
Macro Malware Detection using Machine Learning Techniques
A New Approach

Sergio De los Santos and José Torres
ElevenPaths, Telefónica Digital Cyber Security Unit, Madrid, Spain

{ssantos, jose.torres}@11paths.com

Keywords: Macro, Malware, Office, Classification, Machine Learning.

Abstract: A malware macro (also called "macro virus") is the code that exploits the macro functionality of office
documents (especially Microsoft Office’s Excel and Word) to carry out malicious action against the systems
of the victims that open the file. This type of malware was very popular during the late 90s and early 2000s.
After its rise when it was created as a propagation method of other malware in 2014, macro viruses continue
posing a threat to the user that is far from being controlled. This paper studies the possibility of improving
macro malware detection via machine learning techniques applied to the properties of the code.

1 INTRODUCTION

Originally macros add extra functionalities to
documents, providing them with dynamic properties
that allow, for example, to perform actions on a set
of cells in an Excel document or embed multimedia
objects in Word files. But by the late 90s, they
started to become an attack vector used by malware
creators to execute code in systems. Attackers would
program macros that extended their functionality for
the execution of malicious actions on the system,
such as downloading and running executables.

"Melissa" (Wikipedia, n.d.) was one of the most
recognized and harmful worms, in March, 1999. The
way of spreading this type of malware traditionally
has been (and still is) email. The victim receives an
email with an attachment and when opens it, the
internal macro is executed and infects the operative
system. In recent years, following the improvements
introduced by Microsoft in the Office package to
prevent the automatic execution of macros, this type
of malware has lost relevance. The existence of
other more direct methods that did not depend on the
configuration of the Office system (e.g. exploiting
vulnerabilities) caused that, for a while, this formula
lost popularity. However, since 2014, Microsoft is
warning of a significant rebound (Pornasdoro, 2014)
in the use of macro malware, this time as a spread
method or a way for downloading other malware.

Since 2104 and during 2015 (MMPC, 2015), macro
viruses have been used to spread ransomware
malware or banking trojans, quite successfully for
attackers despite the countermeasures and security
improvements. Therefore, since more than 15 years
after its appearance, macro malware remains a
threat, and mechanisms to detect these attacks are
still necessary.

The purpose of this paper is to study the behavior of
attackers when creating malicious macros and their
functioning. Moreover, it wants to demonstrate if
detecting, analyzing and using the most common
methods of malware programming and obfuscation
may facilitate the correct and automatic
classification and distinction of documents
containing legitimate macros, from those with
malicious macros. While it is assumed that this is a
specific task of antivirus systems, this study does not
intend to replace them, but to describe a different
approach based on parameters other than signatures
or heuristics to complement detection through these
traditional systems and allow a more effective
identification in another layer and with other means
such as machine learning.

The rest of the paper is organized as follows: section
two analyses the technical structure of these
documents and a historical introduction; section
three shows the background both in terms of
previous related studies and existing tools to
introduce the problem; section four describes and
develops the proposal; section five presents the

Santos, S. and Torres, J.
Macro Malware Detection using Machine Learning Techniques - A New Approach.
DOI: 10.5220/0006132202950302
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 295-302
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

295

results of this work to finally describe the
conclusions and possible future work in the last
section.

2 BACKGROUND

Visual Basic for Applications (Wikipedia, n.d.) is
the language used to create macros in Office. It
appeared in 1993, and its latest version dates from
2013. It is related to Visual Basic, in the sense that it
needs its engine to run, but it is not independent: it
must run within another application that contains the
code, and interact with other applications through
OLE Automation objects (a Microsoft internal CPI).
VBA is compiled into P-Code (also used in Visual
Basic). This is a proprietary system from Microsoft
that allows its decompilation to the original format
in which the code was written. Once compiled, it is
stored in the corresponding Office document as a
separate flow in an OLE or COM object.
Since 2007 there are two very different formats of
Office documents, and depending on the version of
the Office format used, this object can be found
embedded in the document or as a separate file. The
different formats are:
 Based on Microsoft formats prior to 2007 with

.doc or .xls extensions ("classic" format).
Formats prior to 2007 are actually an OLE
object in themselves.

