features represents a different aspect 
of color according to the color space we have here. 
Chromaticity features were among the most useful 
features in previous works on pill color recognition 
(Lee, Park, Jain, & Lee, 2012; Madsen, Payne, 
Hagerty, Szanto, Moss, Wronkiewicz, Stoecker, 
2013; Wan, Woods, Salgado-Montejo, Velasco, & 
Spence, 2015).  

 (7)

 (8)

 (9)

2
 (10)

The brightness feature F20 is calculated as the 
average of the brightness in the red, green and blue 
channels (equation 11). Brightness is needed to 
better classify achromic colors, such as gray and 
white  

3
 (11) 

3 CLASSIFICATION 

The left and right pill region vertical segments each 
have a specific color category. In the classification 
process, the left and right vertical segments are 
trained and tested separately in order to avoid the 
issue of color mixture when treating the pill region 
as a whole. However, the left part and right part in 
classification steps are the same regardless of the 
variation of color; hence, for the experiments, we 
consider just the left part as an example. 

The labels for vertical segments were assigned 
manually by two of the authors (J.G.C. and P.G.) 
according to the 12 FDA colors (Julie N. Barrows 
Arthur L. Lipman, 2009) listed in table 3 below. The 
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entire database is labelled in 12 groups with one 
color in each. Take red for example, all the red pills 
are labelled as “positive (1)” for red color; all other 
pills are labelled “negative (0)” to complete the red 
color labels; the same labelling is done for all 12 
colors. 

Table 3: FDA Pill Color Classification Labels. 

FDA Pill Colors 
Black Pink Gray Turquoise 
Blue Purple Green White 

Brown Red Orange Yellow 

In the first stage, twenty features (F1-F20) were 
extracted and used for color-based classification 
based on a leave-one-out method. A Support Vector 
Machine (SVM) classifier was investigated to take 
the input of twenty feature columns for individual 
pill classification (Cortes & Vapnik, 1995). 

As 12 color are treated as the target color in this 
study, 12 different binary classifiers are built, the 
classification for a single color is carried out with 
the following steps: 

Step 1: Train the SVM classifier algorithm 
using a leave-one-image-out approach. The 
classifier is trained based on the left vertical 
segment feature vectors for all except the 
left-out pill image, which is used for testing. 

Step 2: Classify the pill left-out pill test 
image using the SVM classifier.   

Step 3: Assign class labels (1 for target color 
confirmed, 0 for not target color) to the test 
segment image.  

Step 4: Repeat steps 1-3 for all the segmented 
images in the experimental data set. 

Step 5: To finish classifications for all the 12 
colors, Step 1 to Step 4 above are repeated 
for all color labels (total 12 iterations). 

 
For the SVM classifier, the LIBSVM(Chang & 

Lin, 2011) implementation is employed in this paper. 
This SVM tries to find an optimal hyperplane for 
linear inseparable classes which acts as a decision 
function to classify data in high dimensions. A linear 
kernel is used for the SVM to update the penalty 
parameter by a leave-one-image-out method, as 
explained in the paper of (Guo et al., 2015), (De et 
al., 2013). The implementation is completed with 
Matlab® and presented in (Guo et al., 2015). 

 
 
 

4 EXPERIMENTS PERFORMED 

Twelve color categories are defined for the 
classification target. The entire database of 2140 
pillbox images are vertically segmented into two 
groups, each group of pill region segments (2140 for 
either left or right segments) will be assigned one of 
twelve color labels automatically by the classifier. 
The twelve target FDA color categories in Table 3 
are manually assigned as the training and testing 
targets by the author. In the classification process, a 
leave-one-out approach is employed where 2139 
images are used for training and the single left-out 
image is tested. 

In the scoring used for classification accuracy, 
the percentage of rightly classified images is 
calculated for every color category. If the class label 
automatically assigned to the test image is the same 
as the manual class label, then the image is 
considered to be correctly labelled. Otherwise, the 
image is considered to be incorrectly labelled. 

4.1 Experimental Results and Analysis 

As previously stated, we obtained the vertical 
segment image classifications using the SVM 
classifier with a leave-one-image-out approach 
based on all the twenty features generated. Then the 
vertical segment classifications are compared with 
the target color truth label and finally calculated the 
percentage of right classification accuracy. We 
evaluated performance of these pill image 
classifications using the three approaches that is 
presented in Section 3. Table 4 shows the 
classification results obtained with the SVM 
classifier, for all twelve color categories. 

Table 4: Classification results obtained for all color 
categories. 

Color Red Green Blue Yellow Black White 
Accuracy98.46% 99.44% 99.21% 99.07% 100% 95.14% 
Color Gray Pink Cyan Purple Brown  Orange 
Accuracy90% 100% 99.47% 99.39% 96.78% 97.85% 

As can be observed in Table 4, the highest 
accuracy of classification for all the color categories 
are the black and pink color classification, which 
both were 100% correct. Additionally, cyan has an 
accuracy of 99.47% (2129/2140), green 
classification is found to be 99.44% correct 
(2128/2140), 2127/2140 of purple pills are classified 
correctly, followed by blue follows with a 
classification accuracy of 99.21% (2123/2140). For 
yellow, 2120 pills are correctly recognized giving an 
accuracy of 99.07% (2120/2140). Red is recognized 
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in 98.46% (2107/2140) in classification and Orange 
as 97.85% (2094/2140).  

However, white and gray give confusing 
classification results of 95.14% (2036/2140) and 90% 
(1926/2140) since manual labelling consistency is 
difficult for these colors with identical hues. After 
adjusting Pillbox image labelling using the output 
results, manually misclassified images can be 
corrected, which improves classification accuracy to 
as high as 99%. However, until labelling is further 
investigated, the lower white and gray results are 
used in calculating overall accuracy.   

5 CONCLUSIONS 

Under the idea of basic component colors for 
classification, the features are extracted as the basis 
of red, green and blue color related features. 
Furthermore, the chromaticity, since it combines 
saturation and hue (measuring color proportion over 
all values of luminance), provides a simple model 
for the color perceived by humans. Because of 
uncertainty regarding labelling of white and gray, 
performance ranged from over 98% for nine of the 
colors to 97.85% for orange, 95.14% for white, and 
90% for gray. Perfect accuracy (100%) is yielded as 
the classification result for both cyan and pink color 
Pillbox images. Overall, the classification accuracy 
obtained from all the 12 color categories is 97.90% 
which is higher than results obtained by (Madsen et 
al, 2013) and (Wan et al., 2015). 

Future research can be focused on principal 
feature analysis to find the most significant features, 
accuracy obtained from different current feature 
groups. Additional data could enable classification 
by unsupervised learning algorithms such as deep 
learning. And, as to make the algorithm more 
generalized and applicable in real world conditions, 
a noise level study on the pill images should be 
performed, taking into account non-optimal 
condition such as uneven illumination, image blur 
and heterogeneous backgrounds, etc. 

As the first step in computing the visual content 
in pill color recognition, we have already made 
progress in reference image-based classification. 
Additional research should also focus on imprint 
identification, score marks and analysis of 
consumer-quality pill identification, to enable 
identification of pills under real-world conditions.  
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