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Abstract: We propose the first batch-verifiable secret sharing scheme with a significant security property, namely that
of unconditional privacy. Verifiability and privacy of secret-shared messages are a crucial feature, e.g., in dis-
tributed computing scenarios, and verifiable secret sharing schemes with unconditional privacy (but without a
batching feature) exist for a long time, e.g., Ben-Or, Goldwasser, and Wigderson (STOC 1988). Unfortunately,
those schemes are able to verify only a single message at a time which, however, is not a very realistic scenario
in a more practical setting. Namely, large files in real-world implementations are often split into many message
blocks on a several-byte level and, thus, many known single-message verifiable secret sharing schemes tend to
behave inefficiently in such a scenario. To improve practicability, batch-verifiable secret sharing was proposed
by Bellare, Garay, and Rabin (ACM PODC 1996). In their scheme, the servers are able to verify a batch
of messages (instead of only one) at almost the same amortized efficiency costs in comparison to efficient
existing verifiable secret sharing schemes that only deal with single messages. However, the Bellare-Garay-
Rabin scheme does not consider the important security property of unconditional privacy. Unconditionally
private schemes information-theoretically guarantee privacy even against computationally unbounded adver-
saries and, hence, can be seen to be private in a long-term sense. In this work, we lift the Bellare-Garay-Rabin
scheme to the unconditional privacy setting in a rigorous manner while preserving the practicability of their
scheme simultaneously.

1 INTRODUCTION

Secret sharing is one of the most fundamental
information-theoretically secure cryptographic primi-
tives. It allows a party (the dealer) to split a message
M into a multitude of shares (say n pieces) such that
only designated qualified sets of shares are able to re-
construct M. At the same time, no other set of shares
is able to infer any information about the message in
an information-theoretic sense.

Secret sharing was simultaneously introduced by
Shamir (Shamir, 1979) and Blakely (Blakley, 1979).
Both works consider a threshold setting where, for
some t ≤ n, any subset of at least t + 1 of the n
shares is qualified while any set of at most t shares
is not. Fundamentally, secret sharing is used as a
building block in many cryptographic areas, such as
within secure multi-party computation (e.g., (Chaum
et al., 1987)) or broadcast encryption (e.g., (Naor and
Pinkas, 2001)). In a pure practical sense, real-world
implementations of secret sharing are given in a vari-
ety of products, such as in a Symantec PGP Desktop
solution (Symantic, 2012), in the Ubuntu libraries (gf-
share, 2010), within CHARM (Akinyele et al., 2013),

or ARCHISTAR (Lorünser et al., 2015).
While plain secret sharing guarantees availability

(at least for appropriately chosen values of n and t)
and confidentiality in the case of up to t corrupt share
holders, it does not give any guarantees in case of
a corrupt dealer. However, this might often be re-
quired, e.g., in the case of data sharing, where mul-
tiple, mutually untrusted dealers are allowed to write
data. In this case, it becomes necessary to guarantee
that the shares written by a dealer are actually con-
sistent. This is exactly what can be guaranteed by
verifiable secret sharing (VSS) schemes which were
introduced by Chor, Goldwasser, Micali, and Awer-
buch (Chor et al., 1985). Within this setting, the
share holders are assumed to be active, rather than be-
ing passive storage nodes only. After receiving their
shares, the share holders and the dealer engage in a
protocol at the end of which every honest share holder
is assured that every honest qualified set of shares
will be able to reconstruct the same secret. VSS has
numerous applications in the fields of secure multi-
party computation (Cramer et al., 1999), distributed
key generation (Zhang and Zhang, 2014), distributed
proxy signatures (Herranz and Sáez, 2003), audit pro-
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tocols (Demirel et al., 2016), or Byzantine fault tol-
erance protocols (Happe et al., 2016). Additionally,
effcient real-world implementations of (public) VSS
schemes are given in the work of (D’Souza et al.,
2011), where also an implementation of (Schoenmak-
ers, 1999) is given.

