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Abstract: A malware macro (also called "macro virus") is the code that exploits the macro functionality of office 
documents (especially Microsoft Office’s Excel and Word) to carry out malicious action against the systems 
of the victims that open the file. This type of malware was very popular during the late 90s and early 2000s. 
After its rise when it was created as a propagation method of other malware in 2014, macro viruses continue 
posing a threat to the user that is far from being controlled. This paper studies the possibility of improving 
macro malware detection via machine learning techniques applied to the properties of the code. 

1 INTRODUCTION 

Originally macros add extra functionalities to 
documents, providing them with dynamic properties 
that allow, for example, to perform actions on a set 
of cells in an Excel document or embed multimedia 
objects in Word files. But by the late 90s, they 
started to become an attack vector used by malware 
creators to execute code in systems. Attackers would 
program macros that extended their functionality for 
the execution of malicious actions on the system, 
such as downloading and running executables. 

"Melissa" (Wikipedia, n.d.) was one of the most 
recognized and harmful worms, in March, 1999. The 
way of spreading this type of malware traditionally 
has been (and still is) email. The victim receives an 
email with an attachment and when opens it, the 
internal macro is executed and infects the operative 
system. In recent years, following the improvements 
introduced by Microsoft in the Office package to 
prevent the automatic execution of macros, this type 
of malware has lost relevance. The existence of 
other more direct methods that did not depend on the 
configuration of the Office system (e.g. exploiting 
vulnerabilities) caused that, for a while, this formula 
lost popularity. However, since 2014, Microsoft is 
warning of a significant rebound (Pornasdoro, 2014)  
in the use of macro malware, this time as a spread 
method or a way for downloading other malware. 
 

Since 2104 and during 2015 (MMPC, 2015), macro 
viruses have been used to spread ransomware 
malware or banking trojans, quite successfully for 
attackers despite the countermeasures and security 
improvements. Therefore, since more than 15 years 
after its appearance, macro malware remains a 
threat, and mechanisms to detect these attacks are 
still necessary. 

The purpose of this paper is to study the behavior of 
attackers when creating malicious macros and their 
functioning. Moreover, it wants to demonstrate if 
detecting, analyzing and using the most common 
methods of malware programming and obfuscation 
may facilitate the correct and automatic 
classification and distinction of documents 
containing legitimate macros, from those with 
malicious macros. While it is assumed that this is a 
specific task of antivirus systems, this study does not 
intend to replace them, but to describe a different 
approach based on parameters other than signatures 
or heuristics to complement detection through these 
traditional systems and allow a more effective 
identification in another layer and with other means 
such as machine learning. 

The rest of the paper is organized as follows: section 
two analyses the technical structure of these 
documents and a historical introduction; section 
three shows the background both in terms of 
previous related studies and existing tools to 
introduce the problem; section four describes and 
develops the proposal; section five presents the 
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results of this work to finally describe the 
conclusions and possible future work in the last 
section. 

2 BACKGROUND 

Visual Basic for Applications (Wikipedia, n.d.) is 
the language used to create macros in Office. It 
appeared in 1993, and its latest version dates from 
2013. It is related to Visual Basic, in the sense that it 
needs its engine to run, but it is not independent: it 
must run within another application that contains the 
code, and interact with other applications through 
OLE Automation objects (a Microsoft internal CPI). 
VBA is compiled into P-Code (also used in Visual 
Basic). This is a proprietary system from Microsoft 
that allows its decompilation to the original format 
in which the code was written. Once compiled, it is 
stored in the corresponding Office document as a 
separate flow in an OLE or COM object. 
Since 2007 there are two very different formats of 
Office documents, and depending on the version of 
the Office format used, this object can be found 
embedded in the document or as a separate file. The 
different formats are: 
 Based on Microsoft formats prior to 2007 with 

.doc or .xls extensions ("classic" format). 
Formats prior to 2007 are actually an OLE 
object in themselves. 