 Based on Open XML formats (Microsoft, s.f.)
after 2007 with .docx or .xlsx extensions for
example. These formats are actually ZIP files,
which contain the same COM object as a macro.

COM or OLE objects used by Microsoft to store
macros are specifically OLE objects with the
structure "Office VBA File Format".

3 STATE OF THE ART

From the macro malware analysis standpoint, on the
Internet we can find numerous specific analysis
about malware that uses different techniques that
maximize the chances of VBA to get control of the
system and execute code. In the antivirus industry,
numerous patents have been created to control this
type of malware, such as (Ko, 2004), that describes
how to extract the macro in a document, analyses the
flow and operations of the code, compares against a
database previously categorized and issues a verdict.
Improving the previous approach, since the late 90
new malware detection techniques appear based on

program behavior analysis, such as (Chi, 2006),
patented by Symantec in 2006. As a third approach,
we can categorize those techniques, for example
(Shipp, 2009), consisting of a more thorough
analysis of the code itself through the use of
statistics, but always limited to the morphological
aspect, that is, comments, character frequency,
names of variables and functions, etc.

In addition to the above, a new and different
approach can be taken into account, based on the use
of machine learning techniques to detect malware. In
this case, most of the existing literature comes from
academia and is considerably less extensive than that
addressed by the aforementioned approaches. For
example, in (Nissim, et al., 2015) Nir Nissim et al
use a methodology they have named Active
Learning in which they use machine learning
techniques in order to, from Open XML formats
(.docx extension), extract features from the
document that are external to the code using a
system called SFEM, and that when combined with
their learning system ALDOCX, help identify
malware on office documents. The extraction of
SFEM features is based on obtaining internal paths
of the ZIP composing the document. This system is
restricted only to new formats based in Office’s
XML, and it needs the full document to work
properly, including text or relevant content, which
may violate privacy if information control during
analysis is not strict enough.

Furthermore, in (Schreck, et al., 2013) Schreck et al
presented in 2013 another approach which they
called Binary Instrumentation System for Secure
Analysis of Malicious Documents, which sought to
distinguish malicious documents extracting the
malicious malware payload and identifying the
exploited vulnerabilities. However, it only worked
for classifiying classic Microsoft formats (.doc
extension).
The technique and framework presented in this
research is able to work with both classic format and
Open XML-based documents. In addition, it relies
primarily on the characteristics of the VBA project
code and other metadata of the file, but it completely
detaches from the contents of the document or any
aspect that allows establishing a connection with a
particular document. The use of metadata is limited,
focusing the machine learning on the code features
that define them at semantic level. Moreover, as we
will analyze in further sections, we potentiate the
selection of features similar to that used by Schreck,
et al., automating it and making it dynamic in time.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

296

4 DESCRIPTION OF THE
PROPOSAL

The research proposal, therefore, is based on the
application of machine learning techniques, in this
case classification and supervised learning
techniques, to determine whether by creating a
specialized classifier it is possible to become more
effective than the solutions most commonly used
and known nowadays, which basically are limited to
antivirus engines.

4.1 Identification and Collection of
Samples

Since the goal is to build a classification system, the
fundamental initial process will be the collection of
samples. This exercise should help obtain a
representation of the universe to be studied as
realistic as possible. For this research, we have taken
samples from Word office documents in .doc, .docx
format as well as in .docm from different sources
and created at different times, although with a
significant percentage of recent and current samples
(about 80% of the samples collected were created in
2015 or 2016). The samples were collected from
diferent sources as for example email accounts that
usually receive spam or malware attached,
repositories of public malware (malwr.com,
contagiodump, etc.) and repositories of documents
in general (P2P networks, search engines and
repositories of public documents, etc.)

We recovered a total of 1,671 office documents. For
the sample identification and classification, we
created two different classes or sets:

 Goodware: Word files with macros from more
trusted sites (document repositories in domains
of public entities, universities, etc.) and without
a heuristic pattern detected that could be
described as suspicious. For example,
obfuscated strings, the presence of suspicious
calls to API, etc. In addition to the absence of
suspicious indicators, we used multiple antivirus
engines to validate that they were not detected
as malware.