One key property a VSS scheme can exhibit is
(unconditional) privacy; those schemes are also called
(unconditionally) private VSS schemes. Such feature
allows that no information on the secret-shared mes-
sage is leaked through an unqualified set of shares
(unconditionally). Of course, every qualified set is
able to recover this message entirely, but no other
set. Starting from the unconditionally private VSS
work of Ben-Or, Goldwasser, and Wigderson (Ben-
Or et al., 1988), there is a variety of schemes in the
cryptographic literature which focus on uncondition-
ally (and also conditional) privacy in the VSS setting,
e.g., (Rabin and Ben-Or, 1989; Gennaro et al., 2007;
Patra et al., 2009a; Kumaresan et al., 2010; Feldman,
1987; Pedersen, 1991; Gennaro et al., 1998; Backes
et al., 2011).

Unfortunately, many of the existing VSS schemes
(and essentially all of the schemes mentioned above)
are inefficient in the following sense. In the usual
VSS setting, the dealer has to prove to the share hold-
ers that all their shares resulted from an honest ex-
ecution of the sharing algorithm. This is essentially
done by letting the dealer commit to his random coins
and broadcast these commitments such that the share
holders can then (potentially interactively) verify that
their shares are consistent with the commitments. The
mentioned scenario might be acceptable for single
messages. However, this is clearly not satisfactory
for a multi-message setting. For example, real-world
applications usually implement secret sharing on a
several-byte level, while files are often megabytes to
gigabytes in size such that a file often has to be split
into 220 blocks (i.e., secret-shared messages) or more.
As a result, the computational overhead of computing,
transferring, and verifying the high number of com-
mitments renders many existing VSS schemes im-
practicable in the real-world setting.

To the best of our knowledge, the only known VSS
scheme which simultaneously deals with a large num-
ber of messages is that of Bellare, Garay, and Ra-
bin (Bellare et al., 1996). Their scheme is able to
verify a batch of messages with almost no extra amor-
tized efficiency cost in comparison to existing (only
single-message) VSS schemes. However, they use
VSS only as a building block to achieve a more com-
plex primitive and do not consider privacy. (Essen-
tially, every server in their scheme learns a weighted
sum over the shared batch of messages, and thus the

scheme is not unconditionally private.) Since it is
tempting and natural to use batch-VSS also as a stand-
alone primitive (e.g., within the several-byte scenario
mentioned above), unconditional privacy is an ex-
tremely important security feature as it allows to guar-
antee privacy of shared secret messages even against
computationally unbounded adversaries.

In this work, we extend the batch-VSS scheme
of (Bellare et al., 1996) (and also their VSS defini-
tion) to propose the first batched VSS scheme with
unconditional privacy while essentially preserving the
efficiency and practicability of their scheme simulta-
neously. Along the line, we propose rigorous VSS
definitions. Although the technical step to lift Bellare
et. al’s result to the unconditional privacy setting is
rather small, we stress that to the best of our knowl-
edge no scientific paper has so far analyzed uncondi-
tional privacy with rigorous definitions in the batch-
VSS setting. We stress that unconditional privacy is
an important property of VSS schemes as it yields pri-
vacy in a long-term sense. Hence, our work can be
seen as complementing the overall picture of efficient
and unconditionally private batch-VSS schemes.

Motivation and Related Work. Secret sharing was
simultaneously introduced in the seminal work of
Shamir (Shamir, 1979) and Blakely (Blakley, 1979).
Verifiable secret sharing has first been introduced by
Chor et al. (Chor et al., 1985). Since then, a huge ef-
fort of work has been performed in this field. For in-
stance, solutions that are unconditionally private and
committing have been proposed for n ≥ 2t +1 (Gen-
naro et al., 2001; Fitzi et al., 2006; Katz et al., 2008).
If one is additionally aiming for perfect completeness,
then one has to use n ≥ 3t + 1 (Ben-Or et al., 1988;
Dolev et al., 1993).

For efficiency reasons, many publications con-
sider a setting which is perfectly private but only com-
putationally committing. The probably most promi-
nent VSS scheme is the scheme of Pedersen (Peder-
sen, 1991). Its computationally private but perfectly
committing counterpart has been proposed by Feld-
man (Feldman, 1987). An optimized generalization
of Pedersen’s scheme has been presented by Backes
et al. (Backes et al., 2011) while Kate et al. (Kate
et al., 2010) propose an efficient VSS with constant-
size commitments.