 Based on Open XML formats (Microsoft, s.f.)  
after 2007 with .docx or .xlsx extensions for 
example. These formats are actually ZIP files, 
which contain the same COM object as a macro.  

COM or OLE objects used by Microsoft to store 
macros are specifically OLE objects with the 
structure "Office VBA File Format". 

3 STATE OF THE ART 

From the macro malware analysis standpoint, on the 
Internet we can find numerous specific analysis 
about malware that uses different techniques that 
maximize the chances of VBA to get control of the 
system and execute code. In the antivirus industry, 
numerous patents have been created to control this 
type of malware, such as (Ko, 2004), that describes 
how to extract the macro in a document, analyses the 
flow and operations of the code, compares against a 
database previously categorized and issues a verdict. 
Improving the previous approach, since the late 90 
new malware detection techniques appear based on 

program behavior analysis, such as (Chi, 2006), 
patented by Symantec in 2006. As a third approach, 
we can categorize those techniques, for example 
(Shipp, 2009), consisting of a more thorough 
analysis of the code itself through the use of 
statistics, but always limited to the morphological 
aspect, that is, comments, character frequency, 
names of variables and functions, etc.  

In addition to the above, a new and different 
approach can be taken into account, based on the use 
of machine learning techniques to detect malware. In 
this case, most of the existing literature comes from 
academia and is considerably less extensive than that 
addressed by the aforementioned approaches. For 
example, in (Nissim, et al., 2015) Nir Nissim et al 
use a methodology they have named Active 
Learning in which they use machine learning 
techniques in order to, from Open XML formats 
(.docx extension), extract features from the 
document that are external to the code using a 
system called SFEM, and that when combined with 
their learning system ALDOCX, help identify 
malware on office documents. The extraction of 
SFEM features is based on obtaining internal paths 
of the ZIP composing the document. This system is 
restricted only to new formats based in Office’s 
XML, and it needs the full document to work 
properly, including text or relevant content, which 
may violate privacy if information control during 
analysis is not strict enough. 

Furthermore, in (Schreck, et al., 2013) Schreck et al 
presented in 2013 another approach which they 
called Binary Instrumentation System for Secure 
Analysis of Malicious Documents, which sought to 
distinguish malicious documents extracting the 
malicious malware payload and identifying the 
exploited vulnerabilities. However, it only worked 
for classifiying classic Microsoft formats (.doc 
extension). 
The technique and framework presented in this 
research is able to work with both classic format and 
Open XML-based documents. In addition, it relies 
primarily on the characteristics of the VBA project 
code and other metadata of the file, but it completely 
detaches from the contents of the document or any 
aspect that allows establishing a connection with a 
particular document. The use of metadata is limited, 
focusing the machine learning on the code features 
that define them at semantic level. Moreover, as we 
will analyze in further sections, we potentiate the 
selection of features similar to that used by Schreck, 
et al., automating it and making it dynamic in time. 
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4 DESCRIPTION OF THE 
PROPOSAL 

The research proposal, therefore, is based on the 
application of machine learning techniques, in this 
case classification and supervised learning 
techniques, to determine whether by creating a 
specialized classifier it is possible to become more 
effective than the solutions most commonly used 
and known nowadays, which basically are limited to 
antivirus engines. 

4.1 Identification and Collection of 
Samples 

Since the goal is to build a classification system, the 
fundamental initial process will be the collection of 
samples. This exercise should help obtain a 
representation of the universe to be studied as 
realistic as possible. For this research, we have taken 
samples from Word office documents in .doc, .docx 
format as well as in .docm from different sources 
and created at different times, although with a 
significant percentage of recent and current samples 
(about 80% of the samples collected were created in 
2015 or 2016). The samples were collected from 
diferent sources as for example email accounts that 
usually receive spam or malware attached, 
repositories of public malware (malwr.com, 
contagiodump, etc.) and repositories of documents 
in general (P2P networks, search engines and 
repositories of public documents, etc.) 