 Malware: Samples that, analyzed with more
than three different antivirus engines, were
detected as malware by at least three of these
engines, regardless of their characteristics.

Considering the detection by three or more engines
as “a threshold” for malware is arbitrary, although
accepted by literature in general. Choosing a good

detection "threshold" is a complex exercise that still
has not been solved or standardized, but that can
make the result of a research based on classification
to throw different results depending on whether it is
malware or goodware, two terms that are not always
properly distinguished even by antivirus engines.

4.2 Analysis of Samples and Coding of
Features

To create a classifier, it is necessary to decide which
features will be taken from the samples and how
they will be coded. These features will serve as
predictors that will form the input vector of the
classifier to be built. In this phase of the study, the
features are not final yet, but respond to the bulk of
all those features that have been obtained from
samples using the available tools.
For example, some features may seem to have no
impact on the result of the classification, others
however may have a direct correlation, and others
may be even correlated with each other and in turn
be decisive for the outcome. In the following charts
(Figures 1 and 2), we can see how the linear
adjustment of the ratio shows a certain inverse
relation between the size of samples (in megabytes)
and the number of detections by antivirus engines.

Figure 1: Document size (MB) vs Number of detections.

However, in the case of size of the VBA project
where macros are stored, the linear adjustment
reveals that the relation is direct, that is, the larger
the size of the VBA project, implies a greater
number of antivirus engines that would detect the
sample. This may be because, usually, in the case of
Word documents, macros are typically not too
complex, so the generated VBA code is not complex
either.

Macro Malware Detection using Machine Learning Techniques - A New Approach

297

Figure 2: VBA Project size (MB) vs Number of detection.

However, in the case of malicious macros, the
amount of code is higher, since usually many
functions and procedures are needed to perform such
actions. In any case, this continues to be an
assumption based on the observation of the
researcher that cannot actually be demonstrated
without some kind mechanism such as the one
presented in this study.

Thus, thanks to our implementation of an automatic
selection of characteristics (ASC) based in PCA, the
outflow of the classifier (once validated by analysts)
serves as feedback and becomes part of the training
set. The continuous arrival of new samples to this
training set, will lead to the emergence of new
features and to changes in the weighting performed
by the classifier. These changes must be
automatically detected by the ASC depending on the
quality of the results obtained by the classifier.

This research relies heavily on information provided
by the decompiled code of the macro, although
additionally we have included heuristic
characteristics used by the Python framework
python-oletools. This way, the input characteristics
vector has been reduced to a minimum size
appropriate to the needs of the classifier, and it
allows sufficient flexibility in terms of automatic
selection of characteristics for the results obtained to
be significantly improved. The proportion of
characteristics directly related to the decompiled
macro code that make up the vector is 76%.

The coding of the features in the vector is binary,
since the load of the classifier is relieved by
reducing the search space and therefore increasing
its performance in terms of time and amount of
computation.

Currently we work with four classification
algorithms: Binary Decision Trees, Support Vector
Machines, Random forest and Neural Networks,
although the system as a whole has been designed so
that the used classifier is an interchangeable piece,
both at algorithm level and version of the classifier
itself. Therefore, depending on the results, we will
be able to quickly and easily change between any of
the three algorithms implemented without the
functioning of the system being affected. Moreover,
new algorithms may be added to the existing ones
simply respecting the modular structure of the
system with which the previous ones were added,
which is a relatively simple process.
In addition to the classifier, we have developed a
framework that acts as a wrapper, adding a layer of
high-level functionalities, such as the capacity to
relate malware or add new samples and analyze
them. With this, among other things, the classifier is
supplied automatically with different sample sources
that are dumped on an unified deposit for their
subsequent processing. Thus, the number of samples
will progressively increase, taking also into account
that the system itself is a source of incorporation of
samples that are uploaded by users through the
platform that has been developed so that analysts,
among others, can interact with the system in a more
user-friendly way.
Among the features used to form the vector, we have
taken into account specific characteristics of the
code from macros as well as other features of the
VBA project and the document itself. For example,
one of the code’s characteristics taken into account
could be the use of words reserved in VBA related
to macros auto-execution (AutoExec, AutoOpen,
Document Open, etc.), or invocations to typical
access libraries to APIs of the system that allow a
higher functionality in macros. For the
implementation of extractions of such
characteristics, we have used the Python library
OleVBA.