All schemes mentioned (and also our proposed
scheme) consider private verifiability only. That is,
only the share holders are able to verify that the dis-
tributed shares are actually correct and consistent. If
computations on the share holder’s side are very ex-
pensive, publicly verifiable secret sharing schemes
can be used, where also external parties can verify the
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consistency of the distributed shares without learn-
ing anything about the shared message (Fujisaki and
Okamoto, 1998; Schoenmakers, 1999; Jhanwar et al.,
2014). Finally, another line of research also consid-
ers VSS in an asynchronous communication model
where the adversary is allowed to partially control the
network, e.g., (Canetti and Rabin, 1993; Cachin et al.,
2002; Patra et al., 2009b; Backes et al., 2011).

In all works mentioned so far, verification is done
on a per-message level. The only paper consider-
ing a batch version of VSS is Bellare et al. (Bel-
lare et al., 1996) which shows how to efficiently
batch-verify multiple Shamir-shared messages, but
does not consider unconditional privacy. Demirel et
al. (Demirel et al., 2016) suggest a protocol for au-
diting the servers, i.e., checking efficiently whether
the distributed shares are still available at all servers.
They claim that their protocol can also be used as a
batch-VSS scheme if one is willing to assume that
all servers behave honestly during the sharing phase,
which, however, is a non-standard assumption as one
typically allows up to t corrupted parties at any point
of the protocol. As a result, a single corrupted server
could easily carry out denial-of-service attacks in
their setting.

Our Contribution. In a nutshell, we propose an ef-
ficient batch-verifiable secret sharing scheme that sat-
isfies a strong (standard) privacy definition for VSS.
We stress that former works do not focus on privacy,
i.e., (Bellare et al., 1996), or achieve only a weaker
correctness property, i.e., (Demirel et al., 2016).

More precisely, we first formally define what we
understand by a batch-VSS scheme. While this is in-
tuitively clear, we believe that a detailed formalization
is necessary. In particular, many existing VSS defi-
nitions are often quite informal (Backes et al., 2011;
Kaya and Selçuk, 2008; Pedersen, 1991; Schoenmak-
ers, 1999) in the sense that it is not formally defined,
e.g., at which points in time, the adversary is allowed
to corrupt which parties and which information is then
revealed. Our goal was to present strong and rigor-
ously formal definitions for batch-VSS schemes.

In the following, we present an instantiation of
our batch-VSS definitions based on the Bellare et
al. scheme (Bellare et al., 1996) and, hence, on
Shamir’s secret sharing technique (Shamir, 1979).
The instantiation is correct, unconditionally private,
and statistically or computationally committing, for
n ≥ 3t + 1. The batch-VSS scheme of Bellare et al.
achieves the statistical committing property; however,
their scheme needs a pre-processing of server secrets
which our computationally committing scheme does
not need. Nevertheless, we can adapt our scheme to

work with the Bellare et al. setup and, thus, our statis-
tically committing scheme achieves the same commit-
ting property. Furthermore, our instantiation is per-
fect, i.e., the shares stored by each server have the
same size as the original message.

More technically, the dealer starts with sharing
each message M j using a degree-t polynomial f j(x)
with coefficients a j,v according to Shamir’s scheme.
Further, it draws another polynomial r(x) with uni-
form coefficients b0, . . . ,bt . After having received
the shares, the servers first interactively agree on a
uniformly random challenge w which is also sent to
the dealer. The dealer then computes t + 1 linear
combination of the polynomial coefficients, namely
Cv := ∑m

j=1 a j,vw j + bv, using the coefficients bv of
r(x) as blinding terms. Each server is now able to
compute a linear combination of all Cv and can check
this against a linear combination of its own shares. In
the beginning of the reconstruction phase, each server
broadcasts its shares, which enables each server to re-
construct the secret and verify the consistent sharing
of the dealer.