We recovered a total of 1,671 office documents. For 
the sample identification and classification, we 
created two different classes or sets: 

 Goodware: Word files with macros from more 
trusted sites (document repositories in domains 
of public entities, universities, etc.) and without 
a heuristic pattern detected that could be 
described as suspicious. For example, 
obfuscated strings, the presence of suspicious 
calls to API, etc. In addition to the absence of 
suspicious indicators, we used multiple antivirus 
engines to validate that they were not detected 
as malware. 

 Malware: Samples that, analyzed with more 
than three different antivirus engines, were 
detected as malware by at least three of these 
engines, regardless of their characteristics. 

Considering the detection by three or more engines 
as “a threshold” for malware is arbitrary, although 
accepted by literature in general. Choosing a good 

detection "threshold" is a complex exercise that still 
has not been solved or standardized, but that can 
make the result of a research based on classification 
to throw different results depending on whether it is 
malware or goodware, two terms that are not always 
properly distinguished even by antivirus engines. 

4.2 Analysis of Samples and Coding of 
Features 

To create a classifier, it is necessary to decide which 
features will be taken from the samples and how 
they will be coded. These features will serve as 
predictors that will form the input vector of the 
classifier to be built. In this phase of the study, the 
features are not final yet, but respond to the bulk of 
all those features that have been obtained from 
samples using the available tools.  
For example, some features may seem to have no 
impact on the result of the classification, others 
however may have a direct correlation, and others 
may be even correlated with each other and in turn 
be decisive for the outcome. In the following charts 
(Figures 1 and 2), we can see how the linear 
adjustment of the ratio shows a certain inverse 
relation between the size of samples (in megabytes) 
and the number of detections by antivirus engines. 

 

Figure 1: Document size (MB) vs Number of detections. 

However, in the case of size of the VBA project 
where macros are stored, the linear adjustment 
reveals that the relation is direct, that is, the larger 
the size of the VBA project, implies a greater 
number of antivirus engines that would detect the 
sample. This may be because, usually, in the case of 
Word documents, macros are typically not too 
complex, so the generated VBA code is not complex 
either. 
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Figure 2: VBA Project size (MB) vs Number of detection. 

However, in the case of malicious macros, the 
amount of code is higher, since usually many 
functions and procedures are needed to perform such 
actions. In any case, this continues to be an 
assumption based on the observation of the 
researcher that cannot actually be demonstrated 
without some kind mechanism such as the one 
presented in this study. 

Thus, thanks to our implementation of an automatic 
selection of characteristics (ASC) based in PCA, the 
outflow of the classifier (once validated by analysts) 
serves as feedback and becomes part of the training 
set. The continuous arrival of new samples to this 
training set, will lead to the emergence of new 
features and to changes in the weighting performed 
by the classifier. These changes must be 
automatically detected by the ASC depending on the 
quality of the results obtained by the classifier. 

This research relies heavily on information provided 
by the decompiled code of the macro, although 
additionally we have included heuristic 
characteristics used by the Python framework 
python-oletools. This way, the input characteristics 
vector has been reduced to a minimum size 
appropriate to the needs of the classifier, and it 
allows sufficient flexibility in terms of automatic 
selection of characteristics for the results obtained to 
be significantly improved. The proportion of 
characteristics directly related to the decompiled 
macro code that make up the vector is 76%. 

The coding of the features in the vector is binary, 
since the load of the classifier is relieved by 
reducing the search space and therefore increasing 
its performance in terms of time and amount of 
computation.  