Figure 3: Graphical representation of weighting of
characteristics.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

298

On the other hand, an example of a feature both of
the VBA project and of the Word document itself
could be the time difference between its creation and
the last modification, or the number of macros in a
document.

For extraction and analysis of these characteristics, a
specific program is created for our needs. Based on
the Python library OleFile, it compensates the
scarcities found in OleVBA, complements it, and
also directly produces the vector that characterizes it
for each input sample. This vector is composed of 45
bits in total, but not all features are purely binary
(some have been discretized). This means that 45
bits do not necessarily involve 45 different
characteristics, but some monopolize up to 4 bits to
characterize the sample in a more granular way. For
example, macros sizes are discretized that way,
grouping them by ranges.

Definitely, as a result of all the above, we obtain a
base vector (BV), which contains all significant
features that have been commonly extracted from all
types of referred documents (doc, docx and docm),
and that defines them anonymously as input for the
classifier. Since this is a first version of the system,
we should mention that this vector can vary over
time, either by adding new features that can be
drawn from the documents already analyzed, or by
the inclusion of new documents, such as Excel,
PowerPoint or PDF that provide new features
themselves.

4.3 Feature Selection

Weka was used at the earliest stages of the study in
order to make a first approach that served as a quick
method of validation of the functionalities for a later
debugging based on successive iterations. Given the
structure of the extracted information as how it is
reflected in the vector (as binary predictors), the type
of classifier used quite fits with algorithms based on
trees, especially J48, REPTree and Random Forest.
We took a significant number of samples (over 500
samples) and carried out different classification
exercises using decision trees with different
algorithms that allowed a quick and visual check of
the quality of the features. That way we were able to
guarantee, not formally (there are numerous
techniques to validate this) but "visually", that the
functionalities chosen were suitable for the initial
scope of this research. Subsequently this has been
validated in a more rigorous way.
For example, the first approaches revealed some
characteristics that were very important decision-

wise, such as the inclusion of the word "Document
Close" (f43). However, this is not a definitive tree,
since repeated iterations of the automatic selector are
necessary to use all the features properly and enrich
the final decision algorithm.
This exercise also aimed to debug the future
classifier, the vector, and verify that decision trees
could indeed result in a good classifier.

With these classification algorithms we also
obtained the first approximations of the results that
can be obtained with these features. In the specific
case shown, we managed to classify a set of cross-
validation test and training with an accuracy of
96.39%, and a false positive rate (misclassification)
of 3.60%, which points to acceptable outcomes.

4.4 Structure of the Classifier and
Basic Functioning

As we have seen in previous sections, the classifier
receives as input a binary vector of features
(predictors) previously selected by the ASC from the
BV, which we will refer to as final vector (FV).
Since it is a binary classification problem, where all
types with which we work are Malware and
Goodware, as usual we have a training set the data
of which are structured in the form { ௜ܺ, ௜}௜ୀଵே௩ݕ , where ݕ௜ ∈ ,݁ݎܽݓ݈ܽܯ} is the categorical {݁ݎܽݓ݀݋݋ܩ
variable and ௜ܺ = ሾݔ௜ଵ, … , 	௜ݔ	|	௜ேሿݔ ∈ {0, 1} is each
of the ௏ܰ vectors contained in the training set,
formed by N binary predictors.
The characteristics that form the FV are those with a
significant importance in the classification process
according to the set of samples that exist in the
system at a given time t. Thus, each x feature will
have a pi weighting at a given time. pi = P(x | t).
In turn, over time and depending on the samples
incorporated to the system, different BV will appear
among which we will need to select which one is
most suitable depending on the time. Thus, at the
time of writing this paper for example, the weight
distribution in the BV of each feature according to
its node’s contribution in Random Forest is
displayed in Fig. 4.
As we can see, from f40 the rest of the features are
weighted 0, which does not mean that at another
time it will remain the same.

4.5 Training and First Classification

Once we have a disposal of samples, a clear
classification, and its characteristics vector
extracted, we move to the construction phase of the

Macro Malware Detection using Machine Learning Techniques - A New Approach

299

classifier itself. We have 1,671 samples classified
according to the aforementioned criteria.