2 PRELIMINARIES

We introduce some notations and basic cryptographic
primitives. For n ∈ N, let [n] := {1, . . . ,n} and let
λ ∈ N be the security parameter. We denote algo-
rithms by sans-serif letters (A,B, . . . ) and sets by cal-
ligraphic letters (R ,S , . . . ). For a finite set S , we de-
note by s← S the process of sampling s uniformly
from S . For an algorithm A, let y← A(1λ,x) be the
process of running A, on input 1λ and x, with access
to uniformly random coins and assigning the result
to y. We assume that all algorithms take 1λ as in-
put and we will sometimes not make this explicit in
the following. An algorithm A is probabilistic poly-
nomial time (PPT) if its running time is polynomi-
ally bounded in λ. Furthermore, we write Pr[E : Ω]
to denote the probability of event E over the proba-
bility space Ω. A function f : N→ R is negligible
if it vanishes faster than the inverse of any polyno-
mial, i.e., if ∀c∃λ0∀λ≥ λ0 : | f (λ)| ≤ 1/λc. We write
(oA;oB; . . .)← 〈A(inA);B(inB); . . .〉 for an interactive
protocol between participants A,B. (Here, inA, inB
and oA,oB resp. denote the inputs and outputs.)

Commitment Schemes. A commitment scheme
with message space G consists of the three PPT al-
gorithms (CPar,Com,Open) with the properties cor-
rectness (honestly computed commitments can al-
ways be opened by an honest party), hiding (a com-
mitment must not leak any information about the
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committed message), and binding (no adversary must
be able to open a commitment to two different mes-
sages). CPar(1λ), on input 1λ in unary, outputs pub-
lic parameter pp. Com(pp,M), on input a message
M ∈ G, outputs a commitment-witness pair (C,d).
Open(pp,C,M,d) outputs a verdict b ∈ {0,1}. (We
refer to the full version for a formal definition.)

(Batch-verifiable) Secret Sharing. The most
prominent threshold secret sharing scheme is due to
Shamir (Shamir, 1979) and is based on the observa-
tion that in a field a polynomial of degree t is uniquely
determined by t + 1 function values. Let therefore
Fq be a field with q elements. Usually, we have n
server and a dealer; the dealer gets as input a message
M ∈ Fq that is supposed to be secret-shared among
the servers. Concretely, to share M, the dealer draws
a random polynomial f (x) = atxt + · · · + a1 + M
in Fq[x], and outputs f (i) as the i-th share. To
reconstruct M from at least t +1 values, one can now
simply compute the interpolation polynomial defined
by the given shares and output f (0). Knowing at
most t f (x)-values (for pairwise distinct x) does not
reveal any information about the polynomial.

Bellare et al. (Bellare et al., 1996) proposed an ele-
gant (batch-)verifiable secret sharing schemes for ver-
ifying degree-t polynomials. In their VSS construc-
tion (without the batching property), a message M
is secret-shared via Shamir’s scheme, i.e., the dealer
chooses a degree-t polynomial f (x) := a j,txt + · · ·+
a j,1 +M and sends f (i) to server i. Additionally, the
dealer shares a second polynomial r(x). Further, all
n servers agree on a uniformly random value w and
each server broadcasts Ci = f (i)+w ·r(i). Now, every
server can interpolate a polynomial over the Ci-values
and check if such a polynomial has degree ≤ t. If this
is the case, the server agrees, otherwise it rejects.

In their batched-VSS construction, for messages
M j, j ∈ [m], the dealer Shamir-shares M j using a
degree-t polynomial f j(x) := a j,txt + · · ·+ a j,1 +M j.
It then sends ( f j(i)) j∈[m] to the server Si. Next, the
servers engage in a “joint randomness computation”
protocol to obtain a random value w. Further, each
server computes a linear combination of its shares
f j(i) as Ci := ∑m

j=1 f j(i) ·w j and broadcasts Ci. Us-
ing these values, every Si then efficiently interpolate
a polynomial using the Ci-values (since n ≥ 3t + 1)
and verify that the interpolated polynomial has de-
gree ≤ t. If this is the case, Si accepts, otherwise it
rejects. (Note that already t + 1 broadcasted values
Ci reveal enough information.) However, each server
learns the weighted sum ∑m

j=1 f j(i) ·w j of all values
Ci after the broadcast. Hence, unconditional privacy
of the secret-shared messages is not given.

3 THE SECURITY MODEL OF
BVSS

In this section, we introduce the syntax and security
requirements of batch-verifiable secret sharing.

3.1 Syntax

An (n,m, t)-batch-verifiable secret sharing scheme
BVSS (dubbed (n,m, t)-BVSS for short) is a system
consisting of a dealer D and n servers S1, . . . ,Sn. Be-
sides the number of servers, it is parametrized by the
reconstruction threshold t+1∈N,1≤ t < n, the num-
ber m of messages that can be batch-verified, the mes-
sage space M , and the share space S .