Currently we work with four classification 
algorithms: Binary Decision Trees, Support Vector 
Machines, Random forest and Neural Networks, 
although the system as a whole has been designed so 
that the used classifier is an interchangeable piece, 
both at algorithm level and version of the classifier 
itself. Therefore, depending on the results, we will 
be able to quickly and easily change between any of 
the three algorithms implemented without the 
functioning of the system being affected. Moreover, 
new algorithms may be added to the existing ones 
simply respecting the modular structure of the 
system with which the previous ones were added, 
which is a relatively simple process. 
In addition to the classifier, we have developed a 
framework that acts as a wrapper, adding a layer of 
high-level functionalities, such as the capacity to 
relate malware or add new samples and analyze 
them. With this, among other things, the classifier is 
supplied automatically with different sample sources 
that are dumped on an unified deposit for their 
subsequent processing. Thus, the number of samples 
will progressively increase, taking also into account 
that the system itself is a source of incorporation of 
samples that are uploaded by users through the 
platform that has been developed so that analysts, 
among others, can interact with the system in a more 
user-friendly way. 
Among the features used to form the vector, we have 
taken into account specific characteristics of the 
code from macros as well as other features of the 
VBA project and the document itself. For example, 
one of the code’s characteristics taken into account 
could be the use of words reserved in VBA related 
to macros auto-execution (AutoExec, AutoOpen, 
Document Open, etc.), or invocations to typical 
access libraries to APIs of the system that allow a 
higher functionality in macros. For the 
implementation of extractions of such 
characteristics, we have used the Python library 
OleVBA. 
 

 

Figure 3: Graphical representation of weighting of 
characteristics. 
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On the other hand, an example of a feature both of 
the VBA project and of the Word document itself 
could be the time difference between its creation and 
the last modification, or the number of macros in a 
document. 

For extraction and analysis of these characteristics, a 
specific program is created for our needs. Based on 
the Python library OleFile, it compensates the 
scarcities found in OleVBA, complements it, and 
also directly produces the vector that characterizes it 
for each input sample. This vector is composed of 45 
bits in total, but not all features are purely binary 
(some have been discretized). This means that 45 
bits do not necessarily involve 45 different 
characteristics, but some monopolize up to 4 bits to 
characterize the sample in a more granular way. For 
example, macros sizes are discretized that way, 
grouping them by ranges. 

Definitely, as a result of all the above, we obtain a 
base vector (BV), which contains all significant 
features that have been commonly extracted from all 
types of referred documents (doc, docx and docm), 
and that defines them anonymously as input for the 
classifier. Since this is a first version of the system, 
we should mention that this vector can vary over 
time, either by adding new features that can be 
drawn from the documents already analyzed, or by 
the inclusion of new documents, such as Excel, 
PowerPoint or PDF that provide new features 
themselves. 

4.3 Feature Selection 

Weka was used at the earliest stages of the study in 
order to make a first approach that served as a quick 
method of validation of the functionalities for a later 
debugging based on successive iterations. Given the 
structure of the extracted information as how it is 
reflected in the vector (as binary predictors), the type 
of classifier used quite fits with algorithms based on 
trees, especially J48, REPTree and Random Forest. 
We took a significant number of samples (over 500 
samples) and carried out different classification 
exercises using decision trees with different 
algorithms that allowed a quick and visual check of 
the quality of the features. That way we were able to 
guarantee, not formally (there are numerous 
techniques to validate this) but "visually", that the 
functionalities chosen were suitable for the initial 
scope of this research. Subsequently this has been 
validated in a more rigorous way. 
For  example,  the  first approaches revealed some 
characteristics  that  were  very  important  decision- 

wise, such as the inclusion of the word "Document 
Close" (f43). However, this is not a definitive tree, 
since repeated iterations of the automatic selector are 
necessary to use all the features properly and enrich 
the final decision algorithm.  
This exercise also aimed to debug the future 
classifier, the vector, and verify that decision trees 
could indeed result in a good classifier. 

With these classification algorithms we also 
obtained the first approximations of the results that 
can be obtained with these features. In the specific 
case shown, we managed to classify a set of cross-
validation test and training with an accuracy of 
96.39%, and a false positive rate (misclassification) 
of 3.60%, which points to acceptable outcomes. 