At the time of writing this paper, the Machine
Learning algorithms built into the system are
implementations of SVM, DT, RF and NN.

As a first approximation, we have chosen these four,
as they are well known algorithms that have
previously shown good results in similar
classification problems. The implementation that has
been used for all the aforementioned algorithms is
provided by the scikit-learn framework for Python,
which is widely known and used in these kind of
problems.

For the test phase, we took the remaining 500
samples, where a 90% is goodware and a 10% is
malware and we checked the results using the cross
validation technique with a width of 10%.

5 RESULTS

5.1 Theoretical Validation of the
Results

It is very important to note that we did not optimize
the algorithms used, but we used a specific
implementation amongst all existing variants that
allow to work with these techniques.

On the other hand, we will not only take into
account the final results in terms of accuracy, but for
the evaluation results we will give special
prominence to the confusion matrix, where
“positive” means that a sample is malware.

This matrix should pay particular attention to false
positives and false negatives in the case of analysis
of malware samples. The reason is that, especially
when compared with the malware world, not all
accuracy is valid at any cost. Therefore, the
construction of a classifier must also consider these
parameters, ensuring that good results are not
achieved at the expense of a false positives or false
negatives rate that turn it inoperative.

In all cases, cross-validation was used at 10% and
we calculated Accuracy, Precision and Recall. The
results obtained in the test phase are displayed in
Table 1. Additionally, we used F1-Score to combine
accuracy and recall as the geometric average of both
of them and AUC-ROC (Area Under ROC Curve).

During this test phase, different sets of training, tests
and validation samples are used to build the

classifier and tune it. Usually the precision achieved
in classification has been high with all the
algorithms. Neural networks reach a precision of
0.99%, makes it the most promising candidate for
the later phase.

5.2 Practical Validation of the Results

The final stage checks the performance of the
trained classifier with a series of samples never seen
before. We have taken 267 new samples from which
55.8% (149) are considered malware according to
the aforementioned criteria.

Table 1: Comparison of algorithms during the test phase.

From there, they are classified and their quality
indices and the confusion matrix are compared
according to the different algorithms used. The
results are presented in Table 2.

Table 2: Comparison of algorithms during the final phase.

Table 3: Comparison of the algorithms confusion matrix
during the final test phase.

As the Table 2 shows, from the samples taken, we
achieve a more precise classification with the SVM
algorithm, since it allows to correctly classify 93%
of the samples with a tolerable rate of false positives
and false negatives. The AUC (Area Under the
Curve ROC) can be used as a tool to measure the
performance or effectiveness of the classifier. A test
is considered as very good if it is between 0.9 and
0.97.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

300

It is noteworthy how, with different samples (and
contrary to what happened with the test set), the
SVM classification algorithm appears as much
effective than neural networks, with a higher
precision and accuracy, which means that its
performance is superior even taking into account
false positives and negatives. To test this further,
Table 3 details the confusion matrix for each of the
algorithms. The highest rate of false negatives (up to
8%) occurs in the classification conducted by
decision trees, in addition to having the poorer
classification data in general. We can see very
similar values between the neural networks and
support vector machines, although again it is
confirmed that the performance of support vector
machines is especially remarkable. From the matrix
we deduce that it is especially effective classifying
true positives (malware that indeed is malware), and
at the expense of false positives and negatives below
3%. We can see that the penalty of decision trees in
Table 2 (with a precision of only 88%) is given by a
false negative rate of 8%, that is, the rate of malware
not detected.

6 CONCLUSION AND FUTURE
WORK

The aim of this project is a first approach to the
creation of a classifier with the capacity of learning
to detect macro malware using mainly the
characteristics of the VBA code, and compare its
effectiveness between different algorithms and
against traditional solutions such as antivirus
engines. This kind of experiments does not seek to
replace these consolidated traditional solutions, but
to complement them and sometimes facilitate the
work of analysts who design and update them.
During its development we have developed tools
that allow the extraction and analysis of different
types of documents, extracted and coded the features
necessary for building a classifier, and finally we
have compared the result of several classifiers
previously trained. In addition, we have
implemented the classifier in a framework that adds
value to the results achieved by the classifier
allowing us to improve, experiment and research
further wih new data and algorithms.
However, and although the analysis and research
still has room for improvement and optimization, we
have to emphasize several points that have already
been taken into account at the time of its
implementation and development. For example, the

fact that the use of antivirus engines as previous
classification systems to train the algorithms makes
the classifier inherit their successes, mistakes,
advantages and disadvantages. To clarify this point,
we develope some of the background to the analysis,
in which it is presupposed that:

 Samples taken as goodware are actually
goodware. Although risky, precautions taken
when choosing these samples (such as not
relying solely on antivirus engines, but on the
source) guarantee "real" goodware to a larger
extent than the simple classification by number
of engines.

 Samples taken as malware by many antivirus,
are actually malware.

 There is a strong time factor in detection:
Engines need time to create signatures, and the
freshests samples may go unnoticed until the
specific signature is created and most engines
start detecting it. The same happens with false
positives: a not very detected sample may be
detected because of a simple mistake that ends
up being corrected by the engines. Thus, the
detection threshold set to define a sample as
malware or not can vary depending on the
moment when that sample is taken and
analyzed. Choosing a three-engines threshold,
as has been the case, tries to adjust as closely as
possible to the relation between early detection
and a false positive.

In fact, for a comparison truly independent and
disconnected from the classification already carried
out by antivirus engines, we would need to properly
validate the samples with a detailed manual analysis,
which would eliminate the time factor. Regardless of
these risk factors introduced and already mitigated
as much as possible, during the research we have
demonstrated that a first approach turns produces
promising results, in which the best trained classifier
works with precision above 90%, with a false
positive and negative rate below 3%, making it a
good filter comparable to the results of the most
advanced antivirus, and demonstrating that the
choice of characteristics intrinsic to the VBA code
that forms a macro could become an effective
method for the classification of malware.

REFERENCES

Chi, D., 2006. Generic detection and elimination of

Macro Malware Detection using Machine Learning Techniques - A New Approach

301

marco viruses. United States of America, Patent No.
US7089591 B1.

Ko, C. W., 2004. Method and apparatus for detecting a
macro computer virus using static analysis. US, Patent
No. US6697950 B1.

Lagadec, P., n.d. Decalage. [Online] Available at:
https://www.decalage.info/python/oletools [Accessed
3 10 2016].

McAfee, n.d. [Online] Available at:
https://www.google.com/patents/US6697950

Microsoft, n.d. Microsoft. [Online] Available at:
https://support.office.com/en-us/article/
Introduction-to-new-file-name-extensions-eca81dcb-
5626-4e5b-8362-524d13ae4ec1? CorrelationId
=bcd7dab6-5072-4b24-ab44-00819c4dabbe&ui=en-
US&rs=en-US&ad=US&ocmsassetID=HA010006935
[Accessed 30 September 2016].

MMPC, 2015. Microsoft TechNet. [Online] Available at:
https://blogs.technet.microsoft.com/mmpc/2015/04/27/
social-engineering-tricks-open-the-door-to-macro-
malware-attacks-how-can-we [Accessed 30 September
2016].

Nissim, N., Cohen, A. & Elovici, Y., 2015. Boosting the
Detection of Malicious Documents Using Designated
Active Learning Methods. s.l., IEEE.

Pornasdoro, A., 2014. Microsoft. [Online] Available at:
https://blogs.technet.microsoft.com/mmpc/2014/12/30/
before-you-enable-those macros/ [Accessed 30
September 2016].

Schreck, T., Berger, S. & Göbel, J., 2013. BISSAM:Binary
Instrumentation System for Secure Analysis of
Malicious Documents. Munich, Siemens CERT.

Shipp, A., 2009. System for and method of detecting
malware in macros and executable scripts. US, Patent
No. US7493658 B2.

Wikipedia, n.d. Wikipedia. [Online] Available at:
https://en.wikipedia.org/wiki/Melissa_(computer_
virus) [Accessed 30 September 2016].

Wikipedia, n.d. Wikipedia. [Online] Available at:
https://en.wikipedia.org/wiki/Visual_Basic_for_Appli
cations [Accessed 30 September 2016].

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

302