An (n,m, t)-BVSS consists of a parameter gener-
ation algorithm SPar that generates public parameters
which are accessible to all participants. Depending on
the concrete instantiation, it might be necessary that
the public parameters are generated by a trusted third
party, or through a joint computation of the different
system participants. Furthermore, the system consists
of two interactive protocols (or phases). During an in-
vocation of the sharing phase, the dealer can share m
messages M j ∈M among the servers S1, . . . ,Sn in a
confidential yet provably consistent way. Then, in the
reconstruction phase, the server jointly reconstruct
the shared messages by broadcasting their shares and
executing an algorithm Rec. It is required that all
algorithms and protocols are PPT. Furthermore, we
assume that each server has access to fresh and uni-
formly random random coins whenever necessary.

An (n,m, t)-BVSS is defined by the following al-
gorithms and phases:

Parameter Generation. SPar(1λ), on input unary
1λ, outputs public parameters pp. (We assume that
all participants have implicitly access to pp.)

Sharing Phase. In the beginning of this
phase, the dealer D, on input pp and mes-
sages (M1, . . . ,Mm) ∈ M m, obtains shares
(s1, j, . . . ,sn, j) ∈ S n of M j, for all j ∈ [m]. Further,
D distributes (si,1, . . . ,si,m) to Si, for all i ∈ [n]. In
each round, each server can communicate with
every other server privately and is eligible to
broadcast data. After the last round, each server
Si outputs its shares and a (potentially empty)
auxiliary parameter as~si = (si,1, . . . ,si,m,auxi),for
i ∈ [n], while the dealer D outputs ε.

Reconstruction Phase. In the beginning of this
phase, each server Si broadcasts ~si, for i ∈
[n]. Further, the deterministic reconstruction
algorithm Rec(pp,~s1, . . . ,~sn) outputs messages

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

306



(M1, . . . ,Mm) ∈ (M ∪ {⊥})m which is also de-
fined to be the protocol’s output.

3.2 Security Requirements

In the following, we define the formal security guar-
antees that need to be fulfilled by a BVSS scheme.
Even though these requirements are very similar to
the standard security definitions for VSS, we will dis-
cuss them in detail. This is because in the literature,
the security of VSS schemes are often formulated in
a rather informal way (Backes et al., 2011; Kaya and
Selçuk, 2008; Schoenmakers, 1999), which might po-
tentially cause subtle differences in the way they are
interpreted.

From now on, we will say that an adversary is
t-valid if and only if it corrupts at most t servers
Si1 , . . . ,Sit . We therefore grant the adversary access
to a corruption oracle Ocor in all security experiments.
At any point in these experiments, the adversary may
ask Ocor to corrupt a server of its choice, receiving its
entire internal view (including all messages received,
its share, etc.) as a response. A corrupted server is
then under full control of A, who can, e.g., send or
broadcast data on behalf of the server.

We continue with defining the correctness, pri-
vacy, and commitment properties of an (n,m, t)-
BVSS scheme.

Correctness. Informally, correctness (or, some-
times also dubbed completeness) says that for
an honest dealer, it is always guaranteed that
the original messages M1, . . . ,Mm can be recov-
ered from the shares accepted by the servers —
even if up to t servers behaved arbitrarily mali-
ciously during the sharing phase. An (n,m, t)-
BVSS scheme is correct if for every t-valid PPT
adversary A there exists a negligible function
negl such that the following holds true: For all
M1, . . . ,Mm ∈ M ,pp ← SPar(1λ),(ε;~s1; . . . ;~sn) ←〈
D(pp,(M j) j∈[m]);S1(pp); . . . ;Sn(pp)

〉
, the probabil-

ity that Rec(pp,~s1, . . . ,~sn) = (M1, . . . ,Mn) holds is at
least 1−negl(λ). We say that a BVSS scheme is per-
fectly correct if negl(λ) = 0, for all λ.

Note here that the output of corrupted servers can
be arbitrarily chosen by the adversary. In the liter-
ature, correctness is sometimes only required if the
dealer and all servers are honest, e.g., (Demirel et al.,
2016; Stadler, 1996). However, we believe this is
a too weak requirement for practical purposes as it
would enable any single malicious server to launch
denial-of-service attacks. It is thus important that cor-
rectness also gives robustness guarantees against ma-
licious servers.