4.4 Structure of the Classifier and 
Basic Functioning 

As we have seen in previous sections, the classifier 
receives as input a binary vector of features 
(predictors) previously selected by the ASC from the 
BV, which we will refer to as final vector (FV). 
Since it is a binary classification problem, where all 
types with which we work are Malware and 
Goodware, as usual we have a training set the data 
of which are structured in the form { ௜ܺ, ௜}௜ୀଵே௩ݕ , where ݕ௜ ∈ ,݁ݎܽݓ݈ܽܯ}  is the categorical {݁ݎܽݓ݀݋݋ܩ
variable and ௜ܺ = ሾݔ௜ଵ, … , 	௜ݔ	|	௜ேሿݔ ∈ {0, 1} is each 
of the ௏ܰ vectors contained in the training set, 
formed by N binary predictors. 
The characteristics that form the FV are those with a 
significant importance in the classification process 
according to the set of samples that exist in the 
system at a given time t. Thus, each x feature will 
have a pi weighting at a given time. pi = P(x | t). 
In turn, over time and depending on the samples 
incorporated to the system, different BV will appear 
among which we will need to select which one is 
most suitable depending on the time. Thus, at the 
time of writing this paper for example, the weight 
distribution in the BV of each feature according to 
its node’s contribution in Random Forest is 
displayed in Fig. 4. 
As we can see, from f40 the rest of the features are 
weighted 0, which does not mean that at another 
time it will remain the same. 

4.5 Training and First Classification 

Once we have a disposal of samples, a clear 
classification, and its characteristics vector 
extracted, we move to the construction phase of the 
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classifier itself. We have 1,671 samples classified 
according to the aforementioned criteria. 

At the time of writing this paper, the Machine 
Learning algorithms built into the system are 
implementations of SVM, DT, RF and NN.  

As a first approximation, we have chosen these four, 
as they are well known algorithms that have 
previously shown good results in similar 
classification problems. The implementation that has 
been used for all the aforementioned algorithms is 
provided by the scikit-learn framework for Python, 
which is widely known and used in these kind of 
problems. 

For the test phase, we took the remaining 500 
samples, where a 90% is goodware and a 10% is 
malware and we checked the results using the cross 
validation technique with a width of 10%. 

5 RESULTS 

5.1 Theoretical Validation of the 
Results 

It is very important to note that we did not optimize 
the algorithms used, but we used a specific 
implementation amongst all existing variants that 
allow to work with these techniques. 

On the other hand, we will not only take into 
account the final results in terms of accuracy, but for 
the evaluation results we will give special 
prominence to the confusion matrix, where 
“positive” means that a sample is malware. 

This matrix should pay particular attention to false 
positives and false negatives in the case of analysis 
of malware samples. The reason is that, especially 
when compared with the malware world, not all 
accuracy is valid at any cost. Therefore, the 
construction of a classifier must also consider these 
parameters, ensuring that good results are not 
achieved at the expense of a false positives or false 
negatives rate that turn it inoperative. 

In all cases, cross-validation was used at 10% and 
we calculated Accuracy, Precision and Recall. The 
results obtained in the test phase are displayed in 
Table 1. Additionally, we used F1-Score to combine 
accuracy and recall as the geometric average of both 
of them and AUC-ROC (Area Under ROC Curve). 

During this test phase, different sets of training, tests 
and validation samples are used to build the 

classifier and tune it. Usually the precision achieved 
in classification has been high with all the 
algorithms. Neural networks reach a precision of 
0.99%, makes it the most promising candidate for 
the later phase. 

5.2 Practical Validation of the Results 

The final stage checks the performance of the 
trained classifier with a series of samples never seen 
before. We have taken 267 new samples from which 
55.8% (149) are considered malware according to 
the aforementioned criteria. 

Table 1: Comparison of algorithms during the test phase. 

 

From there, they are classified and their quality 
indices and the confusion matrix are compared 
according to the different algorithms used. The 
results are presented in Table 2. 

Table 2: Comparison of algorithms during the final phase. 

 

Table 3: Comparison of the algorithms confusion matrix 
during the final test phase. 