Privacy. A batch verifiable secret sharing scheme
is called private (i.e., satisfies privacy) if no adver-
sary controlling up to t servers can learn any informa-
tion about the message distributed by the dealer. The
privacy experiment, dubbed Exp

privacy
BVSS,A(1

λ), in which
the adversary has access to Ocor, is defined as follows:
First, fresh public parameters pp← SPar(1λ) are hon-
estly generated and passed to A. Then, A chooses
messages tuples (M0,1, . . . ,M0,m),(M1,1, . . . ,M1,m) ∈
M m×M m and sends them to the experiment. Next,
the experiment tosses a coin b← {0,1} and executes
the sharing phase on one of the message tuples, i.e., it
launches the following protocol, taking the roles of
the dealers and all honest servers: (ε;~s1; . . . ;~sn) ←〈
D(pp,(Mb, j) j∈[m]);S1(pp); . . . ;Sn(pp)

〉
. Eventually,

A outputs a guess b′; if b = b′ holds, then the experi-
ment outputs 1, otherwise the experiment outputs 0.

An (n,m, t)-BVSS protocol satisfies privacy if and
only if for any t-valid PPT adversary A there ex-
ists a negligible function negl such that the follow-
ing holds true:

∣∣∣Pr
[
Exp

privacy
BVSS,A(1

λ) = 1
]
−1/2

∣∣∣ ≤
negl(λ) . We say that a BVSS is unconditionally pri-
vate if negl(λ) = 0, for all λ.

Commitment. Finally, the commitment property is
the distinguishing feature of verifiable secret sharing
schemes. It guarantees that the dealer cannot change
its mind about the distributed value after the sharing
phase — even if it adaptively corrupts up to t servers.
That is, if one has access to all shares, then one will al-
ways reconstruct the very same secret messages M′j ∈
M , even if up to t shares are arbitrarily and adap-
tively modified by the adversary. Consider the follow-
ing commitment experiment, dubbed Expcommit

BVSS,A(1
λ),

in which the adversary has access to Ocor: First, fresh
public parameters pp← SPar(1λ) are honestly gener-
ated and passed to A. The experiment runs the shar-
ing phase

〈
D(pp,(M j) j∈[m]);S1(pp); . . . ;Sn(pp)

〉
for

M1, . . . ,Mm ∈ M chosen by A. Let (~si)i6∈C be the
shares of the non-corrupted parties. In the next step,
the adversary is given (~si)i 6∈C as input and outputs
two full sets of shares (~si)i∈[n],0,(~si)i∈[n],1, such that
#{i∈ C :~si =~si,0} ≥ n− t and similar for~si,1. The ex-
periment outputs 1, if and only if Rec(~s1,0, . . . ,~sn,0) 6=
Rec(~s1,1, . . . ,~sn,1).

An (n,m, t)-BVSS protocol is now said to be com-
mitting if and only if for every t-valid adversary
A there exists a negligible function negl such that
the following holds true: Pr

[
Expcommit

BVSS,A(1
λ) = 1

]
≤

negl(λ) . In particular, we say that a BVSS is uncon-
ditionally committing if negl(λ) = 0, for all λ, and
computational committing otherwise.

Let us explain the rationale behind the commit-
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ment definition. Namely, the adversary can already
compromise a number of servers before and dur-
ing the sharing phase. Then, in the reconstruction
phase, all servers broadcast their shares. The adver-
sary is thus allowed to see all shares held by hon-
est servers, and may adaptively corrupt further ones.
(Alternatively, one could have required that the adver-
sary must decide which servers to corrupt before the
shares were revealed; however, we believe that our
stronger modeling is reasonable as it guarantees se-
curity against adaptive adversaries that might be able
to, e.g., block broadcast messages.) The requirement
now is that no matter how the adversary modifies the
shares of corrupted parties, the reconstruction phase
will always yield the same result and, thus, the dealer
is committed to this value after the sharing phase.

4 AN EFFICIENT AND
UNCONDITIONALLY PRIVATE
INSTANTIATION OF BVSS

In this section, we present an efficient and uncon-
ditionally private instantiation of an (n,m, t)-BVSS
scheme and prove that it indeed satisfies the security
requirements from Sec. 3.

4.1 An (n,m, t)-BVSS Instantiation

In the following, we let p be a prime or a prime power
and define the message space of our BVSS scheme as
M := Fp. Furthermore, we use an interactive ran-
domness generation protocol (RPar,RndBVSS) as a
building block. Informally, randomness generation
protocol, executed among the n servers, has to guar-
antee that all honest servers and the dealer receive the
same uniformly random output from Fp, even if up
to t of the servers behaved maliciously. For a formal
definition and a concrete instantiation of a random-
ness generation protocol, we refer to Sec. 4.2.

Perfect (n,m, t)-BVSS for n ≥ 3t + 1. We now
present an instantiation which works for all n≥ 3t+1
and is perfect in the sense that it only has only a
constant additive storage overhead compared to plain
Shamir secret sharing. (The scheme is a variant of
the BVSS scheme presented in (Bellare et al., 1996).)
The algorithms and protocols of our (n,m, t)-BVSS
scheme are defined as follows:

Parameter Generation. SPar(1λ) obtains pp′ ←
CPar(1λ) as well as pp′′ ← RPar(1λ,n, t, p), and
outputs public parameters pp := (pp′,pp′′).

Sharing Phase. The sharing phase consists of the
following two rounds plus the round(s) needed in
the joint randomness generation protocol:

(a) The dealer D, on input pp and (M1, . . . ,Mm)∈
Zm

p , chooses m+1 degree-t polynomials

f j(x) = a j,txt + · · ·+a j,1x+M j

and r(x) = btxt + · · ·+b0

with (uniform) coefficents a j,v,bv,b0← Zp, for
all v ∈ [t] and all j ∈ [m]. Further, the dealer D
sends shares (( f j(i)) j∈[m],r(i)) to each server
Si, for all i ∈ [n].

(b) Once every server Si received (( f̂ j,i) j∈[m], r̂i)
from the dealer D, the servers and the dealer
engage in an execution of the joint randomness
generation protocol. Let w be the output of
RndBVSS(1λ,n, t, p). (Note that after this step,
by definition of the building block, it is guar-
anteed that all honest Si and D hold the same
uniformly random value w.)

(c) Next, D computes Cv := ∑m
j=1 a j,vw j +bv, for

all v ∈ [t]∪{0}, where a j,0 := M j, and broad-
casts (Cv)v∈[t]∪{0}. After the broadcast, D out-
puts ε.

(d) Upon having received Ĉ0, . . . ,Ĉt , each server
Si verifies the consistency of its shares by vali-
dating that

Ĉ0 +Ĉ1i+ · · ·+Ĉt it
?
=

m

∑
j=1

f̂ j,iw j + r̂i (1)

holds. (Note that each Si has received the
values (( f̂ j,i) j∈[m] = f j(i) j∈[m], r̂i = r(i)) as de-
scribed in step (b).) If the Eq. (1) holds, then Si
outputs~si := ( f̂ j,i) j∈[m]; otherwise, it terminates
the protocol.

Reconstruction Phase. The reconstruction proce-
dure is only one-round. Concretely, each server
first broadcasts its shares to all other servers.
Now, on input (~s1, . . . ,~sn), Rec first verifies each
~si by using a Berlekamp-Welch decoder (Welch
and Berlekamp, 1983). If less than 2t + 1 val-
ues (~si)i∈[n] are valid decodings, Rec outputs ⊥.
Otherwise, for each j ∈ [m], it takes the respective
parts of the valid shares and computes the degree-t
interpolation polynomial f ′j, and outputs the mes-
sages M′j := f ′j(0), for all j′ ∈ [m].
Looking at our protocol specification, it can be

seen that the computational overhead on the server
side is independent of the batch size, except for the
computation of the sum in Eq. (1). However, in prac-
tice, these costs are negligible, in particular compared
to the evaluation of m equations of the same form in
the direct generalization of existing VSS schemes.
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4.2 Joint Randomness Generation