 

As the Table 2 shows, from the samples taken, we 
achieve a more precise classification with the SVM 
algorithm, since it allows to correctly classify 93% 
of the samples with a tolerable rate of false positives 
and false negatives. The AUC (Area Under the 
Curve ROC) can be used as a tool to measure the 
performance or effectiveness of the classifier. A test 
is considered as very good if it is between 0.9 and 
0.97. 
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It is noteworthy how, with different samples (and 
contrary to what happened with the test set), the 
SVM classification algorithm appears as much 
effective than neural networks, with a higher 
precision and accuracy, which means that its 
performance is superior even taking into account 
false positives and negatives. To test this further, 
Table 3 details the confusion matrix for each of the 
algorithms. The highest rate of false negatives (up to 
8%) occurs in the classification conducted by 
decision trees, in addition to having the poorer 
classification data in general. We can see very 
similar values between the neural networks and 
support vector machines, although again it is 
confirmed that the performance of support vector 
machines is especially remarkable. From the matrix 
we deduce that it is especially effective classifying 
true positives (malware that indeed is malware), and 
at the expense of false positives and negatives below 
3%. We can see that the penalty of decision trees in 
Table 2 (with a precision of only 88%) is given by a 
false negative rate of 8%, that is, the rate of malware 
not detected. 

6 CONCLUSION AND FUTURE 
WORK 

The aim of this project is a first approach to the 
creation of a classifier with the capacity of learning 
to detect macro malware using mainly the 
characteristics of the VBA code, and compare its 
effectiveness between different algorithms and 
against traditional solutions such as antivirus 
engines. This kind of experiments does not seek to 
replace these consolidated traditional solutions, but 
to complement them and sometimes facilitate the 
work of analysts who design and update them. 
During its development we have developed tools 
that allow the extraction and analysis of different 
types of documents, extracted and coded the features 
necessary for building a classifier, and finally we 
have compared the result of several classifiers 
previously trained. In addition, we have 
implemented the classifier in a framework that adds 
value to the results achieved by the classifier 
allowing us to improve, experiment and research 
further wih new data and algorithms.  
However, and although the analysis and research 
still has room for improvement and optimization, we 
have to emphasize several points that have already 
been taken into account at the time of its 
implementation and development. For example, the 

fact that the use of antivirus engines as previous 
classification systems to train the algorithms makes 
the classifier inherit their successes, mistakes, 
advantages and disadvantages. To clarify this point, 
we develope some of the background to the analysis, 
in which it is presupposed that: 

 Samples taken as goodware are actually 
goodware. Although risky, precautions taken 
when choosing these samples (such as not 
relying solely on antivirus engines, but on the 
source) guarantee "real" goodware to a larger 
extent than the simple classification by number 
of engines. 

 Samples taken as malware by many antivirus, 
are actually malware. 

 There is a strong time factor in detection: 
Engines need time to create signatures, and the 
freshests samples may go unnoticed until the 
specific signature is created and most engines 
start detecting it. The same happens with false 
positives: a not very detected sample may be 
detected because of a simple mistake that ends 
up being corrected by the engines. Thus, the 
detection threshold set to define a sample as 
malware or not can vary depending on the 
moment when that sample is taken and 
analyzed. Choosing a three-engines threshold, 
as has been the case, tries to adjust as closely as 
possible to the relation between early detection 
and a false positive.  

In fact, for a comparison truly independent and 
disconnected from the classification already carried 
out by antivirus engines, we would need to properly 
validate the samples with a detailed manual analysis, 
which would eliminate the time factor. Regardless of 
these risk factors introduced and already mitigated 
as much as possible, during the research we have 
demonstrated that a first approach turns produces 
promising results, in which the best trained classifier 
works with precision above 90%, with a false 
positive and negative rate below 3%, making it a 
good filter comparable to the results of the most 
advanced antivirus, and demonstrating that the 
choice of characteristics intrinsic to the VBA code 
that forms a macro could become an effective 
method for the classification of malware. 
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