In our BVSS protocol, we require that n servers and
the dealer jointly agree on a uniformly random value
w ∈ Zp in the sharing phase. Such a joint random-
ness generation scheme for Zp consists of the follow-
ing algorithm and protocol. The parameter generation
algorithm RPar(1λ,n, t, p) outputs public parameters
pp. The randomness generation RndBVSS is an inter-
active protocol executed between n servers (where t
of them might be malicious), where at the end of the
protocol each server and the dealer determine an out-
put w from (w1; . . . ;wn)← 〈S1(pp); . . . ;Sn(pp)〉 such
that w is the majority value of (w1; . . . ;wn); i.e., the
protocol goes over all received w j and count the oc-
currence of the values. If there is no single value that
appears more often than other values or no values are
output by the servers, the protocol outputs ⊥. (We
mention that in an instantiation below, we will assume
that n ≥ t +1; hence, the protocol will always output
at least one value wi, for some i ∈ [n].)

Joint Randomness Generation Instantiation from
any Commitments. For our instantiation, let C =
(CPar,Com,Open) be an arbitrary commitment
scheme with message space Zp in the sense of Sec. 3.
The parameter generation RPar and the interactive
randomness generation protocol RndBVSS between
the servers S1, . . . ,Sn, for n≥ t+1, are defined as fol-
lows: The parameter generation RPar(1λ,n, t, p), on
input 1λ and integers n, t, p ∈ N, with n ≥ t + 1, out-
puts pp := (pp′,n, t, p), for pp′ ← CPar(1λ). Within
the randomness generation protocol RndBVSS, each
server Si, on input pp, samples wi ← Zp and broad-
casts a commitment Ci in the first round, for (Ci,di)←
Com(pp′,wi), for all i ∈ [n]. In the second round,
each server Si broadcasts the corresponding opening
(wi,di), for all i ∈ [n]. Let w′1, . . . ,w

′
l be the received

consistent openings, for l ∈ [n]. Each server Si outputs
wi := w′1 + · · ·+w′l mod p.

Lemma 1 . The protocol above has the uniform output
property.

Proof. Due to space constraints, we refer to the full
version for a proof.

Note that an instantiation of a commitment
scheme can only be perfectly binding and computa-
tionally hiding or computationally binding and per-
fectly hiding. Hence, with our joint randomness con-
struction above, we can only guarantee the uniform
output against computationally bounded adversaries.
To address computationally unbounded adversaries in
the joint randomness generation protocol, we can use

the joint randomness generation protocol from (Bel-
lare et al., 1996) using a setup with pre-processing.
Their distributed randomness generation instantiation
achieves the uniform output property of the joint gen-
eration algorithm unconditionally; in particular, they
do not rely on commitments. Nevertheless, they as-
sume a trusted setup with pre-sharing of server se-
crets in the setup phase of their protocol (although
they only need the invocation of the setup once). Our
scheme can be easily adapted to work with (a variant
of) their joint randomness computation and, hence,
we no longer have to rely on commitments. However,
we then have to rely on the assumption of a trusted
setup and pre-processing. (We refer to (Bellare et al.,
1996) for more details.)

4.3 Theorem

Theorem 1. If (RPar,RndBVSS) is a joint randomness
generation protocol in the sense of Sec. 4.2, then the
protocol BVSS as described in Sec. 4.1 is an (n,m, t)-
BVSS protocol, for n≥ 3t+1 and for all m∈N (where
all values are polynomial in λ).

Proof. We omit the proof here due to space con-
straints and refer to the full version of the paper.

5 CONCLUSION

In this work, we presented the first unconditionally
private instantiation of a batch-verifiable secret shar-
ing scheme based on the VSS scheme of Bellare,
Garay, and Rabin (Bellare et al., 1996). Their solu-
tion is extremely efficient and introduce almost no
amortized overhead in communication and storage
compared to plain Shamir secret sharing when larger
batches are considered, i.e., it is possible to add veri-
fiability almost for free. However, their work do not
consider unconditional privacy. With this work being
a starting point, a lot of interesting research directions
are conceivable for future work. For instance, gener-
alizations of our approach to computationally private
secret sharing schemes (e.g., based on the information
dispersal scheme of Krawczyk (Krawczyk, 1993)) or
to VSS protocols developed for an asynchronous net-
work setting (Cachin et al., 2002) could be of practical
relevance. Similarly, batching algorithms for proac-
tive secret sharing are an interesting open problem.
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